
J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

Published for SISSA by Springer

Received: September 22, 2020
Accepted: December 14, 2020
Published: January 26, 2021

Quasi-Jacobi forms, elliptic genera and strings in four
dimensions

Seung-Joo Lee,a Wolfgang Lerche,b Guglielmo Lockhartb and Timo Weigandc
aCenter for Theoretical Physics of the Universe, Institute for Basic Science,
Daejeon 34051, South Korea
bCERN, Theory Department,
1 Esplanade des Particules, Geneva 23, CH-1211, Switzerland
cPRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics,
Johannes Gutenberg-Universität, 55099 Mainz, Germany
E-mail: seung.joo.lee@cern.ch, wolfgang.lerche@cern.ch,
guglielmo.lockhart@cern.ch, timo.weigand@cern.ch

Abstract: We investigate the interplay between the enumerative geometry of Calabi-
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of modular or quasi-modular forms, which may encode BPS invariants of Calabi-Yau or
non-Calabi-Yau threefolds that are embedded in the given fourfold. As a result, the elliptic
genus is only a quasi-Jacobi form, rather than a modular or quasi-modular one in the usual
sense. This manifests itself as a holomorphic anomaly of the spectral flow symmetry, and
in an elliptic holomorphic anomaly equation that maps between different flux sectors. We
support our general considerations by a detailed study of examples, including non-critical
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For the critical heterotic string, we explain how anomaly cancellation is restored due to
the properties of the derivative sector. Essentially, while the modular sector of the elliptic
genus takes care of anomaly cancellation involving the universal B-field, the quasi-Jacobi
one accounts for additional B-fields that can be present.

Thus once again, diverse mathematical ingredients, namely here the algebraic geome-
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1 Introduction and overview

Recent developments in the context of the Weak Gravity Conjecture [1], reviewed in [2,
3], have revived interest in string dualities, which underlie the emergence of tensionless
strings [4–9] at infinite distance boundaries of moduli space.

Specifically, the previous work [6] initiated a study of the emergence of asymptotically
tensionless heterotic strings in N = 1 supersymmetric string compactifications in d = 4
dimensions. These strings arise as solitonic objects in certain flux compactifications on
Calabi-Yau fourfolds in F-theory. In suitable limits, they furnish the dominant degrees
of freedom, and become weakly coupled when described in the proper duality eigenframe.
The main purpose of that work was to test various Quantum Gravity Conjectures in a
controlled four-dimensional setting.1

The confirmation of the Weak Gravity Conjecture in [4–6] crucially hinged on the
modular properties of a certain index-like partition function, the elliptic genus, of the
asymptotically tensionless strings. Related aspects of modularity in this context have been
discussed in [1, 19–22]. As a somewhat surprising outcome of the analysis in [6], the elliptic
genera of four-dimensional strings turn out not to be modular or even quasi-modular.

The goal of the present paper is to study the interplay between geometry and modular
properties of elliptic genera in much greater depth. We will observe that the deviation
from the expected (quasi-)modularity of the elliptic genus in four dimensions is due to
the appearance of derivatives of (quasi-)modular Jacobi forms. These derivatives yield
so-called quasi-Jacobi forms in the sense of [23, 24], in agreement with general conjectures
made in [25]. As we will see, they originate from underlying, formally six-dimensional
sectors of the theory. This fact manifests itself in an intriguing way in the geometry of
the Calabi-Yau fourfolds and certain threefolds embedded therein. These structures will
likely be of use for further applications to non-perturbative, especially non-critical, strings
in four dimensions.

1See [10–16] for a small sample of complementary, quantitative geometrical tests especially of the Swamp-
land Distance Conjecture [17, 18].
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In the next subsection we will review known results in order to set the stage, followed
by a summary of our findings as a road map. The rest of the text is then devoted to a
detailed analysis. In section 2 we will set up the geometry underlying the fourfold and flux
configurations that we consider. The geometric objects which we will study are relative2

genus-zero Gromov-Witten, or equivalently BPS invariants on elliptically fibered fourfolds.
In section 3 we relate these invariants to a geometric, generally non-perturbative definition
of elliptic genera of four-dimensional strings, with focus on the relationship between their
modular properties and the underlying flux configurations. In this context we also observe
an intriguing relation between partition functions associated with transversal and non-
transversal fluxes, and this turns out to be a manifestation of the elliptic holomorphic
anomaly equation of [25]. Our analysis, condensed into conjecture 2, applies not only to
the elliptic genus of solitonic heterotic strings, but also more generally to those of non-
critical strings such as four-dimensional versions of E-strings. Section 4 is devoted to the
interplay between modularity, elliptic genera and anomaly cancellation, for the special case
of a heterotic solitonic string. Specifically, in section 4.3 we provide a match between the
Green-Schwarz terms in the effective action, and the various modular sectors of the elliptic
genus. In sections 5 and 6 we present a detailed technical analysis of several examples
for heterotic and non-critical strings. Further mathematical facts are relegated to the
appendices.

1.1 Review of known results

An important quantity that captures certain robust features of string theories is the ellip-
tic genus [26–29], which serves as a loop space extension of the ordinary chiral index in
quantum field theories. By turning on background fields, a wealth of exact information
about the chiral spectrum and its charges can be extracted. In this paper we will mainly
consider elliptic genera for four-dimensional string theories in a U(1) gauge background.
More concretely, what we will consider are the partition functions in the Ramond-Ramond
sector of superconformal worldsheet theories with right-moving supersymmetry, which in
d = 2n+ 2 dimensions are defined as

Z(q, ξ) = trRR
[
(−1)FRFnR qHL q̄HRξJ

]
, q ≡ e2πiτ , ξ ≡ e2πiz . (1.1)

Here τ denotes the modular parameter of the toroidal worldsheet, and z represents the
background gauge field strength, or fugacity, which couples to a left-moving, holomorphic
U(1) current, J . In order to obtain a non-vanishing result, the zero modes are saturated
by inserting an appropriate power FnR of the right-moving fermion number operator. In
the present, four-dimensional, context, we have n = 1 and the worldsheet theory possesses
N = (0, 2) supersymmetry.

The elliptic genus (1.1) should be contrasted with the familiar one of N = (2, 2) super-
conformal theories. For these one can refine the elliptic genus in a canonical way as to keep
track of the left-moving U(1) superconformal R-symmetry. On the other hand, the current

2The term relative invariants here refers to invariants for curves of form Cb +Cfib, where Cb lies in the
base and Cfib in the fiber of the elliptic fibration.
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J in the present context is just the worldsheet incarnation of some four-dimensional gauge
symmetry, which for concreteness we have taken to be U(1).3 This is a generic, model-
dependent symmetry which does not pertain to any left-moving N = 2 superconformal
algebra.

It is familiar from the earliest works [26–29] that the elliptic genus (1.1), defined as the
RR partition function of a weakly coupled, toroidal worldsheet theory, enjoys distinguished
transformation properties under the modular group, SL(2,Z): for a string in d = 2n + 2
dimensions, it transforms with modular weight w = −n. As we will recall later in section 4,
for the special case of a critical heterotic string this has important implications for anomaly
cancellation [26, 27, 30, 31] via the Green-Schwarz [32] mechanism.

When the elliptic genus is refined by an extra U(1) gauge background, as considered
here, one might expect that it will be promoted to a weak Jacobi form [33–35]. This means
that Z(q, ξ) = Φ−n,m(τ, z), where Φw,m denotes a generic weak Jacobi form of modular
weight w and index m (the index m is model dependent and specifies the level of the
underlying U(1) Kac-Moody algebra, or equivalently, the spacing of the charge lattice).
As summarized in appendix A.1, such Jacobi forms enjoy distinguished modular and shift
transformation properties, which play an important rôle for elliptic genera in general (for
a review, see e.g. [36]).

While this expectation is indeed realised in six dimensions, we find that the elliptic
genus in four-dimensional string theories is not necessarily a modular or quasi-modular weak
Jacobi form, but rather what is known as a quasi-Jacobi form (see again appendix A.1).
This is not in conflict with the arguments of [33] which are based on spectral flow [37],
as these arguments do not apply to generic U(1) currents in (0, 2) models. Indeed it is
known [38] that (left-right asymmetric) spectral flow is not necessarily a symmetry of the
theory. In fact the situation is not that bad, in that the elliptic genus will still be closely
related to weak Jacobi forms, albeit in a more intricate way: namely, at least in special
situations, as a collection of formally six-dimensional elliptic genera in disguise. We will
explain these matters, which are among our main findings, in detail in the next subsection.

Historically the elliptic genus of critical strings as written in (1.1) refers to a weakly
coupled, conformal worldsheet theory and as such it is an intrinsically perturbative, one-
loop quantity. However, it was later understood how elliptic genera for critical as well
as for non-critical strings can also be defined and computed in non-perturbative settings,
by resorting to a variety of methods such as mirror symmetry, the topological vertex,
localization, and 2d CFT technology [4, 6, 39–73]. This has the advantage of being far
more general than for perturbative strings based on weakly coupled worldsheet theories,
and applies also to non-perturbative heterotic as well as to non-critical strings.

In this paper we will exploit the fact that elliptic genera can be computed geometrically
in terms of Gromov-Witten invariants arising in dual string compactifications in M- or F-
theory. Most of the work has been done, so far, for six-dimensional theories. Essentially,
the idea is to consider solitonic strings that arise in F-theory from D3-branes wrapping
some curve, Cb, which lies in the base of an elliptic threefold, Y3. In the dual M-theory

3In section 6.1, we will also discuss a non-abelian extension.
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formulation, the charged excitations of the string wrapped on an extra S1 correspond to
M2-branes on C = Cb + nEτ + C f

r. Here Eτ is the elliptic fiber of Y3 and the other fibral
curves C f

r are associated with the gauge symmetry. The degeneracies that are encoded
in the elliptic genus (1.1) then have an interpretation as the genus-zero BPS invariants,
NCb(n, r), associated with C. These invariants can be assembled into the following free
energy, which is defined relative to Cb:

FCb(q, ξ) =
∑

NCb(n, r)qnξr . (1.2)

Here we assumed just one extra U(1) gauge symmetry.4 Physically the M2 brane wrapping
numbers n and r correspond to levels and charges of excitations of the solitonic string.

Via duality the free energy FCb(q, ξ) can be argued to coincide with the elliptic genus5

(1.1) of the solitonic string, upon identifying the modulus of the elliptic fiber with the
modulus of the toroidal worldsheet (and similarly for the U(1) fugacity):

ZCb(q, ξ) = −qE0FCb(q, ξ) , (1.3)

where E0 is the ground state energy of the Ramond sector of the string worldsheet theory.
In [6] we have addressed the analogous situation for four-dimensional F-theory com-

pactifications on fourfolds, Y4, focussing on geometries that lead to dual heterotic strings.
This is much more involved not the least because BPS invariants on fourfolds, Nα;Cb , de-
pend on extra data. Namely they need to be defined [74–77] with respect to some basis of
cohomology classes, ωα ∈ H2,2(Y4,R). In physics terms these data correspond to choices
for the background four-flux, G = cαω

α. Thus for a given fourfold Y4, we have in general
a collection of independent elliptic genera labelled by background fluxes,

Zα;Cb(q, ξ) = −qE0
∑
n,r

Nα;Cb(n, r)qnξr , (1.4)

so that the full elliptic genus for a given flux background G is given by a linear combination

ZG;Cb(q, ξ) =
dimH2,2(Y4,R)∑

α=1
cα Zα;Cb(q, ξ) . (1.5)

As far as the modular properties are concerned, it was found in [6] that depending on the
flux sectors labelled by α, the various building blocks Zα;Cb(q, ξ) behave very differently.
To be more specific, let us introduce the following symbolic notation (now labelling by
modular weight and index rather than by flux and curve):[

Z∗−1,m
]

=
[
ZM−1,m

]
⊕
[
ZQM−1,m

]
⊕
[
ZQJ−1,m

]
, (1.6)

4The generalisation to multiple U(1) factors should be straightforward, in terms of (quasi-)Jacobi forms
with multiple elliptic variables, along the lines of [5].

5Throughout this work we are considering genus-zero BPS invariants. In six dimensions, with a suitable
omega background turned on, one can define an elliptic genus that also captures higher genus BPS invariants
of Calabi-Yau threefolds as in [41]. Note however that for compact Calabi-Yau fourfolds only genus zero
and genus one invariants are relevant [74].
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where the superscripts refer to6 “modular”, “quasi-modular” and “quasi-Jacobi”, respec-
tively. We will explain these terms in due course. Note that at this point there is an
ambiguity in that any ZQM−1,m is a priori defined only up to a modular piece, and ZQJ−1,m up
to modular and quasi-modular pieces. The precise alignment between the modular prop-
erties and fluxes in H2,2(Y4), in relation to the overall geometry of the fourfold Y4, will be
a main issue in the present paper and will be discussed later in detail.

Let us go through the various components of [Z∗−1,m] and briefly characterize their
modular properties. The fully modular piece, ZM−1,m in (1.6) is, by definition, given by
some weak Jacobi form [33–35] (see appendix A.1). The quasi-modular piece, ZQM−1,m, is
a benign modification, the only difference being that it is a quasi-modular and not fully
modular Jacobi form. By this we mean that besides the ordinary modular Eisenstein series
E4 and E6, also the quasi-modular series E2 appears. As is familiar, this mild violation of
modularity can be repaired by replacing E2 by its modular, but non-holomorphic cousin

Ê2 = E2 −
3

πImτ , (1.7)

which transforms uniformly with modular weight two. In field theoretic terms, this reflects
a regularization ambiguity in the zero mode sector, which is resolved by imposing modular
invariance at the expense of holomorphicity.

This is just a manifestation of the celebrated holomorphic anomaly [78], which has
many manifestations in physics. In the present context (and for genus-zero invariants) it
is well-known [40, 50, 79–83] to mean that the base curve Cb = C0, which corresponds
to the heterotic string, splits over certain subloci: C0 = C1

E + C2
E . The curves CiE in

turn are associated with non-critical E-strings, and the split just reflects the fact that the
heterotic string can fractionate into two E-strings [45]. In the dual heterotic language these
correspond to having extra 5-branes in the geometry, which means that the quasi-modular
sector of the theory is intrinsically non-perturbative as seen from the heterotic perspective.
As we will discuss later in section 4, this will have also a non-trivial bearing on anomaly
cancellation, which is closely tied to the modular properties of the elliptic genus.

Finally, most peculiar and thus most interesting is the last component of the ellip-
tic genus, ZQJ−1,m, in (1.6). It was found in [6] that it cannot be an ordinary modular or
quasi-modular Jacobi form, since it does not obey the characteristic transformation prop-
erties (A.1) and (A.2). However it was observed that the coefficients of an expansion in
powers of z are quasi-modular forms term by term, so that one can at least assign a uniform
overall modular weight, w = −1, to it.

1.2 Summary of present work

The main new result of the present paper is that the component ZQJ−1,m of the ellitpic genus
in (1.6) is actually also expressible in terms of the more familiar (quasi)-modular Jacobi
forms, though in an intriguing way. Namely, it is given by a derivative

ZQJ−1,m(q, ξ) = ξ
∂

∂ξ
Z−2,m(q, ξ) (1.8)

6With “modular” (and similarly with “quasi-modular”) we refer in this context to the transformation
properties of weak Jacobi forms, which comprise besides (A.1) also the double quasi-periodicity (A.2).
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of a partition function Z−2,m(q, ξ) of modular weight −2 and index m. Depending on the
geometry it can be either a modular or quasi-modular weak Jacobi form. Thus, just like for
the (quasi-)modular sector, the extra sector splits into two, namely into a perturbative and
a non-perturbative piece, and we can refine the symbolic decomposition (1.6) as follows:

[
Z∗−1,m

]
=
([
ZM−1,m

]
⊕
[
ZQM−1,m

])
⊕ ξ ∂

∂ξ

([
ZM−2,m

]
⊕
[
ZQM−2,m

])
. (1.9)

Accordingly, from now on we will refer to these extra components as the “derivative sector”,
which by itself can come in a modular and quasi-modular version.

One main concern in the present paper will be to understand the mathematical origin
and physical interpretation of this sector in terms of the underlying fourfold geometry and
flux background. More concretely we aim to understand how the set of possible four-form
fluxes maps into the space (1.9) of elliptic genera, i.e.,[

G
]
−→

[
Z∗−1,m

]
. (1.10)

This question will be addressed in section 3, with special emphasis on geometries that are
dual to heterotic strings in section 3.2. In this concrete setting we can explicitly match
the geometrical data to the decomposition (1.9) of the elliptic genus in terms of modular
objects. Specifically, we anticipate, as described in our key equation (3.13), that

Z−1,m = g0 Z0
−1,m + gE ZE−1,m +

∑
i

gi
1

2mξ∂ξ Z
i
−2,m , (1.11)

where the index m is determined by a certain topological intersection product to be ex-
plained later. The flux-dependent coefficients, g∗, are intersection products as well and
are given in eqs. (3.14). The first term in (1.11) represents the fully modular piece of
the elliptic genus, while the second constitutes a possible non-perturbative, quasi-modular
piece. It originates from a possible blowup of the base threefold, B3, which introduces an
exceptional divisor, E, and is also associated with non-critical E-strings. As mentioned in
the previous section, this generalizes well-known results in six dimensions [50, 82, 83]. The
novel piece in four dimensions is then the derivative piece, which is in general given by a
sum of terms, as labelled by i in (1.11).

In fact, the derivative structure nicely ties in with statements given in the mathematical
literature [24, 25]. In particular it was proven in [24] that elliptic genera will in general
lie in the ring of quasi-Jacobi forms, which is a broader notion than just Jacobi or quasi-
modular Jacobi forms. It is easy to see from the definitions given in appendix A, that ZQJ−1,m
in (1.8) yields a simple and concrete realization of such quasi-Jacobi forms, which explains
the superscript. The paper [25] furthermore conjectured that the generating functions of
relative BPS invariants in any elliptically fibered variety can generally be expressed in terms
of quasi-Jacobi forms. Our results for Calabi-Yau fourfolds were found in an independent
manner, and thus provide a nontrivial check of these conjectures.

Given that the derivative terms do not behave well under either SL(2,Z) transforma-
tions (A.1) or under shifts (A.2), one might raise the point of consistency of the physical
theories. Specifically the shift z → z+ λτ , λ ∈ Z, which is a manifestation of spectral flow

– 6 –
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Figure 1. A sketch of the interplay between elliptic holomorphic anomalies and (almost holo-
morphic) partition functions, Ẑw,m(q, ξ), pertaining to the various fluxes as classified in (2.17).
Here Ẑ−1,m(q, ξ) is (the non-holomorphic cousin of) the elliptic genus in four dimensions. More-
over Ẑ−2,m(q, ξ) encodes relative invariants of certain embedded threefolds Yi3, which can, at least
formally, be associated to elliptic genera in six dimensions.

in the U(1) sector of the theory, would seem to be broken for flux backgrounds that lead
to derivative contributions to the elliptic genus.

This is analogous to the problem discussed in the previous section, where the quasi-
modular Eisenstein series E2 appears in the component ZQM∗,∗ of the elliptic genus. In that
case, the cure for restoring modular invariance was to add a non-holomorphic piece to E2,
replacing it by the modular, non-holomorphic weight-two Eisenstein series Ê2 as in (1.7).
In the present context of quasi-Jacobi forms, we have a similar remedy: we can augment
the derivative piece by introducing a non-holomorphic term, and declare the following to
be the (“derivative” part of the) physical elliptic genus:7

ẐQJ−1,m(τ, z) = ∇z,mZ∗−2,m(τ, z) ≡
(
∂z + 4πim Imz

Imτ

)
Z∗−2,m(τ, z) . (1.12)

This restores not only the modular SL(2,Z) symmetry (A.1), but also invariance under
the shifts z → z + λτ , λ ∈ Z, ie., spectral flow. In other words, what we encounter here as
a novel phenomenon, on top of the known modular anomaly, is an anomaly of the spectral
flow which can be cancelled upon sacrificing holomorphicity.

As we will explain in section 3.4, eq. (1.12) has an interpretation in terms of an elliptic
generalization of the holomorphic anomaly equation [40, 50, 78–83]. It is analogous to
the familiar holomorphic anomaly equation, which in essence states that given an almost
holomorphic, modular function which depends on Ê2, there is a functional identity between
the non-holomorphic sector and a derivative with respect to E2. More specifically, we
trivially infer from (1.12) that

∂

∂ Imz
Imτ

ẐQJ−1,m(τ, z) = 4πimZ∗−2,m(τ, z) . (1.13)

The surprising point is that the image of the derivative yields the generating function of
BPS invariants related to a different flux sector. Indeed we will find in section 3.4 that the

7This does not change the counting of states, since the q-expansion is defined in the regime Imτ →∞.
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Zi−2,m(τ, z) coincide with invariants related to certain non-transversal fluxes, even though
these have no interpretation in terms of gauge fluxes in four-dimensional F-theory! See
figure 1 for a sketch of the relations between the various flux sectors.

This makes contact with the work of [76, 77], where the BPS invariants induced by non-
transversal fluxes have been observed to organise into quasi-modular partition functions.
More-over in ref. [77] a holomorphic anomaly equation was found that relates flux sectors
associated with modular weights w = 0 and w = −2; the rightmost arrow in figure 1
refers to this. Our result (1.13) relates the elliptic genus of weight w = −1 to a flux
sector associated with modular weight w = −2. In fact, after translating our setup to the
formalism [25], equation (1.13) turns out to be a manifestation of the elliptic holomorphic
anomaly equation that was introduced in a more abstract form in that reference.

Moreover, we have found another, related interpretation of the Zi−2,m(τ, z): we will
see that for certain geometries, the Zi−2,m(τ, z) are literally the elliptic genera of certain
six-dimensional string theories. For example, in the context of solitonic heterotic strings,
where the base threefold B3 of the elliptic fourfold Y4 is itself fibered over some surface,
B2, the Zi−2,m are labelled by curve classes Ci in B2. To each of these Ci we can associate
a certain specific threefold, Yi3, which is defined by the restriction of the fourfold to the
pullback divisor p∗(Ci) as follows:

Yi3 := Y4|p∗(Ci) . (1.14)

Here {Cj} denotes the basis of curves dual to the basis {Ck} on B2. This geometric setup
is schematically depicted in figure 2. As we will argue in section 3.2, the Zi−2,m just encode
the relative BPS invariants of these auxiliary threefolds. This alternative interpretation
of the Zi−2,m then provides an intriguing relationship between background fluxes in H2,2

(−2)
and the enumerative geometry of the threefolds Yi3. It also gives independent support to
some of the conjectures of ref. [25].

In many cases, the embedded threefolds, Yi3, can be Calabi-Yau by themselves for an
appropriately chosen basis {Ci}. Since they are elliptically fibered as well, one can then
associate to each of them a chiral, six-dimensional F-theory compactification. We will show
that in this situation, the collection of the Zi−2,m that feature in the sum (1.11) are nothing
but the elliptic genera associated with these threefolds Yi3. This phenomenon generalises
also to non-critical strings which will be the subject of section 6.

More generally, however, it turns out that the embedded threefolds Yi3 are not neces-
sarily Calabi-Yau. We nonetheless conjecture, and support with some arguments, that the
Zi−2,m continue to encode BPS invariants of the embedded threefolds, Yi3. For these cases,
an interpretation in terms of elliptic genera likely persists only as a formal analogy.

To support our considerations, we will present a detailed analysis of several examples.
In section 5.1 we will discuss an example where the derivative sector comprises two em-
bedded threefolds both of which are Calabi-Yau. On the other hand, section 5.2 shows an
example with a single embedded threefold, which has negative anti-canonical bundle; the
derivative piece of the elliptic genus can then be associated via duality, in a formal sense,
to a certain elliptic surface with 36 singular fibers. Furthermore we see in examples that
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} }}}

Figure 2. The derivative contribution to the elliptic genus of a four-dimensional string is captured,
in suitable situations, by the relative BPS invariants of certain threefolds Yi3 inside the given elliptic
fourfold Y4. Here we present a sketch of how these threefolds are embedded for the example of a
heterotic string. The heterotic string arises in this F-theory geometry from a D3-brane that wraps
the rational fiber C0 in the base threefold, B3 ⊂ Y4. The extra two-form fields Bi that are needed for
reinstating Green-Schwarz anomaly cancellation arise by expanding the ten-dimensional four-form,
C4, with respect to the divisor classes p∗(Ci) for i = 1, . . . h1,1(B2).

the derivative structure appears even more broadly, and also applies to elliptic genera of
non-critical strings. This suggests, as stated in conjecture 2, that it is a general feature of
elliptic genera in four dimensions. In section 6 we will see how it applies to what we will
call four-dimensional E-strings,8 as well as to a non-critical string arising from a D3-brane
wrapping a curve on B3 = P3.

From a physics perspective, one may wonder about the Green-Schwarz cancellation of
the U(1) gauge anomaly, which is known to be closely tied to the modular properties of the
elliptic genus. For the example of a flux background that is dual to the heterotic string,
we will show in section 4 that anomaly cancellation persists also when derivative pieces are
present, albeit in a modified way.

As we will recall in section 4.1, the modular properties of the elliptic genus underlie the
standard Green-Schwarz mechanism which involves the universal B-field. The derivative
terms in the elliptic genus, Zi−2, appear precisely when, depending on the geometry and flux,
further 2-form fields Bi contribute to the Green-Schwarz mechanism [85].9 The additional
2-form fields arise from the curve classes Ci in the base threefold B2, which also determine,
as per (1.14), the corresponding elliptic threefolds Yi3. To close the circle of ideas, the
threefolds in turn encode the BPS invariants pertaining to the ith derivative sector of the
elliptic genus, and altogether everything conspires such that anomalies are cancelled.

8It would be interesting to make explicit the relation of these four-dimensional theories to the compact-
ifications of 6d E-string theories with flux, whose study was initiated in [84].

9For clarity we neglect here the quasi-modular sector, which brings in its own B-fields, as explained in
section 4.1.
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2 Geometric foundations

In section 2.1 we briefly review the geometric definition of BPS invariants for curves on
Calabi-Yau fourfolds and their computation via mirror symmetry. In section 2.2 we then
specialise to the relative BPS invariants on elliptic fibrations in the presence of fluxes. These
concepts become particularly important in light of F-theory/heterotic duality, whose salient
geometric manifestation we recall in section 2.3.

2.1 BPS invariants on Calabi-Yau fourfolds

In this work we investigate the structure of certain integral BPS invariants for Calabi-Yau
fourfolds, Y4, which are analogous to the familiar integral BPS invariants on Calabi-Yau
three-folds. There are two ways to approach the definition of the invariants, either on
purely geometric grounds or via mirror symmetry, and we will briefly review both. For
more details we refer e.g. to [74–77] and references therein.

We begin with the geometric approach by first defining the (in general rational)
Gromov-Witten invariants of a Calabi-Yau fourfold. Consider a curve class C ∈ H2(Y4,Z)
and the moduli space of stable holomorphic maps from a Riemann surface of genus g to C
with s points fixed, denoted asMg,s. This moduli space has expected or virtual (complex)
dimension dimvir(Mg,s) = 1 − g + s. For genus g = 0 and s = 1, the virtual dimension of
Mg,s is two and thus one can define a topological invariant by, loosley speaking, integrating
a suitably quantized element G ∈ H4(Y4,R) over the moduli space. More precisely, follow-
ing [74] we denote by µ the virtual fundamental class of M0,1 associated with a curve C
(with one point fixed). Then this defines the genus-zero Gromov-Witten invariants nG(C)
of C with respect to G as

nG(C) =
∫
µ

ev∗(G) , (2.1)

where ev∗ is the evaluation map applied to G. By holomorphicity, this integral is non-
zero only if G ∈ H2,2(Y4,R). While Gromov-Witten invariants are in general not integral,
there exist related integral BPS invariants for fourfolds which are analogues of the integral
BPS invariants of threefolds [86–88]. This was first conjectured in [75] and proven for
g = 0 in [89]. We will denote these integral BPS invariants by NG(C). At genus zero,
and as long as we do not consider multiples of curve classes, the two notions of invariants
are equivalent; throughout this work we will be in this situation and can hence use both
notions of invariants interchangeably.

The BPS invariants NG(C) can be computed by mirror symmetry [90, 91], by inter-
preting the Calabi-Yau fourfold Y4 as the compactification space of Type IIA string theory
to two dimensions, and the element G ∈ H2,2(Y4,R) as a four-form background flux. The
space H2,2(Y4,R) of supersymmetric flux backgrounds admits a decomposition [90, 92]

H2,2(Y4,R) = H2,2
vert(Y4,R)⊕H2,2

hor(Y4,R)⊕H2,2
rest(Y4,R) , (2.2)

where the vertical subspace H2,2
vert(Y4,R) is generated by all products of two elements

in H1,1(Y4), while the horizontal subspace H2,2
hor(Y4,R) is obtained by the variation of

Hodge structure from the unique (4, 0)-form on Y4. In a flux background given by G ∈
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H2,2
vert(Y4,R), the N = (2, 2) supersymmetric compactification of Type IIA string theory on

Y4 is partially determined by the free energy, FG(t), which depends holomorphically on
the Kähler moduli ta, a = 1, . . . , h1,1(Y4). The two-point functions for the chiral fields in
the effective action associated with the Kähler moduli are then given by [91, 93]

Cab,G = ∂a∂bFG(t) . (2.3)

The free energy FG(t), which plays the rôle of a superpotential in two dimensions, encodes
the genus-zero invariants as follows: define first the variables

qa = e2πita , a = 1, . . . , h1,1(Y4) , (2.4)

and expand a given curve class Cβ in terms of the basis Ca of H2(Y4) with complexified
volumes ta,

Cβ = βaCa . (2.5)

Hence to each curve Cβ one can associate the product

qβ = qβ
1

1 . . . qβ
h1,1(Y4)

h1,1(Y4) . (2.6)

The free energy FG(t) then enjoys a worldsheet instanton expansion of the form

FG(t) =
∑
β

NG(Cβ) Li2(qβ) , NG(Cβ) ∈ Z , (2.7)

where we have suppressed possible classical pieces which are polynomial in ta. The function
FG(t), and hence the invariants NG(Cβ), can in turn be computed by mirror symmetry:
type IIA string theory on Y4 with flux G ∈ H2,2

vert(Y4,R) is dual to Type IIA string theory
on the mirror Ỹ4 with a dual flux G̃ ∈ H2,2

hor(Y4,R). Under the mirror map the free energy
FG(t) maps to

FG̃ =
∫
Ỹ4

G̃ ∧ Ω̃4,0 , (2.8)

which is a holomorphic function of the complex structure moduli of Ỹ4. It is, in princi-
ple, exactly computable as a period integral, which eventually determines the invariants
NG(Cβ). For more details see [91, 93–95].

2.2 Relative BPS invariants on elliptic Calabi-Yau fourfolds

We now focus on invariants NG(Cβ) of those Calabi-Yau fourfolds Y4 which admit an
elliptic fibration of the form

π : Eτ → Y4
↓
B3 (2.9)

The base B3 of the fibration is a Kähler threefold, which, in order for such a fibration to
exist, must have an effective anti-canonical divisor, K̄B3 .
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As we will see, for certain choices of curve class Cβ and flux G, the genus-zero invariants
NG(Cβ) admit yet another interpretation in terms of an elliptic genus of a string. To arrive
at this interpretation, we view the Kähler threefold B3 as the compactification space of
F-theory [96] to four dimensions. Compactification of this theory on a further circle, S1

F ,
gives rise to a theory in three dimensions, which coincides with M-theory compactified on
Y4.10

We will furthermore assume that the gauge group of the four-dimensional F-theory is
non-trivial. For any non-abelian factor G of the gauge group, there must be a divisor bG on
B3 which is wrapped by a stack of 7-branes. For the geometry of Y4, this implies that the
generic elliptic fiber Eτ splits into several holomorphic curves over bG. In the dual M-theory
picture, M2-branes wrapping these fibral curves give rise to the non-abelian gauge bosons
that are not in the Cartan subalgebra of G. The fibral curves may split further over curves
on bG, in which case additional matter fields charged under G appear. Even for G = U(1),
massless charged matter exists only if the elliptic fiber splits over certain curves on B3.

For definiteness we now focus on gauge group G = U(1). Geometrically, in such
situation the fourfold Y4 then exhibits an extra rational section, S, in addition to the
zero-section, S0. Associated with S is the divisor class

σ ≡ σ(S) ∈ H1,1(Y4) , (2.10)

which is the image of the Shioda map. It has the defining properties that

σ ◦ π∗w6 = 0 , σ ◦ S0 ◦ π∗w4 = 0 ∀w6 ∈ H6(B3) , w4 ∈ H4(B3) . (2.11)

Here and in what follows we use the notation ◦ for the intersection product on Y4, i.e.,

wa ◦ wb ◦ . . . ◦ w8−a−b−... =
∫
Y4
wa ∧ wb ∧ . . . ∧ w8−a−b−... . (2.12)

Given σ we can expand the M-theory 3-form as C3 = A ∧ σ + . . ., where the 1-form field
A becomes the G = U(1) gauge potential in the dual M-theory.

In the language of Type IIB/F-theory, the abelian gauge group is associated with a
linear combination of 7-branes, each wrapping a 4-cycle on B3. The linear combination
of four-cycles associated with the U(1) in this way can be identified with the so-called
height-pairing

bU(1) ≡ b = −π∗(σ ◦ σ) . (2.13)

As mentioned before, in addition to the gauge potential there will in general be a
collection of massless charged matter fields. In the Type IIB/F-theory picture, massless
N = 1 chiral multiplets with

U(1) charge Q = r (2.14)

arise from open strings stretched between the 7-branes. The open strings give rise to
massless states of charge r which are localized on certain (self-)intersecting curves of the

10The following well-known elements of F-theory are reviewed for example in [97, 98], to which we refer
for details and original references.
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7-branes on B3. We will call these “matter curves” and denote them by Σr. In the M-
theory picture, the charged matter fields are obtained by wrapping M2-branes on curves
C f
r which sit in the fiber of Y4 over Σr. Their charges are determined by the intersection

product with the Shioda map:
r = σ ◦ C f

r . (2.15)

Apart from the geometry intrinsic to the fourfold Y4, the effective theory also depends
on the background flux, which, via the duality to M-theory, is encoded in a flux G ∈
H4(Y4,R) in M-theory. It is quantized such that G + 1

2c2(Y4) ∈ H4(Y4,Z). Importantly
for us, the primary vertical subspace H2,2

vert(Y4,R), as sketched in (2.2), receives additional
structure if Y4 is elliptically fibered. In this case, H2,2

vert(Y4,R) is spanned by three different
types of 4-forms which can be characterised as follows:

H2,2
vert(Y4,R) = H2,2

(0) (Y4,R) ∪H2,2
(−1)(Y4,R) ∪H2,2

(−2)(Y4,R) (2.16)

with
H2,2

(0) (Y4,R) = 〈(S0 + 1
2π
∗(K̄B3)) ∧ π∗(wi)〉

H2,2
(−1)(Y4,R) = 〈σ(S) ∧ π∗(wi)〉

H2,2
(−2)(Y4,R) = 〈π∗(wi) ∧ π∗(wj)〉 .

(2.17)

Here {wi} is a basis of H1,1(B3), S0 denotes the zero-section and σ(S) the Shioda map
image associated with the additional independent section S, as before. Note that not all
elements in the set {π∗(wi) ∧ π∗(wj)} are linearly independent within H2,2

vert(Y4,R). As
will become clear later, the subscript in H2,2

(w)(Y4,R) refers to the modular weight w of the
partition function, Zw,m, that is associated with the given flux.

Of special importance for us is the so-called transversal subspace H2,2
(−1)(Y4,R) of

H2,2
vert(Y4). It is orthogonal to the other two subspaces in (2.17), i.e., a flux G ∈ H2,2

(−1)(Y4,R)
by definition satisfies the two conditions

G ◦ π∗(wi) ◦ π∗(wj) = 0 , G ◦ S0 ◦ π∗(wi) = 0 ∀wi ∈ H1,1(B3) . (2.18)

The transversality conditions (2.18) ensure that the flux G, which is a priori defined as
background in the M-theory compactification on Y4, is compatible with the duality to F-
theory on B3, in the sense of giving rise to a four-dimensional effective theory with full
Poincaré invariance in R1,3. Such transversal fluxes related to the U(1) symmetry will be
denoted by

GU(1) = σ ∧ π∗(F ) , F ∈ H1,1(B3) . (2.19)

All other elements in H2,2
vert(Y4), while corresponding to valid flux backgrounds in M-theory

or Type IIA string theory, are not liftable to F-theory. In the more general context of
M-theory/Type IIA string theory on Y4, one can in any case analyse the BPS invariants of
an elliptic fibration in a non-transversal flux background, as pioneered in [76, 77].

Let us now recall how the transversal fluxes determine the chiral index of massless
charged matter in the context of four-dimensional F-theory compactifications [97]. As
noted above, massless matter fields with U(1) charge Q = r are localised on a curve Σr on
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the base B3. The fiber over Σr contains the curve C f
r, and an M2-brane wrapping C f

r gives
rise to a BPS particle in the dual M-theory picture. In fact, the fibration of C f

r defines a
surface Σ̂r,

πr : C f
r → Σ̂r

↓
Σr (2.20)

in terms of which the chiral index of massless matter of charge Q = r is computed as

χGU(1),Q=r = n+
r − n−r =

∫
Σ̂r

GU(1) = r

∫
Σr
F = r (Σr · F ) . (2.21)

The third equality is a consequence of the factorized form (2.19). Furthermore we have
introduced, after the last equality, the intersection product on B3 that we will henceforth
denote by a dot.

In fact, the integral invariant χGU(1),Q=r is exactly the genus-zero Gromov-Witten
invariant for the fibral curve C f

r with respect to GU(1) [6],

χGU(1),Q=r = nGU(1)(C
f
r) = NGU(1)(C

f
r) . (2.22)

The first equation follows from the geometric definition (2.1) because the moduli space
of C f

r with one point fixed coincides with the surface Σ̂r. The second equation holds
because for the rational curves in the fiber, C f

r = rC f
r=1 in cohomology; if nGU(1)(C f

r) 6=
0, there must exist an actual curve in this class in the fiber. Hence the non-vanishing
invariants nGU(1)(C f

r) 6= 0 do not involve multiple wrappings and therefore agree with the
BPS invariants NGU(1)(C f

r).
More generally, we are interested in the structure of genus-zero integral BPS invariants

for curves of the form
C = Cb + nEτ + C f

r , (2.23)

with respect to fluxes in H2,2
vert(Y4) that satisfy (2.18). We denote these invariants as

NG[Cb + nEτ + C f
r] =: NG;Cb(n, r) . (2.24)

As long as Cb is not a multiple of an integral curve class on B3, these integral invariants
coincide with the Gromov-Witten invariants for the same curve. They are called the relative
Gromov-Witten invariants with respect to the elliptic fibration π.

These integral invariants can be packaged into a generating function

FG;Cb =
∑
n,Q

NG;Cb(n, r)qn ξr . (2.25)

Here we have defined the variables

q = e2πiτ , ξ = e2πiz , (2.26)

where τ is the Kähler parameter of the generic elliptic fiber Eτ and z is the Kähler parameter
of the fibral curve C f

r=1. From the perspective of Type IIA string theory on Y4, FG,Cb

contributes to the two-dimensional superpotential F(t), as defined in (2.7).
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As stressed above, in the context of F-theory we must insist that G is a transversal flux.
Under this proviso, (2.25) coincides with the elliptic genus of a four-dimensional solitonic
string (up to a prefactor), as will be explained in section 3.1. On the other hand, for Type
IIA compactifications on fourfolds, there is no restriction to transversal flux backgrounds,
and one can consider generating functions (2.25) for the other, non-transversal types of
flux as well. As exemplified in [76, 77], the partition functions for fluxes in H2,2

(−2)(Y4) and
H2,2

(0) (Y4) are meromorphic (quasi-)modular forms of weight −2 and 0, respectively.

2.3 P1-fibered base spaces and F-theory/heterotic duality

As a special case of the structure outlined in the previous section, we now consider the
situation where the base space B3 by itself admits a further, rational fibration with section
S−, possibly blown up along one or several curves on the section. The projection of the
rational fibration will be denoted by

p : C0 → B3
↓
B2 (2.27)

The generic fiber is some rational curve C0. Prior to performing any blowup, the fibration
can be understood as the projectivised bundle P(O ⊕ L), where L is a line bundle on B2.
This means that the section S−, which is oftentimes referred to as an exceptional section,
has self-intersection S− · S− = −S− · p∗(c1(L)). One can therefore define another section
S+ := S− + p∗c1(L) such that

S− · S+ = S− · (S− + p∗c1(L)) = 0 . (2.28)

We can also perform an optional blowup along some curve Γa in the base B2. After
the blow-up, the rational fiber C0 over the curve Γa splits into two rational curves,

C0 = C1
Ea + C2

Ea . (2.29)

The blowup introduces an exceptional divisor Ea, which is itself a P1-fibration over Γa.
We label the curves C1

Ea
and C2

Ea
such that C2

Ea
is the fiber of the divisor Ea. With this

convention the intersection numbers of the exceptional curves C1,2
Ea

with the sections S±
and with Ea become

S± · C0 = 1 , S± · C1
Ea = 1 S± · C2

Ea = 0
Ea · C0 = 0 , Ea · C1

Ea = 1 Ea · C2
Ea = −1 .

(2.30)

This process can of course be repeated for several different curves Γa and followed up
by successive blowups in the fiber. For simplicity of presentation, however, we assume only
one such blow-up locus and hence drop the label a.

Whenever the base B3 is endowed with such a P1-fibration, F-theory on B3 has a
clearly identifiable heterotic dual [99]. Viewed from the dual, weakly coupled eigenframe,
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the heterotic string theory appears as a four-dimensional compactification on a certain
Calabi-Yau 3-fold Z3. The latter is elliptically fibered over the same base B2 as before,

ρ : Ehet → Z3
↓
B2 (2.31)

Apart from the geometry of Z3, the dual heterotic theory is determined by a gauge back-
ground in form of some polystable E1

8 × E2
8 bundle W = V1 ⊕ V2. The particular choice

of background depends both on the details of the elliptic fibration Y4 and on the original
F-theory background flux, GU(1).

Moreover, the optional blow-up along the curve Γ on B2 on the F-theory side translates
to heterotic 5-brane that is wrapped on the same curve Γ in B2, now viewed as the base of
the heterotic 3-fold Z3. Such compactifications are inherently non-perturbative from the
heterotic perspective.

3 Elliptic genera and the geometry of modularity

We are now in a position to discuss the identification of the relative BPS invariants, defined
in the previous section, with the degeneracies of states contributing to the elliptic genus of
four-dimensional solitonic strings. We state this connection in conjecture 1 of section 3.1,
which is a four-dimensional version of the correspondence between BPS invariants and
elliptic genera in six dimensions [4, 39–44, 49, 50, 57, 61–63, 65, 70–73]. In conjecture 2
of section 3.2 we present the modular properties of the four-dimensional elliptic genus. In
section 3.3 we point out an intriguing relation between the derivative sector of the elliptic
genus and the BPS invariants of certain threefolds embedded in the Calabi-Yau fourfold.
In section 3.4 we explain how these threefold invariants can alternatively be computed from
the non-transversal (−2)-fluxes, even though these do not have a direct interpretation in
F-theory. This leads to an elliptic holomorphic anomaly equation.

3.1 The elliptic genus of solitonic strings in four dimensions

From a physical point of view, the main objective of this paper is to obtain a better
understanding of four-dimensional critical and non-critical strings. This crucially rests on
the observation, which was already put to use in [6], that the generating function (2.25)
for the relative genus-zero Gromov-Witten invariants coincides, up to a factor, with the
elliptic genus of a solitonic string. The aim of this section is to spell out this relationship
in greater detail and formulate it as a general conjecture that, supposedly, applies to all
four-dimensional solitonic strings.

Let us first start by discussing how the solitonic strings arise in our context. Consider
an F-theory compactification with base space B3. A D3-brane wrapped on a curve Cb in the
base B3 gives rise to a string in the four-dimensional extended spacetime. The worldsheet
theory of this string is an N = (0, 2) supersymmetric field theory [100]. One can now define
the elliptic genus, as in (1.1), as a trace in the Ramond-Ramond sector of the N = (0, 2)
superconformal worldsheet theory of the solitonic string, or equivalently as a partition
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function on a torus with modular parameter τ . As before, we consider a configuration
with four-dimensional gauge group G = U(1), associated with charge operator J . Then
the elliptic genus takes the form (1.1):

ZGU(1);Cb(q, ξ) = trRR
[
(−1)FRFRqHL q̄HRξJ

]
, q = e2πiτ , ξ = e2πiz , (3.1)

where FR is the right-moving fermion number. The extra insertion of FR is needed to
saturate the fermionic zero modes in the right-moving sector. The elliptic genus does not
only depend on the choice of curve wrapped by the D3-brane, but also on the background
flux GU(1) of the parent F-theory compactification. In order for an F-theory interpretation
to exist, this flux must satisfy the transversality conditions (2.18).

As a consequence of the supersymmetry in the right-moving sector, the trace (3.1) is
a meromorphic function of q and ξ. In can be expanded as

ZGU(1);Cb = −qE0
∑
n≥0,r

NGU(1);Cb(n, r) qn ξr , (3.2)

where
E0 = −1

2K̄B3 · Cb (3.3)

is the zero point energy of the string on T2. As we will discuss in a few moments, the
degeneracies NGU(1),Cb(n, r) at level n and charge r for the flux ackground GU(1), are
conjectured to agree with the relative BPS invariants NGU(1),Cb(n, r) that we have defined
in the previous section.

For a general curve Cb, the solitonic string that arises from a wrapped D3-brane
is generically some strongly coupled, non-critical string in four dimensions [91]. We can
distinguish three possible types of strings. First, if Cb is a shrinkable curve, we can decouple
the dynamics of the string from the fields in the bulk of the base B3 by taking the volume
of B3 to infinity. In this case we arrive at a four-dimensional superconformal field theory in
the limit of decoupled gravity. An example of such a string would be a D3-brane wrapped
on an exceptional curve. For instance, this can be of the form Cb = C1,2

Ea
as defined

in (2.29), with normal bundle NCb/B3 = OCb(−1)⊕OCb . Such strings could be viewed as
four-dimensional analogs of the familiar E-strings in six dimensions [101–103] and will be
discussed in section 6.1.

There are also non-critical strings associated with curves whose volume cannot be
taken to zero without shrinking B3. Such non-critical strings cannot be decoupled from
gravity. An example would be for instance a curve Cb = H ·H, where H is the hyperplane
class on B3 = P3. For this curve the normal bundle is NCb/B3 = OCb(1) ⊕ OCb(1). This
example will be investigated in section 6.2.

Finally, the case where NCb/B3 = OCb ⊕ OCb is special: the curve Cb must be the
fiber, C0, of either a rational fibration of the form (2.27) or of an elliptic fibration. In the
first case, a D3-brane wrapped on C0 gives rise to a solitonic, critical heterotic string.11

11If C0 is the fiber of an elliptically fibered base B3, we expect instead a Type II string dual in a non-
geometric background. The six-dimensional version has been discussed in [8]. We will not investigate this
type of strings further as their elliptic genus vanishes in four dimensions.
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In its proper duality eigenframe, this string becomes precisely the fundamental heterotic
string compactified on the threefold Z3 as given in (2.31), additionally equipped with some
gauge bundle W . Moreover the elliptic genus (3.1), as defined via the G-flux background
in F-theory, turns into the (not necessarily perturbative) chiral partition function of that
heterotic string compactification. More precisely, the degeneracy NG;C0(n, r) counts (with
signs) the excitations in the Ramond sector at excitation level n and charge r.

For the critical heterotic string, the vacuum energy in (3.2) is E0 = −1
2C

0 · K̄B3 = −1.
The mass of the physical states at excitation level n thus is

M2 = 8πT (n− 1) , (3.4)

where T is the tension of the heterotic string. This identifies NGU(1);C0(1, r) as the chiral
index over the massless states of charge r. By duality with F-theory, this spectrum must
coincide with the physical massless spectrum in the original F-theory compactification on
Y4, and therefore the index NGU(1);C0(1, r) must agree with the chiral index (2.21):

χGU(1),r = NGU(1);C0(1, r) . (3.5)

Furthermore recall from (2.22) that χGU(1),r coincides with the genus-zero Gromov-Witten
invariant for the fibral curve C f

Q=r, which in turn is the same as the BPS invariant
NGU(1)(C f

r).
This demonstrates that the degeneracies NGU(1),C0(n = 1, r) are computable from

certain BPS invariants of Y4 for the special case of Cb = C0 for which NGU(1);C0(1, r) =
NGU(1)(C f

r). With the situation in six dimensions serving as inspiration, it is natural to
conjecture a far more general connection. More precisely, we conjecture that up to an
overall factor of qE0 , the elliptic genus (3.1) for any kind of solitonic string agrees with the
generating function of relative BPS invariants (2.25) at genus zero:

Conjecture 1 The generating function FGU(1),Cb for the relative BPS invariants at genus
zero associated with the base curve Cb, for any four-flux background GU(1) that satisfies the
transversality conditions (2.18), is proportional to the elliptic genus (3.1) for the solitonic
string obtained by wrapping a D3-brane on Cb:

ZGU(1);Cb = −q−
1
2Cb·K̄B3 FGU(1);Cb . (3.6)

In particular the relative BPS invariants for Cb, NGU(1);Cb(n, r), agree with the index-like
degeneracies NGU(1);Cb(n, r) of the excitations of the solitonic string at level n and charge r:

NGU(1);Cb(n, r) = NGU(1);Cb(n, r) . (3.7)

This statement is the analogue of the well-tested duality between certain free energies
of elliptic Calabi-Yau threefolds and the elliptic genera of solitonic heterotic and non-
critical strings in six dimensions. The new ingredient in four dimensions, of course, is the
dependence on the F-theory four-form flux GU(1) and its respective manifestation in the
dual solitonic string.
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As a corollary of this proposed general duality and eq. (3.5), the relative BPS invariants
NGU(1);C0(1, r), where C0 is the fiber of the P1-fibration B3, must agree with the chiral
index of states of the F-theory compactification, and thus

NGU(1);C0(1, r) = NGU(1)(C
f
r) = χGU(1),r . (3.8)

We will demonstrate this identity in the examples of section 5, via explicit computations
in mirror symmetry.

3.2 Modular properties of four-dimensional elliptic genera

The elliptic genus has supposedly distinguished modular properties, which reflect its def-
inition as a chiral partition function of a string wrapped on a torus T2 with modular
parameter τ . For example, the elliptic genus of a perturbative heterotic string in d = 6
dimensions with a single U(1) gauge group factor is a meromorphic Jacobi form of weight
w = −(d − 2)/2 = −2 [26], as recalled in section 1.1. For more general solitonic strings
in six dimensions the elliptic genus is a meromorphic quasi-modular Jacobi form of weight
w = −2 (see appendix A). This applies in particular to solitonic strings that are dual to
fundamental heterotic strings in the presence of 5-branes [4]. Such modular behaviour
is in general agreement with the relation between the elliptic genus and the BPS in-
variants on elliptic Calabi-Yau threefolds, whose modular properties have been analyzed
in [25, 82, 83, 104–106].

One might expect that this simple pattern carries over to the strings obtained by
wrapped D3-branes in F-theory compactifications to d = 4 dimensions that we consider
here. The expectation would be that the elliptic genus should be a meromorphic quasi-
modular Jacobi form of weight w = −(d− 2)/2 = −1.

As noticed in [6] for the special case of a heterotic string, this is not necessarily the
case. Rather, for some explicit examples studied in that work, it was found that the elliptic
genus (3.1) can in general also receive contributions which are not given by modular or
quasi-modular forms. One of the main observations of the present work is that these
contributions, while not modular by themselves, can actually be written as derivatives of
modular or quasi-modular Jacobi forms; recall the symbolic representation (1.9) given in the
Introduction. Such objects are special examples of so-called quasi-Jacobi forms as defined
in appendix A. What we encounter is in fact a concrete realisation of the mathematical
conjecture of [25] that relative GW invariants of elliptic fibrations generally assemble into
generating functions with values in the ring of quasi-Jacobi forms. In section 3.3 we will in
addition assign a specific geometrical meaning to the (quasi)-modular Jacobi forms whose
derivative appears in the elliptic genera, namely in terms of BPS invariants of certain
embedded threefolds.

Extrapolating from these observations we make the following general proposal:

Conjecture 2 The four-dimensional, U(1) refined elliptic genus (3.1) can be written as
a sum of meromorphic modular and quasi-modular Jacobi forms of weight w = −1 and
fugacity index m = 1

2b ·Cb, where b is the height-pairing divisor (2.13), plus derivatives of
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modular and quasi-modular Jacobi forms of weight w = −2 and the same fugacity index.
More precisely,

ZGU(1);Cb(q, ξ) = gMZM−1,m(q, ξ)+gQMZQM−1,m(q, ξ)+gM∂ ξ∂ξZM−2,m(q, ξ)+gQM∂ ξ∂ξZ
QM
−2,m(q, ξ) ,

(3.9)
where gM , gQM , gM∂ , and gQM∂ are flux-dependent coefficients and

Z
M/QM
−1,m (q, ξ) = ΦM/QM

w,m (q, ξ)
η(q)12Cb·K̄B3

, Z
M/QM
−2,m (q, ξ) =

ΦM/QM
w−1,m (q, ξ)
η(q)12Cb·K̄B3

(3.10)

with q = e2πiτ and ξ = e2πiz. Here, the numerators ΦM/QM
w,m (τ, z) denote generic

(quasi-)Jacobi-forms of indicated weight and (integer) index given by

w = −1 + 6(Cb · K̄B3) , m = 1
2(b · Cb) . (3.11)

As mentioned in the Introduction, the novel (quasi-)modular partition functions ZM/QM
−2,m

of weight w = −2 have the properties characteristic of elliptic genera of chiral, six-
dimensional theories. Indeed, we will argue that they encode the relative BPS invariants
of certain elliptic three-dimensional sub-manifolds, Y3, of Y4.12 In special cases, when the
elliptic threefolds Y3 are themselves Calabi-Yau spaces, this assertion can be verified ex-
plicitly by mirror symmetry. More generally, we will provide various general consistency
checks which support this claim also when Y3 is not a Calabi-Yau space. As we will
demonstrate in sections 5 and 6, the general structure we propose can be verified for a
variety of examples, in particular for all the three different basic types of base curves, Cb,
as characterised in section 3.1.

Let us illustrate at this point the structure for the important example of the solitonic
heterotic string. To this end consider a base B3 of Y4 which is the blow-up of a rational
fibration (2.27), and for simplicity assume that the blow-up has been performed only over
a single curve Γ in the base, B2, of this rational fibration. Our notation for this type
of geometries has been introduced in section 2.3. Again we take the gauge group to be
G = U(1), so that the only fluxes satisfying the transversality condition (2.18) are the U(1)
fluxes (2.19) given by

G = GU(1) = σ ∧ π∗(F ) . (3.12)

In this concrete situation, as exemplified in section 5, one can write the elliptic genus
of the heterotic string in the following geometric, closed form:

ZGU(1);C0 = g0 Z0
−1,m + gE ZE−1,m +

∑
i

gi
1

2mξ∂ξ Z
i
−2,m , (3.13)

12As will be clarified in section 3.3, such a connection to the BPS invariants of three-folds in Y4, as defined
by (3.19), necessarily arises when the base curve Cb is a fiber over either a surface or a curve. Additional
supporting evidence for the latter situation is provided in section 6.1. See also [107] for the argument in a
most general setup.
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with flux-dependent coefficients explicitly given by

g0 = F · C0 , gE = F · C1
E , gi = F · b · p∗(Ci) . (3.14)

Here C0 and C1
E denote the curves defined around equation (2.29), the divisor b is the

height-pairing as given in (2.13), and the set {Ci} is a suitable basis of curves on the base
B2 of B3. The latter point will be explained in more detail in section 3.3. Mathematical
and physical constraints restrict the (quasi-) modular forms in (3.13) as follows:

Z0
−1,m(q, ξ) = 1

η24(q) φ−1,2(q, ξ) Φ0,M
12,m−2(q, ξ) ,

ZE−1,m(q, ξ) = 1
η24(q) φ−1,2(q, ξ)

[
ΦE,M

12,m−2(q, ξ) + φ−2,1(q, ξ)E2(q)ΦE,QM
12,m−3(q, ξ)

]
,(3.15)

Zi−2,m(q, ξ) = 1
η24(q)

[
Φi,M

10,m(q, ξ) + E2(q)Φi,QM
8,m (q, ξ)

]
.

As always, Φ∗,(Q)M
w,m denotes a generic weak Jacobi form of specified weight and index, which

can be written as a polynomial in the generators of the ring J∗,(Q)M
w,m of (quasi-)modular

Jacobi forms (see appendix A.1).
Note that since the weight of the Z∗−1,m is odd, these objects are necessarily propor-

tional to the unique odd-weight generator φ−1,2 of the ring of Jacobi forms. Furthermore,
since φ−1,2 ∼ z, they vanish identically unless we refine the elliptic genus with regard to
at least one U(1) factor. Note also that there cannot be a 1/q pole in Z∗−1,m because the
left-moving ground state is uncharged and so cannot be multiplied by z. Thus the Z∗−1,m
are actually holomorphic in q and take a very restricted form, as indicated.

In summary, the relationship (3.13)–(3.15) between flux-dependent geometric inter-
section data on the one hand, and modular, quasi-modular and derivative sectors on the
other, is one of the main results of the present work, and is a concrete manifestation of the
map (1.10) mentioned in the Introduction.

3.3 Geometric interpretation of the derivative sector of Z−1,m(q, ξ)

We now point out an intriguing interpretation of the derivative contributions, Zi−2,m(q, ξ),
to the elliptic genus, namely in terms of BPS invariants of certain threefold geometries,
Y3, which are embedded in the given elliptic fourfold, Y4. For the example of the het-
erotic string, we will be able to explain this interpretation based on our understanding of
the moduli space of at least some of the curves whose BPS invariants enter the elliptic
genus. The relation between the derivative contributions and certain threefold invariants
is, however, not restricted to heterotic strings, as we will show explicitly in section 6.

To understand the heterotic setup, let us first assume that the Mori cone of effective
curves on B2 is simplicial and identify its generators with the basis {Ci} on which the
coefficients in the sum (3.13) depends via (3.14). We will drop the assumption of a simplicial
Mori cone at the end of this section. The curve classes b ·p∗(Ci) in (3.13) can be written as

b · p∗(Ci) = 2mCi + (curve in the fiber of B3) . (3.16)
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To see this, note that we can parametrise the height pairing divisor as b = 2mS− + bEE +∑
i bi p

∗(Ci), in agreement with b · C0 = 2m. Then (3.16) follows from the fact that
S− · p∗(Ci) gives back the curve class Ci on B2, while the intersection of p∗(Ci) with the
divisors E and p∗(Cj) lie entirely in the fiber of the rational fibration B3.

Since the curves Ci are the generators of the Mori cone of B2, the dual curves Ci on
B2 are generators of the Kähler cone of B2, whose closure is contained in the closure of
the cone of effective curves. We assume for simplicity that the Ci are integral, leaving the
discussion of a much more general setting to the end of this section. They are given by

Ci = ηijCj , where ηij = Ci ·B2 Cj , (3.17)

and have the important property, characteristic of generators of the Kähler cone, that

Ci ·B2 C
j ≥ 0 . (3.18)

In particular, since Ci ·B2 C
i ≥ 0, each curve Ci moves in a family on B2.

Now, from (3.16) we infer that the dual of the component of b · p∗(Ci) on B2 is the
curve Ci/2m. To arrive at integral classes, let us factor out 1/2m and consider the pullback
p∗(Ci) as a divisor on B3. Since each Ci moves in a family on B2, so does the divisor p∗(Ci)
on B3. We can then define a collection of elliptic threefolds, Yi3, by restricting the elliptic
fibration of Y4 to the a generic member of this family of divisors:

Yi3 = Y4|p∗(Ci) . (3.19)

Any single such threefold is by construction an elliptic fibration with projection

πi : Yi3 → Bi2 , Bi2 = p∗(Ci) . (3.20)

In fact, the base p∗(Ci) is a P1-fibration over Ci with generic fiber C0 (blown up at the
intersection of Γ with Ci). See figure 2 in the Introduction for an illustration.

Depending on whether Ci ·B2 C
i = 0 or Ci ·B2 C

i > 0, the anti-canonical bundle of Yi3
is either trivial or negative. This follows from the adjunction formula:

c1(K̄Yi3
) = c1(K̄Y4 |Yi3)− c1(NYi3/Y4) = −π∗i (p∗(Ci)|p∗(Ci)) ≤ 0 . (3.21)

Even if Yi3 is by itself not Calabi-Yau, we can consider the relative BPS invariants with
respect to C0 on Yi3, denoted by N i

C0(n, r), and package them into a generating function,
F iC0(τ, z). We propose that these invariants determine the derivative pieces in the elliptic
genus (3.13):

Zi−2,m(τ, z) = −1
q
F iC0(τ, z) = −1

q

∑
n,r

N i
C0(n, r)qnξr . (3.22)

The N i
C0 are not to be confused with the invariants NG;C0 of the fourfold Y4 discussed

before, which were defined relative to a transversal four-form flux GU(1). Rather, we claim
that they are relative BPS invariants of a generic member, Yi3, of the family of elliptic
threefolds embedded inside Y4 as in (3.19).
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If we assume this, the general considerations of [25] imply that the generating function
Zi−2,m(τ, z) should be a (quasi-)modular form of weight w = −2, regardless of whether
Yi3 is itself Calabi-Yau or not. In physics terms this can be equivalently understood by
first assuming that Yi3 is Calabi-Yau and considering F-theory on Yi3 as an auxiliary,
chiral theory in six dimensions. With our assumption on the nature of the N i

C0(n, r), the
object Zi−2,m(τ, z) is then simply the elliptic genus of the N = (0, 4) supersymmetric string
obtained by wrapping a D3-brane on C0 within Yi3. As such, Zi−2,m(τ, z) is (quasi-)modular
of weight w = −(d−2)/2 = −2. In fact, if c1(Yi3) = 0, the fourfold Y4 is expected to admit
a fibration over the curve Ci whose fiber is a generic member of the family Yi3.13 That is,
there exists a projection

ρi : Yi3 → Y4
↓
Ci (3.23)

The underlying six-dimensional theory naturally arises in the decompactification of the
base curve Ci and so is well-defined by itself.

By contrast, if Ci · Ci > 0, which implies c1(K̄Yi3
) < 0, we can view Y4 only locally

as a fibration with fiber Yi3 over the normal direction to the divisor p∗(Ci) in B3. Since
the normal bundle to p∗(Ci) is in this case non-trivial, even in the decompactification limit
we cannot define a bona-fide six-dimensional theory by restricting F-theory to Yi3. It is
even more intruiging to find that nevertheless Zi−2,m(τ, z) behaves in many respects like
the elliptic genus of a six-dimensional string even in this case, as will be discussed further
in section 4. In particular, one can formally associate Zi−2,m(τ, z) to an elliptic surface with
(24+12n) singular fibers, where n = Ci ·B2C

i. An example will be presented in section 5.2.
In the sequel we will formally relate the Zi−2,m(τ, z) to such six-dimensional sectors, with
the understanding that a direct interpretation as elliptic genera in six dimensions is possible
only if Yi3 is Calabi-Yau.

Let us now turn to the crucial claim that Zi−2,m(τ, z) encodes the BPS invariants
N i
C0(n, r) pertaining to the threefolds Yi3 as shown in (3.22). In the remainder of this section

we will prove this assertion at level n = 1. To this end we interpret the expression (3.13)
for the elliptic genus as a statement about the decomposition of the moduli spaces of curve
classes C = C0 +nEτ +C f

r into various components. For the special case where n = 1 this
will allow us to deduce that the multiplicities N i

C0(n = 1, r) are indeed BPS invariants on
Yi3. Extrapolating this observation to all n then leads to (3.22).

To arrive at this picture, we first define the following generating functions associated
with the non-derivative contributions to the elliptic genus (3.13):

F0
C0(τ, z) = −qZ0

−1,m =
∑
n,r

N0
C0(n, r)qnξr , (3.24)

FEC0(τ, z) = −qZE−1,m =
∑
n,r

NE
C0(n, r)qnξr . (3.25)

13This natural expectation is the direct analogue of the existence of a K3/T 4-fibration for Calabi-Yau
threefolds according to Ooguiso’s criteria [108]. Consistently, note that since Yi3 is defined as the restriction
of Y4 to p∗(Ci), where Ci is the curve dual to Ci on B2, the intersection product yields Ci ◦ Yi3 = 1, in
agreement with the fibration structure (3.23).
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This is analogous to (3.22), but with the important difference that, unlike the invariants
N i
C0(n, r) which appear in (3.22), the invariants N0

C0(n, r) and NE
C0(n, r) do not correspond

to BPS invariants of some auxiliary elliptic threefolds. Expanding both sides of (3.13) order
by order in q and ξ then gives a relation between the BPS invariants NG;C0(n, r) in ZG;C0

on the left hand side, and the invariants N0
C0(n, r), NE

C0(n, r) and N i
C0(n, r) on the right.

Recall next that the quantities on the left hand side, NG;C0(n, r), are the flux depen-
dent, relative Gromov-Witten invariants, as defined in (2.1), for the curve C = C0 +nEτ +
C f
r . According to (2.1),

NGU(1);C0(n, r) =
∫

Σ̂n,r
ev∗GU(1) , (3.26)

where we denote by Σ̂n,r the class of the moduli space of stable holomorphic maps at genus
g = 0 and with one point marked associated with C = C0 + nEτ + C f

r. When both sides
are expanded in qnξr, the relation (3.13) therefore boils down to the statement that∫

Σ̂n,r
ev∗GU(1) = (F ·C0)N0

C0(n,r)+(F ·C1
E)NE

C0(n,r)+
∑
i

(F ·b·p∗(Ci))
1

2m rN i
C0(n,r) ,

(3.27)

where the extra factor of r in front of the N i
C0(n, r) is caused by the derivative in (3.13).

To interpret (3.27) further, we note that while for general n the moduli spaces Σ̂n,r are
difficult to construct, we are in a comfortable situation when n = 1 and C0 is the rational
fiber of B3: the moduli space Σ̂1,r is equal to the moduli space of stable holomorphic maps
of genus zero for the purely fibral curve C f

r, up to terms orthogonal to any transversal flux
satisfying (2.18). This follows from the identity (3.8), which in turn is a consequence of
the duality between F-theory and the heterotic string. Since the moduli space for C f

r is the
surface Σ̂r given in (2.20) with base Σr, we know that for transversal flux∫

Σ̂1,r
ev∗GU(1) =

∫
Σ̂r

GU(1) = r (F · Σr) . (3.28)

Plugging this into (3.27), which must hold for any element F ∈ H1,1(B3), yields

Σr = 1
r
N0
C0(1, r)C0 + 1

r
NE
C0(1, r)C1

E +
∑
i

1
2m N i

C0(1, r) (b · p∗(Ci)) . (3.29)

The point is now that, at least for n = 1, we can understand why the N i
C0(1, r) are

invariants of the embedded threefolds Yi3: suppose first that a given threefold Yi3 is by
itself a Calabi-Yau space. In this case, Y4 admits a fibration with fiber Yi3 over the curve
Ci of the form (3.23), see figure 3. The invariant N i

C0(1, r) appearing in (3.29) can thus be
interpreted as the multiplicity of the base curve Ci of this fibration as a component of the
matter curve Σr.14 In other words

Σr =
∑
i

N i
C0(1, r)Ci + (curve classes in the fiber of B3) . (3.30)

14To see this, note that N i
C0 (1, r) is the multiplicity of the component 1

2m b · p
∗(Ci) = Ci + . . . within Σr,

where we used (3.16).
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}}}
Figure 3. This figure shows the component of the matter curve Σr (drawn in red) along a base
curve Ci. It refers to a geometry where the fourfold Y4 is fibered over Ci with generic fiber Yi3.
The issue is to determine the multiplicity N i(Cf

r) of Ci in the decomposition (3.30), and from the
picture we see that it coincides with the number of points on Yi3 over which the elliptic fiber Eτ
degenerates. The remaining components of Σr in the decomposition (3.30) lie within special fibers
of the fibration ρi (3.23) and are not depicted.

The multiplicity N i
C0(1, r) in the above decomposition is simply given by the number of

points on Yi3 over which the elliptic fiber degenerates such as to support a state of charge
r. Indeed,

N i
C0(1, r) = Σr · p∗(Ci) , (3.31)

where we used that p∗(Ci) does not intersect with fibral curves and that p∗(Ci) · Cj = δij ,
which follows from the fact that Ci is the curve class dual to Ci on B2. But the intersection
of Σr with the base Bi2 = p∗(Ci) of Yi3 gives exactly the locus on Bi2 where the fiber of Yi3
supports the fibral curve C f

r. Under the present assumption that Ci are the generators of
the simplicial Mori cone, the intersection number Σr ·p∗(Ci) is non-negative and counts the
number of points on Bi2 where the degeneration occurs, in codimension-two on Bi2. This
identifies N i

C0(1, r) with the BPS invariant for the curve C f
r viewed as a curve inside the

threefold Yi3. The same argument leading to (3.8), now applied to threefolds, shows that
this in turn agrees with the BPS invariant of the curve C0 + Eτ +C f

r as a curve inside Yi3.
Hence we have shown that the N i

C0(1, r) are indeed relative BPS invariants of Yi3.
These considerations continue to hold if Yi3 is not a Calabi-Yau space itself, as the

argument was purely intersection theoretic. Indeed, the general formalism of [109] implies
that the virtual class of the moduli space of curves C0 + nEτ + C f

r on Yi3 is related to
the class of the moduli space on Y4 by restriction. Our elementary considerations for the
special curves above are a manifestation of this.
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While it is harder to make this explicit for general wrapping numbers n from first prin-
ciples, we can at least translate the relation (3.27) into the following geometric statement:
up to terms orthogonal to the transversal subspace of H2,2

vert(Y4) defined in (2.18), Σ̂n,r is
equivalent to the class of a fibration of C f

r over a curve ΣC0,n,r which is given by

ΣC0,n,r = 1
r
N0
C0(n, r)C0 + 1

r
NE1
C0 (n, r)C1

E +
∑
i

1
2mN i

C0(n, r) (b · p∗(Ci)) . (3.32)

Indeed, integrating GU(1) = σ ∧ π∗(F ) over such a fibration would give a factor of r from
the fibral piece along with the class F , precisely as reflected in (3.27).

The crucial claim here, proven above only for n = 1, is that the integral numerical
coefficientsN i

C0(n, r) are by themselves BPS invariants of the threefolds Yi3 embedded in Y4.
This implies that the objects Zi−2,m(τ, z) in (3.22) are modular or quasi-modular Jacobi
forms of weight w = −2, while the extra factor of r obtained by integration of GU(1)
explains why the Zi−2,m(τ, z) appear with a derivative in (3.13). It would be extremely
interesting to establish a geometric proof of this interpretation of the N i

C0(n, r) also for
n > 1.

We have been assuming that the basis {Ci} corresponds to the generators of the sim-
plicial Mori cone of B2, so that they are effective and their dual curves satisfy (3.18).
However the results do not depend on this restriction. More generally, it suffices to pick a
basis of effective curves Ci defining the threefold geometries Yi3 as in (3.19), and to take Ci
as the dual basis of 2-cycle classes on B2. In general this may imply, first, that not all Ci
are effective, and second that Ci ·Ci may be negative. The intersection theoretic argument
why N i

C0(1, r) describes BPS invariants on Yi3 does not hinge upon effectiveness of Ci, how-
ever, since we can view N i

C0(1, r) simply as the coefficient in the expansion (3.30) in terms
of curve classes. In this more general situation, N i

C0(1, r) may in particular be negative.
This is to be interpreted in such a way that the degeneration locus in Yi3 where the fiber
contains the curve C f

r occurs in codimension-one on Bi2. Note also that if Ci · Ci < 0, the
curve Ci is rigid and hence also Yi3 is rigid as a divisor in Y4, but this does not invalidate
our arguments either.

The discussion in this section was tailor-made for the special case of heterotic elliptic
genera. For non-critical strings the derivative terms in the elliptic genus encode the relative
BPS numbers of embedded threefolds sometimes constructed in a slightly different way. For
this we refer to section 6.

3.4 Elliptic holomorphic anomaly equation

So far we have focused in this section on the properties of the relative BPS invariants in
transversal flux backgrounds, which were defined via eq. (2.18). This is required for having
a four-dimensional interpretation within F-theory on Y4, and a meaningful elliptic genus in
the first place. We have seen that in general derivative contributions to the elliptic genus
appear, such as indicated in (3.13). These take the form of derivatives of Jacobi forms,
Zi−2,m(q, ξ), which encode relative BPS invariants associated with the embedded threefolds,
Yi3, of Y4.
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As previewed in section 1.2, this results not only in a violation of modular invari-
ance (A.1), but also of the invariance under the transformations z → z + λτ in (A.2),
which can be interpreted as spectral flow in the U(1) subsector.15 From the point of view
of the four dimensional elliptic genus, the derivative terms inflict an anomaly on these
symmetries, and turn it into a quasi-Jacobi form. However, in analogy to the treatment
of the quasi-modular form E2, one can cancel these anomalies by trading the derivative
terms in ZGU(1);Cb(q, ξ) against non-holomorphic derivatives as in (1.12). This means that
we pass from the holomorphic, but non-modular elliptic genus ZGU(1);Cb(q, ξ) to the almost
holomorphic, but modular quantity ẐGU(1);Cb(q, ξ), for which we replace the derivatives
ξ∂ξ ≡ 1

2πi∂z as follows (see appendix (A.1)):

ξ∂ξ →
1

2πi ∇z,m := 1
2πi

(
∂z + 4πim Imz

Imτ

)
. (3.33)

The resulting non-holomorphicity of ẐGU(1);Cb(q, ξ) is characterised by the equation

d

dα
ẐGU(1);Cb(q, ξ) = (2m)g∂Z−2,m(q, ξ) , α ≡ Imz

Imτ , (3.34)

where we parametrise the elliptic genus as in (3.9) and have abbreviated gM∂ ZM−2,m(q, ξ) +
gQM∂ ZQM−2,m(q, ξ) =: g∂Z−2,m(q, ξ). This equation is a version of the elliptic holomorphic
anomaly equation which was introduced in the context of generating functions for relative
BPS invariants of elliptic fibrations in [25]. Compared to elliptic genera in six dimensions,
which are lacking a derivative contribution, we see that the appearance of such an elliptic
holomorphic anomaly equation is a genuinely new feature in four dimensions.

The elliptic holomorphic anomaly equation admits a beautiful geometric interpretation.
Recall that the right-hand side of (3.34) consists of the (quasi-)modular objects, Z−2,m(q, ξ),
that encode the relative BPS invariants of the threefolds Y3. Remarkably, as we explain
now, the same threefold invariants appear also as fourfold invariants for a suitable choice
of non-transversal background flux G−2 ∈ H2,2

(−2)(Y4,R), as defined in (2.17). We will refer
to such non-transversal fluxes as “(−2)-fluxes” for brevity.16

In fact, it has already been observed in [76, 77] that the generating function for certain
relative genus-zero BPS invariants in a (−2)-flux background is a meromorphic (quasi-
)modular form of weight w = −2. Such invariants are non-vanishing even in absence of a
refinement by an extra gauge symmetry (in F-theory language). This is to be contrasted
with the relative BPS invariants for the transversal flux backgrounds that were considered
in the previous sections. The important point is that the elliptic holomorphic anomaly
equation in its form (3.34) admits a representation in terms of the generating function for
a specific type of (−2)-flux. More precisely we have

d

dα
ẐGU(1);Cb(q, ξ) = ZG−2;Cb(q, ξ) , (3.35)

15Originally spectral flow was understood [37] as a property of an N = 2 superconformal symmetry on
the worldsheet, hence the name, but in essence this notion applies to any U(1) current algebra associated
with a free compact boson. We reiterate again that it is not an automatic symmetry of the theory.

16We reiterate from the discussion in section 2.2 that such fluxes do not admit a lift to F-theory, but
define bona fide Type IIA/M-theory backgrounds.
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where the (−2)-flux associated with GU(1) = σ ∧ π∗(F ) is given by

G−2 = π∗(F ) ∧ π∗(b) . (3.36)

Here b is the height pairing associated with the U(1), and, as always, we have defined

ZG−2;Cb(q, ξ) = −q−
1
2Cb·K̄B3FG−2;Cb(q, ξ) . (3.37)

The specific form of G−2 that appears in (3.35) can be deduced from the general
considerations of [25] applied to our situation. Alternatively, we can arrive at the same
conclusion via more elementary geometric observations based on the results of section 3.3,
which are supported by our detailed analysis of examples in sections 5 and 6.

For illustration, consider the relative BPS invariants associated with a curve C0 with
zero self-intersection, which figures as the fiber of some rational fibration, B3 ⊂ Y4,
see (2.27); recall that this is the situation where a solitonic heterotic string appears. In
this case the elliptic holomorphic anomaly equation for the elliptic genus (3.13) takes the
form

d

dα
ẐGU(1);C0(q, ξ) =

∑
i

F · b · p∗(Ci)Zi−2,m(q, ξ) = ZG−2;C0(q, ξ) , (3.38)

for ZG−2;Cb(q, ξ) as in (3.37). While the first equality follows immediately from (3.13),
the second equality is non-trivial and rests on the following geometric considerations: first
introduce a convenient basis for the space of non-transveral (−2)-fluxes in H2,2

(−2)(Y4,R):

Gi = π∗(S−) ∧ π∗(p∗(Ci)) ,
GE = π∗(E) ∧ π∗(p∗(CΓ)) , (3.39)
G0 = π∗(p∗(Ci0)) ∧ π∗(p∗(Ci0)) .

In the notation of section 2.3, CΓ denotes a curve class on B2 with CΓ ·Γ = 1, and we have
picked a pair of dual curves Ci0 and Ci0 on B2. The classes GE and G0 are hence dual to
the curves C2

E and C0 in the fiber of B3, while Gi is dual to the curve Ci on B2.
The important claim is that the contributions Zi−2,m(q, ξ) to the elliptic genus (3.13)

can be computed as
Zi−2,m(q, ξ) = −1

q
FGi(q, ξ) , (3.40)

while the remaining two basis elements lead to the following vanishing BPS invariants,

FGE (q, ξ) = 0 , FG0(q, ξ) = 0 . (3.41)

We will provide arguments for these assertions below. Assuming (3.40) and (3.41) for now,
we proceed by expanding (3.37), viewed as class of the (−2) flux, in the above basis as

G−2 =
∑
i

(F · b · p∗(Ci)) Gi − (F · b · E) GE + (F · b · S+) G0 . (3.42)

Hence by linearity of the BPS invariants, together with (3.40) and (3.41), it is obvious that

ZG−2;C0(q, ξ) =
∑
i

(F · b · p∗(Ci))Zi−2,m(q, ξ) . (3.43)

This explains also the second equality in the elliptic holomorphic anomaly equation (3.38).

– 28 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

It remains to justify (3.40) and (3.41). While we cannot give formal proofs beyond the
non-trivial checks in the examples of section 5, we provide instead some intuition why (3.40)
should hold. To this end, consider the relative BPS invariants NGi;C0(n, r) for n = 0 and
r = 0. According to our claim, these invariants should agree with the threefold invariants
N i
C0(n, r) for n = 0 and r = 0 in the expansion (3.22) of Zi−2,m(q, ξ). Our starting point

to verify this is the definition of NGi;C0(n, r) as the overlap of the flux Gi with the virtual
fundamental class of the moduli space of the curve C0 in Y4 with one point fixed. Since
C0 is fibered over B2, this class can be identified with the class of the surface obtained by
fibering C0 over the canonical divisor KB2 ;17 that is, with the class inside Y4 given by

µ = S0 ∧ π∗(p∗(KB2)) . (3.44)

Here S0 is the zero-section of the fourfold Y4. This allows us to compute NGi;C0(0, 0) as

NGi;C0(0, 0) =
∫
µ

Gi = S0 ◦ π∗(p∗(KB2)) ◦ π∗(S−) ◦ π∗(p∗(Ci)) = p∗(KB2) · S− · p∗(Ci)

= Ci ·B2 KB2 , (3.45)

where we have used the fact that S0 is a section on Y4 and S− is a section on the P1-
fibration B3.

The expression for NGi;C0(0, 0) in (3.45), in fact, can be seen to exactly agree with
the invariants N i

C0(n, r) for n = r = 0. To see this, suppose first that the curve Ci is a
rational curve with Ci ·B2C

i = 0. According to the discussion in section 3.3, in this case the
threefold Yi3 is a Calabi-Yau space which is K3-fibered over Ci. The invariant N i

C0(n, r)
for n = r = 0 is then simply the BPS invariant for C0 within the Calabi-Yau threefold Yi3,
and hence N i

C0(n, r) = −2. This is because within Yi3, C0 is fibered over the rational base
curve Ci and the (signed) Euler character of its moduli space is the integral

∫
Ci KCi . By

the adjunction formula ∫
Ci

(KCi − Ci) = Ci ·B2 KB2 , (3.46)

we see that
∫
Ci KCi agrees with Ci ·B2 KB2 for the rational curve Ci with Ci · Ci = 0.

More generally, even if Yi3 is not Calabi-Yau, N i
C0(0, 0) = Ci ·B2KB2 nonetheless holds.

As noted already before, this reflects the fact that, by the results of [109], the virtual class
for the moduli space of the curve C0 on Yi3 is related to the class of its moduli space on
Y4 by restriction.

In the examples of sections 5 and 6, we will indeed observe a precise match between
the NGi;C0(n, r) and the invariants N i

C0(n, r) for zero, but also for non-zero, values of n
and r. Beyond such explicit examples it is much harder to make a direct argument for
general values, based on the moduli space of curves. At any rate, we will explain the
analogue of (3.45) for the elliptic genera also for other types than heterotic strings in four
dimensions. Furthermore, it is clear that NG0;C0(0, 0) = 0 and NGE ;C0(0, 0) = 0, because

17To understand this claim in physics terms, recall, for instance, how in F-theory on elliptic fourfolds one
computes the BPS invariants for the rational fibers of the exceptional divisors appearing in codimension-
one: these are obtained by integrating the flux over the restriction of the rational fiber to the canonical
class, KD. Here D is the divisor over which the rational curve is fibered. See for example eq. (9.43) in [97].
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the overlaps in (3.45) vanish geometrically. The vanishing of the invariants at all levels, as
claimed by (3.41), will be explicitly verified for the examples further below.

4 Elliptic genera, anomalies and modularity

The observation of the previous sections was that the four-dimensional elliptic genus need
not be modular or quasi-modular in the usual sense. Once applied to heterotic strings,
this raises the question how this phenomenon is compatible with the structure of anomaly
cancellation. In this section we first review the well-known interplay [26, 27] of the elliptic
genus of the heterotic string with the structure of 1-loop anomalies and their cancella-
tion by the Green-Schwarz mechanism. We then explain how four-dimensional anomaly
cancellation works even when the elliptic genus is not modular but rather has a deriva-
tive component, and also discuss the situation when it is quasi-modular rather than fully
modular.

In d = 2n+ 2 dimensions, the 1-loop gauge and gravitational anomalies are character-
ized by the anomaly polynomial

Id+2 =
∑
R,s

ns(R)Is(R)
∣∣∣
d+2

, (4.1)

where we sum over all massless particle species of multiplicity ns(R) in representation R
of the gauge group and with spin s. The (d + 2)-form Is(R)|d+2 is formed by products
of the gauge field strength F and the curvature 2-form R. For example, a complex chiral
Weyl fermion contributes to (4.1) with

I1/2(R) = trR eF Â(T ) , (4.2)

where Â(T ) is the A-roof genus.
In the following we will focus on the gauge anomalies associated with a single U(1)

gauge group and define
Id+2,U(1) = A(d) F

d+2
2 . (4.3)

Based on the above expressions, the anomaly coefficients A(d) in d = 6 and d = 4 dimensions
are given by:

A(6) = 1
4!
∑
r

n1/2(r) r4 = 1
4!
∑
r

nhalf−hyper(r) r4 , (4.4)

A(4) = 1
3!
∑
r

(
n1/2(r)− n−1/2(r)

)
r3 = 1

3!
∑
r

χr r
3 . (4.5)

Here we sum over the Weyl fermions of U(1) charge r. In d = 6 dimensions, if we consider
a theory with minimal N = (1, 0) supersymmetry, the number of charged Weyl fermions
agrees with the number of half-hypermultiplets of corresponding charge. In d = 4 dimen-
sions, the anomaly coefficient involves the chiral index χr, i.e., the number of chiral minus
anti-chiral Weyl fermions of charge r.
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4.1 Modular elliptic genera

We will first review anomaly cancellation in the more familiar case of a modular invari-
ant heterotic string elliptic genus. In the present context, this primarily concerns flux
compactifications that are dual to perturbative heterotic strings.

Let us recall that the U(1)-refined elliptic genus Z−n,m(q, z) of a perturbative, d =
2n + 2 dimensional heterotic string is expected to be a weak Jacobi form [33] of modular
weight w = −n and some index m (in this work, n = 1, 2 will be relevant). As we have
seen, this is not necessarily true in d = 4 and so the statements that follow will eventually
be adapted to the more general situation. Let us however for the moment assume that
Z−n,m(q, z) is a weak Jacobi form, and turn later to the required modifications. See also
the remarks in the Introduction and the defining modular transformation properties of
Jacobi forms given in (A.1) and (A.2).

From a weak Jacobi form one can always strip off the quasi-modular Eisenstein series
E2 by writing

Z
(d)
−n,m(q, ξ) = e

m
12E2ẑ2

Ž
(d)
−n,m(q, ẑ) , where ξ = e2πiz ≡ eẑ , (4.6)

so that the remainder,

Ž
(d)
−n,m(q, ẑ) = ẑn(mod 2)

∞∑
k≥0

M2(k−[n2 ])(q)ẑ2k, (4.7)

is modular invariant term by term. It involves meromorphic modular forms M2l of weight
2l which lie in the ring generated by E4 and E6, divided by 1/η24. The idea of how this
modular structure implies the Green-Schwarz anomaly cancellation goes back to [26, 27]
and rests on two properties of the elliptic genus:

1) The anomaly coefficient (4.4) is the coefficient of ẑn+2 of the elliptic genus at q0.
More precisely:

A(d) = −1
2

1
(n+ 2)!

[
∂ẑ
n+2Z

(d)
−n,m(q, ẑ)

]
ẑ0q0

(4.8)

= −1
2

[
M2(q) + m

12E2M0(q) + 1
2(m12E2)2M−2(q) + . . .

]
q0
.

Key is the observation that due to well-known properties of modular forms, M2(q) cannot
have a constant piece and therefore does not contribute. Thus all contributing terms
must involve E2’s from the exponential, which brings down powers of ẑ2 ∼ TrF 2 (recall
that F = ẑJ , where J is the charge generator). This is tantamount to saying that the
anomaly polynomial must necessarily factorize. This in turn implies that the anomaly can
be cancelled; that is, in familiar terms: I2n+4(F ) ∼ TrF 2 ∧X2n(F ).

2) The Green-Schwarz anomaly cancelling term is given by SGS ∼
∫
B ∧X2n(F ), and

its numerical coefficient,
A

(d)
GS ≡ X2n(F )

∣∣
Fn
, (4.9)

is computed as a one-loop amplitude in the heterotic string [30, 31]. The integrand is given
by the modular invariant coefficient of ẑn in the elliptic genus. More precisely, what enters
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is the modified, almost holomorphic elliptic genus, Ẑ−n,m(q, ẑ), for which all occurrences of
E2’s are replaced by their modular invariant, but non-holomorphic version, Ê2 = E2− 3

πImτ .
Explicitly:

A
(d)
GS =− 1

n!
[
∂ẑ
n 1

16π

∫
Fτ
dτ Ẑ

(d)
−n,m(q, ẑ)

]
ẑ0

=− 1
16π

∫
Fτ
dτ

[
M0(q) + m

12Ê2M−2(q) + . . .

]
(4.10)

=− 1
24
[
Ê2M0(q) + 1

2
m

12Ê2
2
M−2(q) + . . .

]
q0
,

where the integration over the worldsheet Fτ is performed via the formula [31]∫
Fτ
dτÊ2(q)kM−2k(q) = 2π

3
1

k + 1E2(q)k+1M−2k(q)
∣∣
q0 . (4.11)

Therefore one finds
mA

(d)
GS = A(d) , (4.12)

which expresses that the Green-Schwarz term precisely cancels the anomaly. The extra
factor ofm arises from the Chern-Simons term to which the other leg of the B-field couples,
as we will show later.

We can be more explicit if we specify the dimension. In d = 6, the scarcity of indepen-
dent modular forms, plus the requirement that the left-moving ground state be uncharged,
implies that the elliptic genus up to order ẑ4 is fixed up to one model dependent parameter
besides m, which we denote by c:

Z
(6)
−2,m(q, ẑ) = 1

η24 e
m
12E2ẑ2[2E4E6 −

mẑ2

12
(
2E2

6 + c
(
E2

6 − E3
4

))
+
(
mẑ2

12

)2

E2
4E6 +O(ẑ6)

]
.

(4.13)
This then leads to

A(6) = mA
(6)
GS = −6(1 + c)m2 . (4.14)

For reference, examples of elliptic genera that we will meet again further below are given by

Z
(6)
−2,m(q, z) = 1

12
∑
k

nk
η24E4,µk1

E6,µk2
, m = µk1 + µk2 ,

∑
k

nk = 24 , (4.15)

where Ew,m = Ew,m(q, z) are the Eisenstein-Jacobi forms18 defined in appendix A. This
bilinear form of elliptic genera naturally appears in perturbative heterotic strings compact-
ified on K3, with bundles switched on such as to leave a single U(1) unbroken. In this case
c is fixed such that

A(6) = mA
(6)
GS = −

∑
k

nk

4 ((µk1)2 − (µk2)2) . (4.16)

18Strictly speaking we use for higher levels m here and in the following the integral expansions (A.32)–
(A.34). However their parametric ambiguities do not project down to order ẑ4, and therefore do not
contribute to the anomaly.
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Analogous statements apply to perturbative heterotic strings in d = 4. Given the
various constraints, we find for the modular part of the elliptic genus:

Z
(4),M
−1,m (q, ẑ) = 1

η24(q) φ−1,2(q, ẑ) ΦM
12,m−2(q, ẑ) ' ẑe

m
12E2ẑ2[1 +O(ẑ4)

]
, (4.17)

up to an overall numerical factor c. The actual elliptic genus is then obtained by multiplying
this with gM as in (3.9), which depends on the four-form flux that needs to be switched
on. The two overall factors fix the elliptic genus up to order ẑ3 and we thus have

A(4) = mA
(4)
GS = − c

24g
Mm. (4.18)

A four-dimensional analog of (4.15) in terms of natural building blocks of the heterotic
string can be written as

Z
(4),M
−1,m (q, ẑ) = 1

12
1
η24

[ 1
µ1

(∂ẑE4,µ1)E6,µ2 −
1
µ2
E4,µ1(∂ẑE6,µ2)

]
, m = µ1 + µ2 , (4.19)

which by virtue of the relations (A.37) is a Jacobi form proportional to φ−1,2(q, ẑ) and
thus a special case of (4.17). Including the flux dependent pre-factor, it leads to A(4) =
mA

(4)
GS =−gMm. Obviously, if several such terms appear, they can simply be summed over.
The structure of derivatives as exhibited in (4.19) points to a deeper rôle derivatives

play for four-dimensional elliptic genera. One can view (4.19) as a special linear combina-
tion that happens to be modular, while the other natural combination is precisely of the
form of the non-modular, derivative piece of the elliptic genus:

Z
(4),∂
−1,m(q, ẑ) = 1

η24∂ẑ(E4,µ1E6,µ2(q, ẑ))

= ∂ẑZ
(6)
−2,m(q, ẑ) . (4.20)

Of course, in the physical partition function one needs to equip this with an additional
flux-dependent prefactor, which we denote by gM,∂ .

This leads us to discuss the derivative elliptic genera Z(4),∂
−1,m(q, ẑ) more generally, and

in particular to the question how anomalies can be cancelled in view of the fact that
the Z(4),∂

−1,m(q, ẑ) are not modular invariant, while modular invariance was instrumental in
proving anomaly cancellation in the first place.

Note, however, that because of the derivative relationships between the elliptic genus
and the anomaly polynomial (4.8) on the one hand, and the anomaly cancelling term (4.10)
on the other, it follows that the factorization of the anomaly in 4d is inherited from the
six-dimensional one, even though the 4d elliptic genus Z(4),∂

−1,m(q, ẑ) does not transform as a
Jacobi form. Neverthless, as already noticed in [6], it has good quasi-modular properties
at any given fixed order in the ẑ-expansion so that a well-defined modular integration, as
required in (4.10), can be performed.

More precisely, for a four-dimensional elliptic genus of the derivative form (4.20), ex-
pressions (4.8) and (4.10) evaluate to

A(4),∂ = −∂ẑ4 1
12Z

(6)
−2,m(q, ẑ)

∣∣
ẑ0q0 = 4A(6) = 4mA(6)

GS , (4.21)

A
(4),∂
GS = −∂ẑ2 1

16π

∫
F
dτẐ

(6)
−2,m(q, ẑ)

∣∣
ẑ0 = 2A(6)

GS . (4.22)
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We can understand the relative factor of 4 between A(4),∂ and A(6) diagrammatically, in
that it corresponds to the 4 choices of one of the 4 external legs to be given a VEV in the
transition from the quartic six-dimensional anomaly to the cubic four-dimensional anomaly.
Similarly the factor of 2 relating A(4),∂

GS and A(6) originates in the choice of two external
legs in the six-dimensional Green-Schwarz terms, as compared to the single external leg in
its four-dimensional analogue.

The mismatch by a factor of two in the derivative sector,

A(4),∂/(mA(4),∂
GS ) = 2, (4.23)

indicates that the anomaly is not cancelled by the standard Green-Schwarz term involv-
ing the universal B-field. Rather, as we will argue later in section 4.3, the hidden six-
dimensional geometry of the derivative sector will always correlate with the correct number
of additional B-fields and their couplings, such that in the end all such anomalies will be
cancelled.

Before discussing this point, however, we turn to the other subsector of the d = 4
elliptic genus, namely the one for which the elliptic genus is quasi-modular rather than
modular.

4.2 Quasi-modular elliptic genera

We have indicated before that for certain fluxes “non-perturbative” elliptic genera can arise
that are only quasi-modular, which means that E2 pieces can appear in Ž(d)

−n,m(q, ẑ) even af-
ter stripping off the exponential prefactor as in (4.6). For these fluxes the arguments about
factorization of the anomaly polynomial do not hold. Moreover the one-loop computation
of the standard Green-Schwarz term that involves the universal B-field will in general not
be applicable, as it can possibly capture only the perturbative piece of the anomaly, and
so further Green-Schwarz terms that involve extra B-fields will necessarily come into play.

Let us be more specific and consider first six-dimensional theories for which the non-
perturbative, quasi-modular piece of the heterotic elliptic genus has the form:

ZQM−2,m(q, ẑ) = 1
12E2(q)ZE−2,m1(q, ẑ)ZE−2,m2(q, ẑ) , m = m1 +m2 . (4.24)

It arises whenever the curve C0 associated with the heterotic string splits into to two
curves CiE , each associated to an E-string. In this case, the U(1) indices m1 and m2 are
determined geometrically as

m1 = 1
2b · C

1
E , m2 = 1

2b · C
2
E . (4.25)

This is precisely what is reflected by the two factors ZE , each of which can be associated
to the partition function of a non-critical E-string [39]. In fact, its form (up to order ẑ6)
is completely fixed by the decomposition (4.6) and by requiring that the ground state is
uncharged (no ẑ-dependence of the 1/q term):

ZE−2,m(q, ẑ) = 1
η12 e

m
12E2ẑ2

[
E4(q)− m

12 ẑ
2E6 + 1

2

(
m

12 ẑ
2
)2
E2

4 −
1
6

(
m

12 ẑ
2
)3
E4E6 +O(ẑ8)

]
.

(4.26)
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As a consequence we can compute the anomaly (4.8) and the putative Green-Schwarz
term (4.10) in closed form:

A(6),QM = −1
4(m1

2 +m2
2) , (4.27)

mA
(6),QM
GS = − 1

12(m1 +m2)2 . (4.28)

Note that the anomaly nicely separates into independent pieces related to the two individual
E-strings, and in particular that cross terms of the form (∂ẑ4−kZE4,m1)(∂ẑkZE4,m2), k = 1, 2, 3,
vanish. This fits the Hořava-Witten picture where the gauge symmetry is localized on two
end-of-the-world branes.

More importantly, note that the putative Green-Schwarz term (4.28) does not cancel
the anomaly (4.27). Rather, this anomaly is supposedly cancelled by the Chern-Simons
terms localized on the heterotic M5-branes that are necessarily present in this situation.
Clearly this is a non-perturbative sector of the theory that cannot be captured by any
perturbative calculation of the Green-Schwarz term, so that this is entirely as expected.

We now turn to the four-dimensional version of the story. From general properties
(such as having no charged ground state) we can infer a priori that the quasi-modular
piece of the elliptic genus and must be of the highly restricted form

ZQM−1,m(q, ẑ) = φ−1,2φ−2,1E2 Φ0,m−3
[
E4, E6, φ0,1, φ−2,1

]
' ẑ3me

m
12E2ẑ2[1+O(ẑ4)

]
, (4.29)

up to an overall numerical factor, c. Again we should here keep in mind that for the actual
elliptic genus, this expression needs to be multiplied with a flux factor, gQM .

The overall factor of ẑ3 arises from the Jacobi forms of negative weight. An immediate
consequence of this is that the naive, perturbative Green-Schwarz term vanishes identically,
because according to (4.10) it is determined by a single derivative with respect to ẑ. On
the other hand, the cubic anomaly will in general be non-zero:

A(4),QM = − c

12mgQM , (4.30)

A
(4),QM
GS = 0 . (4.31)

This shows even more clearly than in six dimensions that the quasi-modular part of the
anomaly must be cancelled by other, non-perturbative contributions.

In a spirit similar to eq. (4.19) for fully modular elliptic genera, we can write ZQM−1,m
in a suggestive form which naturally makes contact to the underlying heterotic/E-string
geometry:

Z
(4),QM
−1,m (q, ẑ) = 1

12
1
η24E2

[ 1
m1

(∂ẑE4,m1)E4,m2 −
1
m2

E4,m1(∂ẑE4,m2)
]
, (4.32)

where m = m1 + m2. This being proportional to φ−1,2φ−2,1 (as per (A.37)) is a special
case of (4.29) and leads to

A(4),QM = (m2 −m1)gQM . (4.33)

Recall that themi are determined in terms of intersection numbers of the E-string geometry
as shown in (4.25), which we will derive in the next section.

– 35 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

By considering the other natural combination of the derivatives, we can capture the
quasi-modular, derivative sector as well:

Z
(4),∂,QM
−1,m (q, ẑ) = ∂ẑZ

(6),QM
−2,m (q, ẑ) = 1

12
1
η24E2 ∂ẑ(E4,m1E4,m2) , m = m1 +m2 .

(4.34)
Here we get

A(4),∂,QM = −(m1
2 +m2

2)gQM , (4.35)

mA
(4),∂,QM
GS = −1

6(m1 +m2)2gQM .

The quadratic dependence on the indices reflects the six-dimensional origin of the derivative
sector. Again, the naive perturbative Green-Schwarz term, A(4),∂,QM

GS , does not cancel the
anomaly.

4.3 Effective field theory and anomaly cancellation from flux geometry

We now match the Green-Schwarz (GS) terms, as computed from the elliptic genus of F-
theory compactifications, with the anomaly cancelling terms that arise in the effective field
theory from geometry, The point is to understand how the different modular properties of
the various contributions to the elliptic genus reflect the different geometrical origins of the
anomaly cancelling terms.

For four-dimensional perturbative heterotic string compactifications on smooth Calabi-
Yau spaces with general abelian gauge groups, the Green-Schwarz terms have been analyzed
in [85] and extended to non-perturbative models with heterotic 5-branes in [110]. The
perturbative GS mechanism does not only involve the universal heterotic 2-form field B0,
but in general also the 2-form fields dual to the axionic scalars that are obtained from B0 by
dimensional reduction. In the presence of heterotic 5-branes, additional counterterms are
induced by the self-dual tensor fields coupling to the 5-branes (see [111–113] for their M-
theory origin). This feature is present already in compactifications to six dimensions [114].

In this sub-section we will analyze the field theoretical realization of these Green-
Schwarz terms in terms of the elliptic genera discussed in previous section. Our main
results can be summarised as follows. Let us first recall how we have determined, in
section 4.1, the 1-loop anomaly coefficients (4.8) in six and four dimensions, via the elliptic
genus of the heterotic string. In general, the anomaly coefficients decompose according to
the modular and the quasi-modular contributions to the elliptic genus:

A(d) = A(d),M +A(d),QM , (4.36)

and we have established, for the modular contributions, that

A(6),M = mA
(6),M
GS , A(4),M = m (A(4),M

GS + 2A(4),∂,M
GS ) . (4.37)

Here the 1-loop Green-Schwarz term, A(d),M
GS is computed from the modular part of the

elliptic genus, and in four dimensions we have indicated that there can be an additional
derivative part (recall in particular eq. (4.23)). We will find, as expected, that these
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“modular” Green-Schwarz terms perfectly match the perturbative Green-Schwarz terms in
the effective action that involve the universal heterotic B-field and, in four dimensions, also
the dual axions which relate to the derivative part. Moreover, a possible deficit between
this perturbative Green-Schwarz mechanism and the total anomaly will be attributed to
the quasi-modular part of the anomaly, A(d),QM . This deficit needs to be cancelled via non-
perturbative Green-Schwarz terms involving the 5-brane tensor fields as discussed in [110,
114].

Now let us go into the details. In order to avoid the complication of finding heterotic
duals [115–118] for F-theory models with abelian gauge groups, we will first perform the
computation in the Type IIB/F-theory duality frame. In this way we will arrive at an
intersection theoretic interpretation of the Green-Schwarz terms that we computed from
the elliptic genus in the previous sections. The form of the Green-Schwarz mechanism in
this duality frame has been derived in detail in the literature, beginning with [119] and
substantially extended in [120–126]. We can hence be brief and focus on comparing the
results of the elliptic genus to the anomaly of the effective action.

In F-theory compactified to d dimensions, the Green-Schwarz counterterms are encoded
in the Chern-Simons-type couplings of the Ramond-Ramond 4-form C4 to the 7-branes,

SCS−7 = −2π
2

∫
R1,d−1×DA

C4 ∧ tr eFA
√
Â(R) . (4.38)

Here we are assuming that a stack of 7-branes wraps a divisor DA on the internal space
and carries a gauge group GA. Our conventions for the normalization of the action follows
the discussion in [126]. To avoid clutter of notation, we will right away specialise to the
situation where the gauge group is given by G = U(1), with field strength F . In this case,
the divisor DA is to be identified with the height-pairing b defined in (2.13) on the internal
space. We will furthermore focus purely on gauge anomalies, neglecting gravitational ones.
The relevant part of the Cherns Simons couplings then reads

SCS−7 = −2π
2

∫
R1,d−1×b

C4 ∧
1
2 (F ∧ F ) + . . . (4.39)

We will first discuss the implications of this Chern-Simons coupling in comparison with the
elliptic genus of the dual heterotic string for compactifications to six dimensions. Most of
this material is well known.

4.3.1 GS mechanism in six dimensions in relation to (quasi-)modularity

The compactification space of a Type IIB/F-theory in six dimensions is given by the base,
B2, of an elliptic Calabi-Yau threefold, Y3. Let us fix a basis for its (co-)homology,

ωα ∈ H2(B2) , ωα ∈ H2(B2) , (4.40)

with intersection form
Ωαβ =

∫
B2
ωα ∧ ωβ =: ωα · ωβ . (4.41)
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The intersection form on H2(B2) is determined by the inverse matrix, Ωαβ . In terms of
the basis of H2(B2) we expand the Ramond-Ramond 4-form field as

C4 = Bα ∧ ωα . (4.42)

Note that a D3-brane wrapping some curve CI = CIαω
α gives rise to a string that couples

locally to the combination
BI = CIαB

α . (4.43)

By dimensional reduction of the 7-brane Chern-Simons couplings (4.39), we obtain the
following Green-Schwarz interactions:

SGS = −2π
2 θα

∫
R1,5

Bα ∧ F ∧ F , θα = 1
2

∫
B2
b ∧ ωα , (4.44)

where b is the height-pairing associated to the U(1) gauge group. By standard arguments
these couplings lead to a gauge variation of the effective action which is encoded in an
anomaly eight-form, Ieff = A(6)

eff F
4. This then cancels the 1-loop anomaly via:

A(6)
eff = −A(6) . (4.45)

This tree-level contribution from the exchange of the various B-fields from the effective
action is given by

A(6)
eff = −1

2θα Ωαβθβ . (4.46)

We will now separate the different contributions to A(6)
eff as based on their respective

geometric origin (and later, modularity properties). For this we consider a simplified
but prototypical situation that captures all relevant contributions. Following the general
philosophy of section 2.3, we specialise to an F-theory base B2 which is by itself a P1

fibration. While every F-theory base with a standard heterotic dual is a blow-up of a
rational fibration, the simplification we are going to make is to consider only a single
blowup over a point on the base of this fibration; this of course is easily generalised to an
arbitrary sequence of blowups. This means that we consider the blowup of a Hirzebruch
surface, which we denote by B2 = Bl1Fn. For this the homology group of curves is spanned
by the classes of the generic fiber f , the exceptional section S− = h and an exceptional
curve C2

E . A consequence of the blowup is that the generic fiber splits over a point into
two effective curves:

f = C1
E + C2

E = (f − C2
E) + C2

E . (4.47)

The non-zero intersection numbers between f , h, and C2
E are:

f · h = 1 , h · h = −n , C2
E · C2

E = −1 . (4.48)

As will become clear momentarily, a convenient choice of basis for H2(B2), which is
adapted to the duality with the heterotic string, is given by

{ωα} = {C0, C̃0, CE} , (4.49)
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where

C0 = f , C̃0 = n f + 2h− C2
E , CE = C1

E − C2
E = f − 2C2

E . (4.50)

The intersection form for this basis is

Ωαβ =

0 2 0
2 −1 0
0 0 −4

 . (4.51)

To understand the significance of this basis, note first that the dual basis of H2(B2)
is given by {ωα} = {Ωαβω

β} with ΩαβΩβγ = δγα. It reads explicitly:

ω0 = 1
4(C0 + 2C̃0) , ω̃0 = 1

2C
0 , ωE = −1

4C
E . (4.52)

The point is now that a D3-brane wrapping the curve class C0 with C0 · C0 = 0 gives
rise to a heterotic string, which can become asymptotically tensionless if the volume of
C0 shrinks to zero size. Moreover this curve class can split further into effective classes
as C0 = C1

E + C2
E , and a D3-brane wrapping the two classes gives rise to two non-critical

E-strings, respectively. If we correspondingly expand the RR 4-form in the dual divisor
classes given in (4.52),

C4 = B0 ∧ ω0 + B̃0 ∧ ω̃0 +BE ∧ ωE , (4.53)

it follows from the intersection form (4.51) that the 2-form field B0 couples only to the
heterotic string, and is hence identified with the universal perturbative heterotic B-field.

On the other hand, the 2-form field BE maps to the anti-self-dual tensor field associated
with a heterotic 5-brane that is located at the point on the base of the Hirzebruch surface
over which the blowup has been performed. Indeed, we will see that this tensor field couples
to the linear combination of E-strings from CE = C1

E−C2
E in the right way to be identified

with the tensor field on the heterotic 5-brane. While BE is anti-self-dual, the perturbative
universal B-field B0 is neither self-dual nor anti-self-dual but can rather be written as a
sum of a self-dual and anti-self-dual tensor field. The field B̃0 is related to the field dual
to B0. More precisely, if we were to consider just the Hirzebruch surface B2 = Fn without
a blowup, the dual heterotic string compactification would be purely perturbative. The
analogue of C̃0 on Fn would then be C̃0

pert = nf + 2h with C̃0
pert · C̃0

pert = 0, and the
associated field B̃0

pert is the dual of B0. It is this property that has motivated the choice
of basis (4.50).

In terms of the decomposition (4.53), we can now read off the Green-Schwarz couplings
defined in (4.44) as follows:

θ0 = 1
2ω0 · b = 1

4m+ 1
4 C̃

0 · b , (4.54)

θ̃0 = 1
2 ω̃0 · b = 1

4C
0 · b = 1

2m, (4.55)

θE = 1
2ωE · b = −1

4(m1 −m2) . (4.56)
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Figure 4. Contributions to the Green-Schwarz mechanism of a six-dimensional F-theory compact-
ification on B2 = Bl1Fn. Only the leftmost contribution is perturbative from the perspective of the
dual heterotic string, and matches the fully modular contribution from the elliptic genus.

Here we have defined

m = 1
2C

0 · b , m1 = 1
2C

1
E · b , m2 = 1

2C
2
E · b, (4.57)

with m = m1 +m2.
As shown in figure 4, the couplings θα give rise to the following tree-level contributions

to the anomaly coeffcient (4.46):

A(6)
eff = −1

2θαΩαβθβ = AB̃0−B0 +AB̃0−B̃0 +ABE−BE , (4.58)

where

AB̃0−B0 = −2θ̃0 θ0 = −m
(1

4m+ 1
4 C̃

0 · b
)
, (4.59)

AB̃0−B̃0 = 1
2 θ̃0 θ̃0 = 1

2

(1
2m

)2
, (4.60)

ABE−BE = 2θE θE = 1
2

(1
2(m1 −m2)

)2
. (4.61)

On the other hand, recall from the previous section that the anomaly (4.8) as encoded
in the elliptic genus can be written as a sum of two pieces

A(6) = A(6),M +A(6),QM , (4.62)

which are associated with the modular and the quasi-modular parts of the elliptic genus,
respectively. The quasi-modular part of the six-dimensional anomaly has been computed
in full generality in (4.27), and is cancelled by the sum AB̃0−B̃0 + ABE−BE . This then
provides the following match between couplings of the effective action and the modular
and quasi-modular parts of the elliptic genus:

AB̃0−B0 = −A(6),M , (4.63)
AB̃0−B̃0 +ABE−BE = −A(6),QM . (4.64)

Moreover, from (4.12) we recall that

A(6),M = mA
(6),M
GS . (4.65)

By comparison with the above expression for AB0−B̃0 , this then identifies the field theoretic
coupling θ0 with the modular contribution to the Green-Schwarz term,

A
(6),M
GS = θ0 = 1

4m+ 1
4 C̃

0 · b . (4.66)

– 40 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

In turn, these identifications also allow to link the “quasi-modular” pieces of the
anomaly, A(6),QM , to the presence of non-perturbative heterotic 5-branes [114] as follows:
the Green-Schwarz term θ0 is, up to overall normalization, the Green-Schwarz term of the
perturbative heterotic B-field, as obtained by standard dimensional reduction of the per-
turbative 10-dimensional Green-Schwarz terms. The analogue of this term is present also
in heterotic backgrounds without heterotic 5-branes, and consequently is determined by
the purely modular piece of the elliptic genus.

By contrast, the anomaly cancelling contributions AB̃0−B̃0+ABE−BE are non-perturba-
tive from the heterotic point of view: the first term, AB̃0−B̃0 , arises from the exchange of
the dual of the heterotic B-field, B̃0. This coupling is absent in the perturbative cousin
of this geometry where there is no blowup and the base B2 is given by the Hirzebruch
surface, Fn. As noted above, in this case we have C̃0

pert · C̃0
pert = 0 and hence the coupling

of B̃0
pert to itself in (4.58) vanishes. Thus the origin of such a term must be attributed to

non-perturbative heterotic 5-branes in the dual heterotic picture, as explained in [114].
Similarly, the second term, ABE−BE , must originate from couplings that involve the

extra anti-symmetric tensor field BE living in the worldvolume of the 5-brane. The form
of these anomalies likewise matches the results in [114].

In summary, eq. (4.64) shows that the two non-perturbative contributions to the
anomaly are beautifully matched by the quasi-modular part of the anomaly, precisely as
encoded in the elliptic genus. On the other hand, the corresponding Green-Schwarz terms,
θ̃0 and θE , are not reproduced by A(6),QM

GS from the elliptic genus, as the latter is a one-loop
quantity that is agnostic about the non-perturbative sector. Only the perturbative, mod-
ular contribution A

(6),M
GS of the elliptic genus matches, as per (4.66), the Green-Schwarz

term θ0 in the effective action.

4.3.2 GS mechanism in four dimensions versus modularity and derivative
terms

After this preparation, we now turn to the Green-Schwarz mechanism in four dimensions.
The new ingredient, in line with the main theme of this paper, will be the derivative sector
of the elliptic genus. As we will see, it encodes the Green-Schwarz mechanism associated
with extra, non-universal 2-form fields Bi which arise from the perturbative B-field in ten
dimensions by dimensional reduction.

In four dimensions, we reduce the Ramond-Ramond four-form field, C4, into 2-form
fields Bα and their dual, zero-form axions cα by expanding

C4 = Bα ∧ ωα + cα ω
α . (4.67)

Here {ωα} is a basis of H1,1(B) and {ωα} the dual basis of H2,2(B3), which are defined
such that ∫

B3
ωα ∧ ωβ =: ωα · ωβ = δβα . (4.68)

Plugging this expansion into the 7-brane action (4.39), we can read off the Green-Schwarz
terms involving the 2-form fields Bα and the Chern-Simons terms involving their dual
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axions cα as follows:

SCS−7 = SGS + SCS (4.69)

SGS = −2π
2 θα

∫
R1,3

Bα ∧ F , θα = b · F · ωα , (4.70)

SCS = −2π
2 mα

∫
R1,3

cα F ∧ F , mα = 1
2b · ω

α . (4.71)

The tree-level exchange of the B- and c-fields then gives rise to a gauge variation of the
effective action, with anomaly six-form given by Ieff = A(4)

eff F
3, where

A(4)
eff = −mα θα . (4.72)

This precisely cancels the field theoretic 1-loop anomaly A(4) as normalised in (4.4):

A(4)
eff = −A(4) . (4.73)

As in the six-dimensional setting, we now specialize to a prototypical example that
captures all variants of anomaly cancellation. For this we consider a fourfold base, B3 ⊂ Y4,
which is by itself a P1-fibration over some base space B2, and for simplicity of presentation
we assume here again that there is only one blow-up divisor, E. We refer to section 2.3
for our notation for this type of geometries. A basis of H2(B3) that is convenient for
comparison with the dual heterotic geometry is given by

{ωα} = {ω0 := C0 , ωE := C1
E − C2

E , ωi := S+ · p∗(Ci)} , (4.74)

where {Ci} is a basis of divisor classes on B2. A D3-brane along the rational fiber C0 of
B3, or along the exceptional curves C1,2

E , gives rise to a heterotic string or two copies of E-
strings, respectively. The 2-form fields coupling to these strings are obtained by expanding
C4 with respect to the basis of dual divisors:

{ωα} = {ω0 := S− −
1
2E , ωE := 1

2E , ωi := p∗(Ci)} . (4.75)

Here, S− is the exceptional section of the P1-fibration, E is the blowup divisor, and {Ci}
is a basis of H1,1(B2) related to {Ci} via

Ci ·B2 Cj = δij . (4.76)

The corresponding expansion

C4 = Bα ∧ ωα = B0 ∧
(
S− −

1
2E
)

+BE ∧
(1

2E
)

+Bi ∧ p∗(Ci) + . . . (4.77)

then defines the various 2-form fields that are relevant for us. First, the field B0 maps
to the perturbative heterotic B-field in four dimensions. Furthermore BE represents the
2-form field in four dimensions which lives on the worldvolume of the spacetime-filling
heterotic 5-brane, which is the geometry that is dual to the blowup on the F-theory side.
Finally, the 2-form fields Bi correspond to the 2-forms obtained on the heterotic side by
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expanding the ten-dimensional magnetic dual six-form, B6, on 4-forms p∗(Ci), which are
the pullbacks of the 2-form divisor classes on B2.

In the basis (4.75), the coefficient of the anomaly (4.72) induced by the Green-Schwarz
terms then reads:

A(4)
eff = −

(
F · b · (S− −

1
2E)

)
m−

(
F · b · 1

2E
)

(m1 −m2)− (F · b · p∗(Ci))m(i) ,(4.78)

where

m = 1
2(b · C0) ,

m1 −m2 = 1
2(b · (C1

E − C2
E)) , (4.79)

m(i) = 1
2(b · S+ · p∗(Ci)) .

Now our task is to compare A(4)
eff with the various modular/quasi-modular/non-modular

components of the anomaly A(4), as encoded in the decomposition (3.13) of the elliptic
genus. For this we rewrite the latter in terms of a new basis (signified by a tilde) that
is adapted to (4.78). This geometrically motivated basis is however not well aligned with
modularity, and thus will generically mix the various components of the elliptic genus.
Concretely, in our specific prototypical example, and also in all other examples studied in
this work, we find that the elliptic genus can be equivalently written as

ZG,C0 = g̃0 Z̃0
−1,m + g̃E Z̃E−1,m +

∑
i

g̃i
(
Z̃i−1,m + 1

2mξ∂ξZ̃
i
−2,m

)
, (4.80)

with the following flux-dependent coefficients:

g̃0 =
(
F · b · (S− −

1
2E)

)
, g̃E =

(
F · b · 1

2E
)
, g̃i = (F · b · p∗(Ci)) . (4.81)

Here, Z̃0
−1,m is a modular Jacobi form of weight −1 and index m which is necessarily of

the form (4.17), while the remaining contributions mix both modular and quasi-modular
pieces. Following our previous notation, we can thus write:

Z̃0
∗,m = Z̃0,M

∗,m ,

Z̃E−1,m = Z̃E,M−1,m + Z̃E,QM−1,m , (4.82)
Z̃i∗,m = Z̃i,M∗,m + Z̃i,QM∗,m .

After these preparations we can now easily compare the various terms of A(4)
eff in (4.78) with

the coefficients (4.80) of the elliptic genus, ZG,C0 , by filtering the individual Z̃∗∗,m through
the formula (4.8). This leads to the following decomposition of the total anomaly:

A(4) =: g̃0AZ̃0
−1,m

+ g̃EAZ̃E−1,m
+
∑
i

g̃i(AZ̃i−1,m
+AZ̃i−2,m

) . (4.83)
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Imposing A(4)
eff = −A(4) we can thus identify19

g̃0AZ̃0
−1,m

=
(
F · b ·

(
S− −

1
2E
))

m, (4.84)

g̃EAZ̃E−1,m
=
(
F · b · 1

2E
)

(m1 −m2) , (4.85)

g̃iAZ̃i−1,m
+ g̃iAZ̃i−2,m

= (F · b · p∗(Ci))m(i) . (4.86)

This generic match between geometric, flux dependent quantities pertaining to the effective
action on the one hand, and the various contributions to the elliptic genus on the other, is a
central point of the present paper. While we have worked it out here for a prototypical sit-
uation which is dual to a heterotic string, it applies also to much more general geometries.
However it is difficult to refine these statements without specifying more data explicitly,
and this is why we will present in section 5 some detailed computations for explicit exam-
ples. Most importantly, we will see directly how the derivative part of the elliptic genus,
encoded in the Z̃i−2,m, relates to the Green-Schwarz mechanism involving the additional
four-dimensional 2-form fields Bi.

Before concluding this section, let us present some further remarks about the Green-
Schwarz terms, which are determined by the 1-loop computation shown in eq. (4.10). Like
the anomaly (4.83), also the Green-Schwarz terms receive contributions from both the
modular and the quasi-modular parts of the elliptic genus:

A
(4)
GS = A

(4),M
GS +A

(4),QM
GS .

By (4.12), the Green-Schwarz terms computed from the purely modular contributions are
guaranteed to match the field theoretic Green-Schwarz terms, which are perturbative in the
sense that they are independent of the heterotic 5-branes. Indeed, in the present context,
where ZG,C0 is written in the special basis (4.80), anomaly cancellation in the perturbative
sector takes the form:

A(4),M = m

(
g̃0AGS

Z̃0
−1,m

+
∑
i

g̃i(AGS
Z̃i,M−1,m

+ 2AGS
Z̃i,M−2,m

)
)
. (4.87)

From the perspective of the dual heterotic string, this equation comprises the complete
perturbative part of the anomaly cancellation mechanism, involving the universal B-field
B0 in the first term and the additional four-dimensional 2-form fields Bi, which are obtained
by dimensional reduction of the ten dimensional six-form field, B6.

Note the factor of 2 in the last expression, which reflects the relation (4.22) for the
derivative part of the elliptic genus. Note also that in (4.87) we did not write any modular
contributions from Z̃E,M−1,m, because they must vanish anyway:

A
Z̃E,M−1,m

= 0 , AGS
Z̃E,M−1,m

= 0 . (4.88)

19Note that one can write the flux-dependent triple-intersections on B3 directly on Y4 by exploiting the
identity −

∫
Y4

G ∧ σ ∧ π∗D = F · b ·D for G = σ ∧ π∗F .
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This is because a fully modular contribution will always produce both the anomaly and
its acompanying Green-Schwarz term at the same time, but the latter cannot arise in
perturbation theory from the elliptic genus, since it is localized on the brane and thus
cannot be captured by the bulk theory. We will find this general expectation confirmed in
the computation of explicit examples, in particular by equation (5.92) below.

Similar to the anomalies discussed before, we can also match the Green-Schwarz terms
as computed in (4.10) explicitly in terms of the flux geometry, as long as we stay in the
fully modular sector. Concretely we find

g̃0AGS
Z̃0
−1,m

=
(
F · b ·

(
S− −

1
2E
))

. (4.89)

The right-hand side is the coefficient of the standard Green-Schwarz term that involves the
universal B0-field of the heterotic string.

More interesting are the Green-Schwarz terms associated with the derivative, secretly
six-dimensional subsector of the theory whose properties are encoded in the embedded
threefolds, Yi3. These terms, as computed from the elliptic genus, are expected to agree
with the actual counterterms in the effective theory, as long as Z̃i−1,m and Z̃i−2,m are
both fully modular. Following the same line of arguments as before, we find the following
identifications between the Green-Schwarz terms as computed from the modular expressions
in (4.10) with the intersection numbers of the F-theory flux geometry:

g̃i(AGS
Z̃i,M−1,m

+ 2AGS
Z̃i,M−2,m

) = m(i)

m
(F · b · p∗(Ci)) . (4.90)

Note that this identification follows from the requirement of anomaly cancellation, i.e.,
from (4.86) and imposing A(4)

eff = −A(4). It does not prove that the anomalies are actually
cancelled. To complete a proof, one would need to show that in general the value for AGS

in (4.90) as computed from the elliptic genus does actually come out right such as to match
the m(i) as determined in (4.79) from the flux geometry in the effective action. While we
do not have a general proof for this, we have checked this to be true for the examples
presented in the next section. Turning tables round, assuming anomaly cancellation gives
a prediction for the modular part of AGS in terms of the geometric intersection numbers
m(i).

Note that these considerations, and in particular the relation (4.90), do not hold if
the elliptic genus has quasi-modular contributions, Z̃i,QM∗,m 6= 0: in this case the left-hand
side of (4.90), which depends only on the modular parts, is still expected to yield the
perturbative Green-Schwarz terms for the fields Bi, but there will be in general additional
non-perturbative contributions from the heterotic 5-branes.

In this case, the quasi-modular part of the anomaly, A(4),QM , will be non-zero and
generically receive two types of contributions:

A(4),QM = g̃EA
Z̃E,QM−1,m

+
∑
i

g̃i(AGS
Z̃i,QM−1,m

+ 2AGS
Z̃i,QM−2,m

) . (4.91)

The first term encodes the part of the anomaly which is cancelled by the Green-Schwarz
mechanism involving the B-field BE from the heterotic 5-branes. From (4.85) we see that
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the anomaly associated with Z̃E,QM−1,m is proportional to m1 −m2. This agrees beautifully
with the form of the anomaly computed from the elliptic genus in (4.33), provided Z̃E,QM−1,m
is of the form (4.32). In a sense this predicts that it must be possible to write Z̃E,QM−1,m must
be as in (4.32), as far as its expansion up to order ẑ3 is concerned.

The second type of contributions in (4.91) must be cancelled by non-perturbative
contributions to the Green-Schwarz terms for the additional Bi-fields in four dimensions.
Note that Z̃i,QM−1,m and Z̃i,QM−2,m are non-zero only if the threefold Yi3, whose BPS invariants
are encoded in Z̃i−2,m, contains the exceptional fibral curves C1

E and C2
E . This is the case

if the class of the blowup curve Γ, when expanded with respect to a chosen basis {Cj},
has a non-trivial contribution from Ci. In fact, we may assume without loss of generality
that Γ is proportional to Ci. By construction this curve maps to the curve wrapped by the
NS5-brane on the dual heterotic 3-fold. We can thus conclude a bit more sharply that:

A(4),QM =
(
F · b · 1

2E
)

(m1 −m2) + (F · b · p∗(Γ))mΓ , (4.92)

where mΓ is a parameter which we cannot determine from the above considerations alone.
However it is reassuring that the general structure of these terms indeed matches the
architecture of the abelian heterotic Green-Schwarz mechanism in the presence of 5-branes,
as was discussed in [110].

5 Elliptic genera of 4d heterotic strings

So far we have presented generic and prototypical results concerning the modularity of
elliptic genera in relation to the background fourfold geometries, Y4, and flux configurations,
G. This general structure will now be illustrated by detailed computations for a few
examples, for which sharper statements can be made, in particular concerning the structure
and rôle of the embedded six-dimensional, derivative sector.

We begin in this section with the elliptic genus of four-dimensional heterotic strings.
In the example of section 5.1, the embedded threefolds that encode the derivative sector
are by themselves Calabi-Yau spaces, while in section 5.2 we discuss an example where the
derivative sector encodes the relative BPS numbers of a non-Calabi-Yau threefold.

We will label the examples by the geometry of the base, B3, of a given elliptic fourfold
fibration, Y4. In order to curb mathematical overload of this section, we have relegated
further details about the geometry to appendix B.

5.1 Example 1: B3 = dP2 × P1
l′

As our first example we consider F-theory on an elliptic fibration Y4 whose base B3 is given
by the blow-up

B3 = dP2 × P1
l′ , (5.1)

of the rational fibration F1×P1
l′ , where the del Pezzo surface dP2 is viewed as the blow-up of

the Hirzebruch surface F1 in one point: since the Hirzebruch surface is a rational fibration
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with generic fiber C0 = P1
f and base P1

h, we can view B3 as the blowup of the rational
fibration over the base B2 = P1

h × P1
l′ ,

p : C0 −→ B3
↓

P1
h × P1

l′ (=: B2) , (5.2)

where the blowup locus is homologous to P1
l′ in B2. This type of base spaces fits into the

class of geometries described in section 2.3. In particular, the rational fibration has an
exceptional section S−, which embeds B2 into B3 and which satisfies the relation

S− · S+ = 0 , S+ = S− + p∗(P1
l′) . (5.3)

As a result of the blow-up inherited from dP2, the generic rational fiber C0 splits into
a sum of two exceptional curves C1

E + C2
E , where C1

E and C2
E are distinguished by their

intersection numbers with S− as in (2.30). The splitting occurs over a point on P1
h within

B2. The exceptional divisor E associated with this blowup is thus a fibration of C2
E over

P1
l′ , and since the rational fibration of B3 is trivial over P1

l′ , it is in fact a direct product:

E = C2
E × P1

l′ . (5.4)

As a convenient basis for H2(B3) we pick the curve classes

C0 = P1
f , CE = C1

E − C2
E , C1 = P1

l′ , C2 = P1
h . (5.5)

Since we will also need the curve classes dual to C1 and C2 on B2, note that the only
non-zero entries of the intersection form ηij = Ci ·B2 Cj are η12 = η21 = 1, so that the dual
curves Ci = ηijCj on B2 are

C1 = C2 , C2 = C1 . (5.6)

The choice of basis {C1, C2} for H2(B2) made here corresponds to the generators of the
simplicial Mori cone of B2, which was advertised as a basis with special properties in
section 3.3; the dual curves, C1 and C2, hence generate the Kähler cone of B2. As basis
for the divisor group on B3 we introduce {Dα}4α=1, which are defined as

D1 = p∗(C1) , D2 = S− , D3 = p∗(C2) , D4 = p∗(C1) + S− − E . (5.7)

In terms of these basis elements Dα, the intersection polynomial and the anti-canonical
class are

I(B3) = D1D2D3 −D2
2D3 +D1D3D4 , (5.8)

K̄B3 = 2D1 +D2 + 2D3 +D4 . (5.9)

Having specified some properties of the base, B3 = dP2 × P1
l′ , we now turn to the

structure of the elliptic fibration Y4. It has an additional rational section in addition to the
zero-section. As reviewed in section 2.2, this leads to gauge group G = U(1). Moreover we
choose a specific fibration [127, 128] for which the height-pairing is given by

b = 2K̄B3 . (5.10)
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Further details of the fibration are provided in appendix B. The massless matter spectrum
comprises states of charge r = ±1 , which are localised in the fiber along the curve Σr=1
of class

Σr=1 = 12K̄B3 · K̄B3 = −84C0 + 21(b · p∗(C1)) + 24(b · p∗(C2)) . (5.11)
Furthermore we note that the U(1) flux in H2,2

vert(Y4,R) can be expanded into the divisors
Dα as follows:

G ≡ GU(1) = σ ∧ π∗F , where F =:
4∑

α=1
cαDα . (5.12)

With respect to this flux, given the matter curve (5.11) the chiral index of massless chiral
spectrum evaluates to

χG,r=1 = F · Σr=1 = 96c1 + 48c2 + 84c3 + 96c4 . (5.13)

5.1.1 Relative BPS invariants and elliptic genus
As outlined in section 2.2, we can use mirror symmetry, suitably adapted to fourfolds [90,
129, 130], to compute a finite number of relative BPS invariants NG;C0(n, r). Recall
from (5.2) that C0 is the fiber of B3 which is wrapped by a D3-brane such as to pro-
duce the solitonic heterotic string. These invariants can then be packaged into the elliptic
genus and extrapolated to all orders by modular completion.

The results of this computation are sketched in appendix B. We list here just the lowest
order in q:

ZG;C0 = −1
q

∑
n,r

NG;C0(n, r)qnξr

= −[96c1ξ
±1̄ + 48c2ξ

±1̄ + 84c3ξ
±1̄ + 96c4ξ

±1̄] + O(q), (5.14)

where ξ±n̄ := ξn − ξ−n. Comparing to (5.13), we confirm the advertised relation (3.8)
between the relative BPS invariants at level one, NG;C0(1, r), and the chiral index χG,r=1.

Moreover, following the discussion in section 3.2, we aim to identify the BPS invariants
NG;C0(n, r) as expansion coefficients of Jacobi or quasi-modular Jacobi forms (or their
derivatives) of U(1) fugacity index

m = 1
2C

0 · b = 2 . (5.15)

Given a sufficient number of known NG;C0(n, r), we can uniquely determine the elliptic
genus as follows:

ZG;C0 = (F · C0)Z0
−1,2 + (F · b · p∗(C1))1

4ξ∂ξZ
1
−2,2 + (F · b · p∗(C2))1

4ξ∂ξZ
2
−2,2 , (5.16)

where

Z0
−1,2 ≡ Z0,M

−1,2 = 84φ−1,2 (5.17)

Z2
−2,2 ≡ Z2,M

−2,2 = 1
12

1
η24 (14E4E6,2 + 10E4,2E6) (5.18)

Z1
−2,2 ≡ Z1,M

−2,2 + Z1,QM
−2,2 , where (5.19)

Z1,M
−2,2 = Z2

−2,2 −
1
12

1
η24E4,1E6,1 , Z1,QM

−2,2 = 1
12

1
η24E2E4,1

2 .

– 48 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

For the definition of the Eisenstein and the Eisenstein-Jacobi forms, recall appendix A.
Moreover the flux dependent coefficients in (5.16) evaluate to

(F · C0) = c2 + c4 ,

(F · b · p∗(C1)) = 4(c2 + c3 + c4) , (5.20)
(F · b · p∗(C2)) = 2(2c1 + c2 + 2c4) .

Thus the elliptic genus ZG;C0 in (5.16) does have the general form as advertised in (3.9),
or more specifically in (3.13) and (3.14), with the special feature that for the example at
hand there happens to be no four-dimensional quasi-modular term, ZE−1,m. This, in fact,
mirrors the absence of a term proportional to C1

E in (5.11).
Let us now take a closer look at the derivative sector, ie., at the Zi−2,2 for i = 1, 2.

Acccording to the arguments given in section 3.2, the Zi−2,2 are generating functions for
the relative BPS invariants of certain elliptic threefolds Yi3 within Y4. To verify this in
the present example, we follow the general prescription of section 3.2 and consider the
threefolds

Y1
3 = Y4|p∗(C1) , Y2

3 = Y4|p∗(C2) , (5.21)

where, according to (5.6), C1 = C2 and C2 = C1. Both threefolds are elliptically fibered
with respective base spaces

B1
2 = p∗(C1) ' dP2 , B2

2 = p∗(C2) ' C0 × P1
l′ . (5.22)

Note that only B1
2 contains the blowup locus of B3, whereas the rational fiber of B2

2 never
splits into two exceptional curves.

Furthermore, the normal bundles of both Yi3 happen to be trivial:

NYi3/Y4 = OYi3
. (5.23)

This is a consequence of the fact that the Yi3 are simply the restriction of the elliptic
fibration to p∗(Ci), which in turn have vanishing self-intersection on B3 and hence trivial
normal bundle:

NBi2/B3 = OBi2
. (5.24)

By the adjunction formula this implies that

c1(K̄Yi3
) = c1(K̄Y4 |Yi3)− c1(NYi3/Y4) = 0 , (5.25)

and therefore both threefolds are themselves Calabi-Yau spaces; we emphasize that this is
a special property of the example at hand. Following the discussion in section 3.3, we can
therefore view Y4 as a fibration in two ways, namely with generic fiber given by either Yi3
over its respective base Ci, for i = 1, 2. Furthermore we can conclude from the adjunction
formula that the anti-canonical bundle of the base spaces of Yi3 is simply the restriction
of K̄B3 :

K̄Bi2
= K̄B3 |Bi2 ⊗N

−1
Bi2/B3

= K̄B3 |Bi2 . (5.26)
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The structure of the elliptic fibration of Yi3 is inherited by restriction from Y4. This means
that both threefolds are fibrations with an extra section whose height-pairing is simply
given by the restriction of b = 2K̄B3 to the respective bases. See appendix B for details.

With this preparation we can now compare the expressions Zi−2,2 given in eqs. (5.18)
and (5.19) with the elliptic genera of the heterotic strings that are dual to six-dimensional
F-theory compactifications on the Calabi-Yau threefolds Yi3. In more detail, the first terms
in the expansion of Zi−2,2 are

Z1
−2,2 = 2

q
−
(
252 + 84ξ±1

)
− q

(
116580 + 65164ξ±1 + 9448ξ±2 + 84ξ±3 − 2ξ±4

)
+ . . .

(5.27)

Z2
−2,2 = 2

q
−
(
288 + 96ξ±1

)
− q

(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
+ . . .

(5.28)

We have checked by direct computation in appendix B that these expansions perfectly
match the low-lying relative BPS invariants for C0, for the elliptic Calabi-Yau threefold
fibrations Yi3 over dP2 and F0, respectively. This explicitly demonstrates how the six-
dimensional structure encoded in the flux-dependent, four-dimensional elliptic genus (5.16)
manifests itself, here in terms of two embedded Calabi-Yau geometries that can be inde-
pendently controlled by dialing the flux background.

Alternatively, in terms of the dual heterotic language, one can recognize from (5.18)
that Z2

−2,2 is nothing but the modular, U(1) refined elliptic genus of a perturbative heterotic
string compactification on K3 (with some specific bundle background turned on such that
only the U(1) gauge symmetry is unbroken). This is most visible when switching off the
background gauge field:

Z2
−2,2(q, ξ = 1) = 2

η24E4E6 ≡ ZK3(q) . (5.29)

On the other hand, note that Z1
−2,2 is only quasi-modular, in agreement with the above

observation that Y1
3 contains the blowup locus. In the dual heterotic language, this corre-

sponds to a non-perturbative background. More precisely, the difference,

Z1
−2,2 − Z2

−2,2 = 1
12
E2E

2
4,1

η24 − 1
12
E4,1E6,1
η24 , (5.30)

is suggestive of a transition where a small instanton has been traded against a heterotic
NS5-brane.

Finally, we note that the decomposition of the matter curve Σr=1 defined in (5.11)
perfectly reproduces the general pattern advertised in eq. (3.29), i.e.,

Σr=1 = N0
C0(1, 1)C0 + 1

4N
1
C0(1, 1) (b · p∗(C1)) + 1

4N
2
C0(1, 1) (b · p∗(C2)) , (5.31)

with N1
C0(1, 1) = 84 from (5.27), N2

C0(1, 1) = 96 from (5.28) and N0
C0(1, 1) = −84. The

latter follows from Z0
−1,m=2 = 84φ−1,2 = −1

q

∑
N0
C0(n, r)qnξr = 84(ξ − ξ−1) + . . ..
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Let us close this part of the discussion by demonstrating the claim of section 3.4 that
the embedded threefold invariants relative to C0 have another interpretation in terms of
non-transversal (−2)-fluxes. This allows us to explicitly verify the special form of the
elliptic holomorphic anomaly equation as given in (3.35). Recall that the non-transversal
(−2)-fluxes lie in the space H(2,2)

(−2) (Y4,R) defined in (2.17), and do not lift to fluxes in F-
theory. We first need to fix a concrete basis (3.39) for it. Out of the set of all products of
elements {S−, E, p∗(C1), p∗(C2)}, the following four non-vanishing fluxes can be taken as
a maximal linearly independent set:

G1 = π∗(S−) ∧ π∗(p∗(C1)) , G2 = π∗(S−) ∧ π∗(p∗(C2)) ,
GE = π∗(E) ∧ π∗(p∗(C1)) , G0 = π∗(p∗(C1)) ∧ π∗(p∗(C2)) .

(5.32)

By performing analogous computations in mirror symmetry as sketched in appendix B, we
can compute the relative BPS invariants with respect to C0 in each of these backgrounds.
The result is

FG1;C0 = −qZ1
−2,2 , FG2;C0 = −qZ2

−2,2 ,

FGE ;C0 = 0 , FG0;C0 = 0 ,
(5.33)

where the Zi−2,2 encode the relative BPS invariants for C0 as a curve within the Calabi-Yau
threefolds Yi3, as displayed in (5.27) and (5.28). This confirms the claims stated in eq. (3.40)
and (3.41). In particular we confirm the relation (3.45) for the lowest degeneracies in Zi−2,2,
because Ci ·B2 KB2 = −2 for both base curves.

5.1.2 Anomalies and counterterms
We now show explicitly how the general structure of the U(1) gauge anomaly and its
counterterms, as laid out in generality in section 4, works in this example. First we rewrite
the elliptic genus in (5.16) in the form (4.80) as

ZG;C0 =: g̃0 Z̃0
−1,2 +

2∑
i=1

g̃i
(
Z̃i−1,2 + 1

4ξ∂ξZ̃
i
−2,2

)
, (5.34)

where the flux dependent parameters

g̃0 =
(
F · b ·

(
S − 1

2E
))

= 4c1 − 4c2 + c3 − 2c4 , (5.35)

g̃1 = (F · b · p∗(C1)) = 4(c2 + c3 + c4) , (5.36)
g̃2 = (F · b · p∗(C2)) = 2(2c1 + c2 + 2c4) (5.37)

multiply the modular Jacobi forms

Z̃
∗
−1,2 ≡ Z̃

∗,M
−1,2 with

Z̃0,M
−1,2 = −12φ−1,2 , Z̃1,M

−1,2 = 3φ−1,2 , Z̃2,M
−1,2 = 12φ−1,2 .

(5.38)

Moreover we write

Z̃2
−2,2 = Z2,M

−2,2 , Z̃1
−2,2 = Z1,M

−2,2 + Z1,QM
−2,2 , (5.39)

as defined in (5.19).
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In line of what we pointed out before, the inherently four-dimensional contributions
to the elliptic genus are all proportional to the modular Jacobi form φ−1,2. The anomaly
and Green-Schwarz term associated with φ−1,2 follow from (4.18) and are given by:

φ−1,2 : A(4) = −1
6 , A

(4)
GS = − 1

12 . (5.40)

Anomaly cancellation, A = mAGS , is of course automatic as a consequence of modularity.
Consider next the more interesting derivative contributions to the elliptic genus. We

have seen that we can formally associate six-dimensional anomalies and Green-Schwarz
terms with them. The contributions to the four-dimensional anomaly and GS terms then
follow from these via (4.21) and (4.22).

Specifically, recall that Z2
−2,2, associated with the embedded threefold Y2

3, is purely
modular. Consistent with this, we obtain, by direct evaluation of (4.8) and (4.10), for

Z̃2
−2,2 = Z2,M

−2,2 : A(6),M = 4 , A
(6),M
GS = 2 (5.41)

in agreement with the general formula (4.16). By contrast, Z1
−2,2, which is associated with

Y1
3, receives both a modular and a quasi-modular contribution. The modular part works

out along the same lines as for Z2
−2,2. The quasi-modular anomaly and Green-Schwarz

terms follow from (4.27) and (4.28), and altogether we find:

Z̃1,M
−2,2 : A(6),M = 4 , A

(6),M
GS = 2 ,

Z̃1,QM
−2,2 : A(6),QM = −1

4(m2
1 +m2

2) = −1
2 , A

(6),QM
GS = − 1

12m(m1 +m2)2 = −1
6 ,

(5.42)

where we used m1 = m2 = 1 and m = m1 +m2 = 2.
With everything combined and recalling in particular (4.21), the four-dimensional

anomaly thus evaluates to

A(4) = A(4),M +A(4),QM (5.43)

A(4),M =
(
F · b ·

(
S − 1

2E
))

m+ (F · b · p∗(C2))(m2 −m) + (F · b · p∗(C1))
(
m2 − m

4

)
A(4),QM = (F · b · p∗(C1))

(
−1

2

)
.

In total, when all variables are substituted by their definite expressions, this indeed cor-
rectly reproduces the 1-loop anomaly:

A(4) = 16c1 + 8c2 + 14c3 + 16c4 = 1
3!χG,r=1 , (5.44)

where χG,r=1 is given in (5.13).
Let us now have a closer look at the Green-Schwarz terms and check anomaly cancel-

lation in particular for the derivative terms of the elliptic genus. We mentioned already
that in the fully modular, non-derivative sector, the Green-Schwarz terms are guaranteed
to cancel the perturbative anomaly from the perspective of the heterotic string. Indeed
the relation (4.89) is obviously satisfied by means of (5.40):

g̃0AGS
Z̃0
−1,m

= 12
12

(
F · b · (S− −

1
2E)

)
=
(
F · b ·

(
S− −

1
2E
))

. (5.45)
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A bit less trivial is the anomaly cancellation in the derivative, but modular subsector.
This sector is associated just with Y2

3, since Y1
3 involves a quasi-modular piece. Let us

thus check the relation (4.90) which arises from Z̃2
−1,2 and Z̃2

−2,2 in the elliptic genus.
Explicitly, (5.40), (5.41) and (4.22) when taken together yield

g̃2(AGS
Z̃2,M
−1,m

+ 2AGS
Z̃2,M
−2,m

) =
(
−12

12 + 2× 1
4 × 2× 2

)
(F · b · p∗(C2)) = (F · b · p∗(C2)) .

(5.46)

To compare this to (4.90), which posits that

g̃2(AGS
Z̃2,M
−1,m

+ 2AGS
Z̃2,M
−2,m

) = m(2)

m
(F · b · p∗(C2)) , (5.47)

we need to know the parameter m(2). While we could not offer in section 4.3.2 an a priori
argument why it always takes the correct value, we find here in the current example by
direct computation that

m(2) = 1
2(b · S+ · p∗(C2)) = 2 . (5.48)

Hence indeed the anomaly is cancelled as expected.
By contrast, for the Green-Schwarz terms derived from Z̃1

−1,m and Z̃1
−2,m, which exhibit

a quasi-modular contribution, we find, using among others, (4.22),

g̃1(AGS
Z̃1
−1,m

+ 2AGS
Z̃1
−2,m

) =
(
− 3

12 + 2× 1
4 × 2×

(
2− 1

6

))
(F · b · p∗(C1)) = 19

12(F · b · p∗(C1))
(5.49)

while
m(1) = 1

2(b · S+ · p∗(C1)) = 3 . (5.50)

Therefore we get a mismatch as compared to (5.49):

m(1)

m
(F · b · p∗(C1)) = 3

2 (F · b · p∗(C1)) , (5.51)

which reflects that further Green-Schwarz terms, localized on the heterotic NS5-branes,
are needed to fully cancel the anomaly. Nevertheless, the quasi-modular contribution to
the anomaly as such, AQM , is of the general form given in (4.92). In our specific example,
where m1 = m2 = 1, the first term in (4.92) actually vanishes.

5.2 Example 2: B3 = Bl1H1

As our second example we take the base of the F-theory elliptic fourfold Y4 to be a blowup
of the space H1, which is defined as a P1-fibration over B2 = P2 with twist bundle L =
O(p∗H). Here H is the hyperplane class on B2. Since this geometry was discussed already
in detail in [6], we can be brief in explaining it.

The blowup is performed over a curve in the class C1 = H on B2 and leads to a
splitting of the rational fiber C0 into two exceptional curves, C1

E and C2
E . As in the case

– 53 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

study of section 2.3, the blowup divisor E is given by a fibration of C2
E over C1. For our

basis of divisors on B3 we pick

D1 = S− − E , D2 = p∗(C1)− E , D3 = E . (5.52)

In this basis, the anti-canonical bundle reads

K̄B3 = 2D1 + 4D2 + 5D3 , (5.53)

and the intersection form becomes

IB3 = 4D3
1 − 3D3

2 − 2D2
1D3 + 2D2

2D3 +D1D
2
3 −D2D

2
3 . (5.54)

The elliptic fibration over the base B3 is chosen as in the example of section 5 of [6], to
which we refer for further details. It leads to a gauge group G = U(1), and the associated
height-pairing takes the form

b = 6K̄B3 − 2β = 8D1 + 20D2 + 22D3 , (5.55)

where β = 2D1 + 2D2 + 4D3. Moreover its intersection numbers with the rational fiber
and the exceptional curves are as follows:

m = 1
2b · C

0 = 4 ,

m1 = 1
2b · C

1
E = 1 , (5.56)

m2 = 1
2b · C

2
E = 3 .

This fibration gives rise to two types of charged massless matter fields, namely of
charges r = 1 and r = 2. The matter excitations are localised on two curves on B3 in the
respective classes

Σr=1 = 3(6K̄B3 − 2β) · (6K̄B3 − 2β)− 16(2K̄B3 − β) · (3K̄B3 − β)

= −123C0 − 87C1
E + 45

2 (b · p∗(C1)) ,

Σr=2 = (2K̄B3 − β) · (3K̄B3 − β)

= −33
2 C

0 + 3
2C

1
E + 15

4 (b · p∗(C1)) .

(5.57)

Geometrically, the elliptic fiber over these two curves degenerates such as to contain the
rational curves C f

r=1 and C f
r=2, respectively. Switching on a general transversal U(1) flux

in H2,2
vert(Y4),

G = GU(1) = σ ∧ π∗F , F =:
3∑

α=1
cαDα , (5.58)

produces a chiral spectrum with indices in the respective charge sectors given by

χr=1 = 12c1 + 132c2 + 48c3, (5.59)
χr=2 = 12c1 + 12c2 + 48c3 .
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5.2.1 Relative BPS invariants and elliptic genus

After this preparation we turn to discussing the elliptic genus for the heterotic string that
arises from wrapping a D3-brane on C0 in presence of the U(1) flux, G. The relative
BPS invariants NG;C0(n, r) for small values of n have already been computed by mirror
symmetry in [6]. It was noted there that for the most general choice of U(1) flux, the
elliptic genus is neither modular nor a quasi-modular meromorphic form. This observation
was in fact the motivation for the present work.

The new ingredient, according to the general discussion in section 3.2, is that the “non-
modular” component of the elliptic genus is actually a derivative of a quasi-modular form.
More specifically, the relative invariants NG;C0(n, r), as computed in [6], allow to uniquely
determine, by modular completion, the elliptic genus as follows:

ZG;C0 = g0 Z0
−1,m + gE ZE−1,m + g1 1

2mξ∂ξ Z
1
−2,m , (5.60)

where the index is, as per (5.56), given by m = 4. Here the flux-dependent coefficients are

g0 = F ·C0 = c1 , gE = F ·C1
E = −c2+c3 , g1 = F ·b·p∗(C1) = 6c1+2c2+6c3 (5.61)

and the quasi-modular or modular forms are given by

Z0
−1,4(q, ξ) = 1

16φ−1,2(21φ2
0,1 − 23E4φ

2
−2,1 + 2E2φ0,1φ−2,1)

= 123ξ±1̄ + 33ξ±2̄ + q(981ξ±1̄ + 144ξ±2̄ − 423ξ±3̄) +O(q2) (5.62)

ZE−1,4(q, ξ) = 1
16φ−1,2(9φ2

0,1 + 13E4φ
2
−2,1 − 22E2φ0,1φ−2,1)

= 87ξ±1̄ − 3ξ±2̄ + q(2169ξ±1̄ − 1584ξ±2̄ + 333ξ±3̄) +O(q2) (5.63)

Z1
−2,4(q, ξ) = 1

12 η24 (10E4,3E6,1 + 6E4,1F6,3 + 19E4,1G6,3 + E2E4,1E4,3)

= 3
q
− 30 (8 + 6ξ±1 + ξ±2) +O(q) . (5.64)

As always, ξ±n̄ := ξn−ξ−n, ξ±n := ξn+ξ−n and the Jacobi forms are defined in appendix A.
The form (5.60) of parametrizing the elliptic genus is tuned to mirror the decomposi-

tion (5.57) of the matter curves Σr=1 and Σr=2 in terms of C0, C1
E and (b · p∗(C1)), and

follows the general pattern advertised in (3.29). The BPS invariants entering this latter
equation are of course defined in terms of the partition functions (5.62), (5.63) and (5.64) via

Z∗w,m = −1
q
N∗C0(n, r)qnξr . (5.65)

Of particular interest for us is the quasi-Jacobi form Z1
−2,4 which appears with a deriva-

tive in the elliptic genus. In line with our general arguments, we expect that it encodes the
relative BPS invariants with respect to C0 viewed as a curve within an elliptic threefold,
Y1

3, in Y4. Recall from section 3.3 that this threefold is constructed as the restriction of the
elliptic fibration of Y4 to the divisor p∗(C1) = p∗(C1) on B3, which in the present example
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is topologically a del Pezzo surface, dP2. The threefold is therefore elliptically fibered with
base B1

2 = p∗(C1), and we denote the projection by

π1 : Y1
3 → B1

2 . (5.66)

By the adjunction formula we find that Y1
3 has a non-zero first Chern class:

c1(K̄Y1
3
) = c1(K̄Y4 |Y1

3
)− c1(NY1

3/Y4) = −π∗1(p∗(C1)|p∗(C1)) , (5.67)

because the divisor p∗(C1) has non-vanishing self-intersection on B3.
From the point of view of the elliptic fibration, this can also be seen as follows. The

anti-canonical class is related to the pullback of the discriminant of the fibration from the
base, ∆Y1

3
, via the relation

c1(K̄Y1
3
) = π∗1(c1(K̄B1

2
))− 1

12∆Y1
3
. (5.68)

The discriminant ∆Y1
3
in turn is inherited from the discriminant of the fibration of the

ambient space Y4,
∆Y1

3
= ∆Y4 |Y1

3
= 12π∗1(c1(K̄B3)|B1

2
) . (5.69)

By the adjunction formula we have

c1(K̄B1
2
) = c1(K̄B3 |B1

2
)− c1(NB1

2/B3) , (5.70)

where c1(NB1
2/B3) = p∗(C1)|p∗(C1). Thus altogether we have

∆Y1
3

= 12π∗1(c1(K̄B1
2
)) + 12π1(p∗(C1)|(p∗(C1))) , (5.71)

rather than just ∆Y1
3

= 12π∗1(c1(K̄B1
2
)) which would be required for a Calabi-Yau threefold.

Even though Yi3 has a negative anti-canonical bundle, the concept of relative Gromov-
Witten invariants still makes sense. Unlike for Calabi-Yau spaces, however, we cannot as
easily compute BPS invariants via mirror symmetry and compare them to the invariants
N1
C0(n, r) that are encoded in the expansion of Z1

−2,4(q, ξ).
Despite this technical complication, we can provide some evidence for our conjecture

that Z1
−2,4 encodes the relative invariants for Yi3. The following discussion is an illustration

of the general arguments in section 3.3. Recall first that since the elliptic fibration of Y1
3 is

inherited from Y4, we know that it exhibits an extra rational section and that the height-
pairing associated with this section is the restriction of the height-pairing b to p∗(C1). The
elliptic fiber of Y1

3 degenerates over a number of points on p∗(C1) in such a way as to contain
rational curves C f

r of U(1) charges r = 1 and r = 2. Recall figure 3 for a visualization.
The number of points where this happens equals the number of holomorphic fibral curves
in class C f

r on Y1
3, which in turn is computed by the Gromov-Witten invariants N(C f

r).
For Calabi-Yau threefolds whose base is a rational fibration with fiber C0, these invariants
N(C f

r) agree with the relative BPS invariants at level n = 1 , i.e.,

N1
C0(n = 1, r) = N(C f

r) . (5.72)
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This is the threefold analogue of the relation (3.8) and follows from F-theory–heterotic
duality. While strictly speaking we cannot invoke this duality for non-Calabi-Yau three-
folds, it is reasonable to assert that (5.72) holds more generally whenever the base of the
elliptic threefold is a rational fibration. If we assume this, we have a simple means to test
the hypothesis that the invariants defined by Z1

−2,m compute the relative BPS invariants
of the non-Calabi-Yau threefold Y1

3, at least at level n = 1. This is because the number of
degeneration points and hence the BPS invariants N(C f

r) are easy to determine.
Concretely, as explained in section 3.3, the number of degeneration points on Y1

3 lead-
ing to fibral curves C f

r is simply given by the number of intersection points between the
corresponding degeneration locus of Y4 on B3, i.e., the curves Σr, and the base of Y1

3, i.e.,
the divisor p∗(C1). This yields the BPS invariants

N(C f
r=1) = Σr=1 · p∗(C1) = 180 , (5.73)

N(C f
r=2) = Σr=2 · p∗(C1) = 30 . (5.74)

These values are in perfect agreement with the relative invariants N1
C0(n = 1, 1) = 180 and

N1
C0(n = 1, 2) = 30 which appear in the expansion (5.64) of Z1

−2,4. We can also reproduce
the remaining invariant, N1

C0(n = 1, r = 0), which according to our conjecture must
coincide with the Gromov-Witten invariant for the fibral class Eτ . For an elliptic Calabi-
Yau threefold, this in turn would be given by the negative of the Euler characteristic of the
threefold, i.e. by −χ(CY3) = −

∫
CY3 c3(CY3) = −2 ch3(CY3), where the Chern character

is given by ch3 = 1
2c3− 1

2c1c2 + 1
6c

3
1. For our non-Calabi-Yau threefold Y1

3 at hand, we find
explicity that

N1
C0(n = 1, r = 0) = −2 ch3(Y1

3) = −
∫
Y4
c3(Y4) ∧ π∗(p∗(C1)) = 240 , (5.75)

which indeed matches the index of the uncharged states in (5.64).
Thus, all in all we have verified that the identity (5.72) holds for our example, and

this lends further support to the conjecture that all invariants in Z1
−2,4 match the relative

BPS invariants of the non-Calabi-Yau threefold, Y1
3.

Let us present yet another, more speculative perspective on the significance of the
partition function Z1

−2,4. Recall that the non-Calabi-Yau space Y1
3 is elliptically fibered

over the base B1
2 = p∗(C1), which in turn is the blowup of a Hirzebruch surface F1 at

one point, with its own base C1 and generic fiber C0. This implies that Y1
3 also admits a

K3-fibration over C1,

ρ : K3F → Y1
3
↓
C1 (5.76)

whose fiber K3F is elliptically fibered over C0.
Let us formulate a Weierstrass model for this fibration, and introduce the notation

[a′1 : a′2] for the homogenous coordinates on the base C1, and [a1 : a2] for the coordinates
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on C0. Then a Weierstrass model for the elliptic fibration of Y1
3 can be written, away from

the exceptional curve of the blown up Hirzebruch surface, as

y2 = x3 + f(ai, a′j)x z4 + g(ai, a′j) z6 , (5.77)

where f(ai, a′j) is a section of ∆1/3
Y1

3
and g(ai, a′j) is a section of ∆1/2

Y1
3
. The degrees of the

discriminant ∆Y1
3
on the base and fiber of B1

2 follow from (5.71) as

∆Y1
3
|B1

2
= 48C0 + 24C1 . (5.78)

Taking into account that C0 is fibered over C1 with twist 1 (which is the case for the
Hirzebruch F1), this means that we can expand f and g as

f(ai, a′j) =
∑
k

f12−k(a′1, a′2) a4−k
1 a4+k

2 , (5.79)

g(ai, a′j) =
∑
k

g18−k(a′1, a′2) a6−k
1 a6+k

2 , (5.80)

where the subscripts denote the degrees of the polynomials on the fiber coordinates.
Let us pause for a moment and consider instead an elliptic fibration over B1

2 which is
Calabi-Yau. For this we would have polynomials given by f8−k(a′1, a′2) and g12−k(a′1, a′2),
respectively. This Calabi-Yau threefold could serve as a standard F-theory compactifiation
space to six dimensions. This theory would in turn have a six-dimensional heterotic dual
defined in terms of an elliptic surface, K3het, with base C1. A Weierstrass model for
K3het would then be obtained by keeping the polynomials f8−k(a′1, a′2) and g12−k(a′1, a′2)
for k = 0 [131, 132], i.e.,

K3het : y2 = x3 + f8(a′1, a′2)xz4 + g12(a′1, a′2)z6 . (5.81)

Now we return to our presently considered geometry, where we deal with the non-Calabi
Yau threefold, Y1

3. A priori, F-theory on this space is not well-defined. Let us nonetheless
formally define a dual heterotic background, by keeping the middle polynomials in analogy
to the well-established Calabi-Yau case. This leads to the following Weierstrass model

E : y2 = x3 + f12(a′1, a′2)xz4 + g18(a′1, a′2)z6 , (5.82)

which is an elliptic fibration with 36, rather than 24 singular fibers. This defines an elliptic
surface E with

K̄E = −Eτ , (5.83)

where Eτ is the fiber.
It is tempting to interpret Z1

−2,4(q, ξ) as a generalized, refined elliptic genus associated
with this elliptic surface. More specifically, if we switch off the U(1) background field, we
find

Z1
−2,4(q, ξ = 1) = 1

12η24E4(E2E4 + 35E6) = 3
η24E4E6 + 1

12η24 (E2E
2
4 − E4E6) , (5.84)

– 58 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

which is suggestive of a non-perturbative instanton/NS5 brane transition of such a geom-
etry.

Let us come back to a more concrete, definite property of Z1
−2,4(q, ξ) as given in (5.64).

Recall the general relationship between the derivative part of the elliptic genus and the
partition functions associated to non-transversal (−2)-fluxes, which was proposed in sec-
tion 3.4. If we take as basis for the fluxes in H(2,2)

(−2) (Y4,R)

G1 = π∗(S−) ∧ π∗(p∗(C1)) ,
GE = π∗(E) ∧ π∗(p∗(C1)) ,
G0 = π∗(p∗(C1)) ∧ π∗(p∗(C1)) ,

(5.85)

then the associated BPS invariants assemble into the generating functions

FG1;C0 =− qZ1
−2,4 , FGE ;C0 = 0 , FG0;C0 = 0 . (5.86)

Thus we can indeed confirm the purported relationship between the two partition func-
tions, which are associated with transveral U(1) flux and non-transversal (−2) flux, re-
spectively. Moreover, while the vanishing of the last two generating functions is clear on
general grounds as for the previous model, it is noteworthy to mention that the lowest
BPS number in Z(1)

−2,m, as read off from (5.64), perfectly matches the intersection theoretic
expression (3.45) because C1 ·B2 KB2 = −3.

5.2.2 Anomalies and Green-Schwarz terms

In order to discuss the anomalies in a U(1) flux background, we rewrite the elliptic
genus (5.60) into the form (4.80), which is more suitable for comparison with the Green-
Schwarz mechanism in the heterotic duality frame. Concretely,

ZG;C0 =: g̃0 Z̃0
−1,m + g̃E Z̃E−1,m + g̃1

(
Z̃1
−1,m + 1

2mξ∂ξZ̃
1
−2,m

)
, (5.87)

for m = 4, with the flux dependent coefficients:

g̃0 = F · b ·
(
S − 1

2E
)

= −9c1 + 9c2 , g̃E = F · b ·
(1

2E
)

= 3c1 + 9c2 − 6c3 , (5.88)

g̃1 = F · b · p∗(C1) = 6c1 + 2c2 + 6c3 . (5.89)

Moreover each term, Z̃∗w,m ≡ Z̃
∗,M
w,m + Z̃

∗,QM
w,m , generically splits into a modular and quasi-

modular piece. Explicitly:

Z̃0,M
−1,4 = − 1

12φ−1,2(φ2
0,1 − E4φ

2
−2,1) , Z̃0,QM

−1,4 = 0 ,

Z̃E,M−1,4 = −1
6φ−1,2φ

2
−2,1E4 , Z̃E,QM−1,4 = 1

6φ−1,2φ−2,1E2φ0,1 ,

Z̃1,M
−1,4 = 1

32φ−1,2(3φ2
0,1 − E4φ

2
−2,1) , Z̃1,QM

−1,4 = − 1
16φ−1,2φ−2,1E2φ0,1 ,

Z̃1,M
−2,4 = 1

12 η24 (10E4,3E6,1 + 6E4,1F6,3 + 19E4,1G6,3) , Z̃1,QM
−2,4 = 1

12 η24E2E4,1E4,3 .

(5.90)
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Note that all these partition functions have, depending on their modularity properties, the
respective general form as advertised in (3.15).

Let us first discuss the anomalies and Green-Schwarz terms derived from the non-
derivative (quasi) modular forms in ZG;C0 . These receive contributions only from three
independent building blocks, which are readily computed following the general prescription
outlined in sections 4.1 and 4.2:

φ−1,2φ
2
−2,1E4 : A(4),M = 0 A

(4),M
GS = 0

φ−1,2φ
2
0,1 : A(4),M = −48 , A

(4),M
GS = 1

m
A(4),M = −12

φ−1,2φ−2,1E2φ0,1 : A(4),QM = 6(m1 −m2) = −12 , A
(4),QM
GS = 0 .

(5.91)
Recall that the values m = 4 and m1 = 1, m2 = 3 were determined from the geometry
in (5.56), but we leave the values sometimes unassigned in order to exhibit the structure
of the various terms.

Note also in passing that the modular component related to the exceptional curve,
Z̃E−1,m, is proportional to

φ−1,2φ
2
−2,1E4 = O(ẑ5) , (5.92)

and therefore contributes neither to the anomaly nor to the Green-Schwarz term, in line
with an argument made after equation (4.88).

Now we turn to the derivative sector. From Z̃1
−2,4 we first compute the contributions

to the six-dimensional anomaly as follows:

Z̃1,M
−2,4 : A(6),M = 30 , A

(6),M
GS = 1

4 A
(6),M ,

Z̃1,QM
−2,4 : A(6),QM = −1

4(m2
1 +m2

2) = −5
2 , A

(6),QM
GS = − 1

12m(m1 +m2)2 = −1
3 .
(5.93)

This then determines, via (4.21) and (4.22), the contributions ξ∂ξZ̃1
−1,4 to the four-dimensio-

nal anomaly and Green-Schwarz terms.
Altogether, the complete anomaly becomes

A(4) = A(4),M +A(4),QM

A(4),M = m

(
F · b ·

(
S − 1

2E
))

+
(30

2 − 48 3
32

)
(F · b · p∗(C1)) (5.94)

A(4),QM = (m1 −m2)
(
F · b ·

(1
2E
))

+
(
−1

8(m2
1 +m2

2)− 6
16(m1 −m2)

)
(F · b · p∗(C1))

and this correctly reproduces the 1-loop anomaly as required:

A(4) = 18c1 + 38c2 + 72c3 = 1
3!

2∑
r=1

r3χr . (5.95)

Here χr refers to the chiral index in the charge sector r as given in (5.59).
The structure of the anomaly reflects the Green-Schwarz mechanism in the dual het-

erotic frame explained in section 4.3.2. In particular, the purely modular contribution
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from Z̃0
−1,m,

g̃0AZ̃0
−1,m

= m

(
F · b ·

(
S− −

1
2E
))

, (5.96)

maps to the part of the anomaly that is cancelled by the perturbative universal Green-
Schwarz term. Moreover, the quasi-modular contribution to the anomaly, AQM , turns
out to be of the expected form (4.92). For the derivative terms, the analogue of this
would be the relation (4.90), but this can be checked not to hold due to the quasi-modular
contributions, in line with general expectations.

6 Elliptic genera of 4d non-critical strings

Our conjecture of section 3.2 on the form of four-dimensional elliptic genera is supposed
to hold not only for heterotic strings, but more generally also for other, in particular non-
critical solitonic strings. In this section we illustrate this by presenting the elliptic genus of
two different types of non-critical strings in four dimensions. We begin by discussing the
four-dimensional E-string in the next section, followed by a non-critical string obtained in
F-theory compactified on B3 = P3 in section 6.2.

6.1 Four-dimensional E-strings

The six-dimensional non-critical E-string [39, 40, 80, 101–103, 133, 134] arises in F-theory
by wrapping a D3-brane on a rational curve CE of self-intersection −1 which lies in the base
B2 of some elliptic Calabi-Yau threefold, Y3. Such curves have normal bundle NCE/B2 =
OCE (−1) and can arise in two different settings: either CE is the exceptional section of a
Hirzebruch surface B2 = F1, or it appears after blowing up a general Hirzebruch surface
at a point. After the blowup the rational fiber over the point in the base splits into two
exceptional curves C1

E and C2
E with normal bundle NCiE/B2 = OCiE (−1).

We can generalise the notion of an E-string to F-theory compactifications to four
dimensions by wrapping a D3-brane on a curve with normal bundle

NCE/B3 = OCE (−1)⊕OCE . (6.1)

In this paper we will call the strings obtained from D3-branes that wrap such curves
four-dimensional E-strings and study their elliptic genera. Aspects of four-dimensional
analogues of E-string have previously been considered in [91] (see also [135] and [136]).
Clearly such strings are special cases of a multitude of non-critical strings that can arise
from much more general types of curves. More recently, the compactification of six-
dimensional N = (1, 0) SCFTs on Riemann surfaces with fluxes has been a subject of
intense study [84, 137–152], and it would be worthwhile to relate our setup to the field
theoretic approach, though this will not be the focus of this paper.

The trivial summand OCE in (6.1) implies that the curve CE is fibered over a distin-
guished normal direction within B3, thereby tracing out a rationally fibered divisor which
we call DE . The four-dimensional geometry probed by the E-string is hence a fibration
at least locally, where the fiber CE is either the base of a Hirzebruch surface F1 or one of
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the blowup curves in a rational fibration. We will exemplify both types of geometries and
their associated E-string elliptic genera.

From the perspective of geometry alone, one might think that the properties of the
resulting four-dimensional E-string are entirely inherited from the six-dimensional E-string
which is locally fibered. According to the logic of this paper, this would mean that the four-
dimensional E-string elliptic genus would be a derivative of the six-dimensional E-string
elliptic genus. This, however, is in general not the case. The definition of the model requires
specifying the background flux, and we will see that the latter can introduce genuinely four-
dimensional, non-derivative contributions to the elliptic genus, precisely as expressed in the
most general form of conjecture 2 in section 3.2. This phenomenon is independent of the
geometric realisation of the E-string curve, either as the base of a locally fibered Hirzebruch
surface or due to a blowup in the fiber of the rational fibration.

6.1.1 E-strings of six-dimensional origin

As our first example we consider an F-theory compactification for which the base space,
B3, is of the type introduced in section 2.3, namely it is a rational fibration by itself:
p : B3 → B2. After we perform a blowup over a curve Γ on the base B2, the rational fiber
C0 over Γ splits into two exceptional curves C1

E and C2
E . Each of the two CiE is therefore

fibered over the curve Γ and the fibration defines two divisors, Di
E , of the following form:

piE : CiE → Di
E

↓
Γ (6.2)

Note that in section 2.3 we had called the divisor D2
E =: E. Furthermore, as long as we

perform only one blowup, which is what we assume from now on, we have D1
E+D2

E = p∗(Γ).
For simplicity we now take the gauge group in four dimensions to be U(1) and consider

a background with transversal flux, G = GU(1) ∈ H
2,2
vert(Y4). We will discuss an example

with non-abelian gauge group later in section 6.1.2. We claim that for such a setup, the
elliptic genus of the E-string associated with either C1

E or C2
E can be brought into the

following universal form:

ZGU(1);CiE
(q, ξ) = 1

2mi
(F · b ·Di

E) ξ∂ξZ−2,mi(q, ξ) , mi = 1
2b · C

i
E , (6.3)

where Z−2,mi is the elliptic genus [39, 40] of a six-dimensional E-string with U(1) fugacity
index mi, i.e.:

Z−2,mi(q, ξ) = 1
η12(q)E4,mi(q, ξ) . (6.4)

Furthermore, the degeneracies contained in Z−2,mi(q, ξ) are the relative BPS invariants for
the curve CiE within an elliptic threefold embedded into Y4.

Let us illustrate this general formula for the E-strings that arise (besides the heterotic
string) in the two examples that were discussed in sections 5.1 and 5.2. First, consider the
base B3 = dP2 × P1

l′ . In the notation of section 5.1, the two divisors Di
E defined via (6.2)
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are immediately identified as

D1
E = p∗(C1)− E = D4 −D2 , D2

E = E = D1 +D2 −D4 , (6.5)

with
F · b ·D1

E = 4c2 + 2c3 , F · b ·D2
E = 2c3 + 4c4 . (6.6)

We recall furthermore that in this geometry the geometric intersection numbers mi =
1
2b · C

i
E = 1 for both i = 1, 2.

As detailed in appendix B, we can compute by mirror symmetry the lowest-lying
relative BPS invariants NCiE ;G(n, r) and the associated elliptic genera

ZGU(1);CiE
= −q−1/2∑

n,r

NGU(1);CiE
(n, r)qnξr (6.7)

as follows:

ZGU(1);C1
E

(q, ξ) = −(2c2 + c3)q−1/2
(
(56ξ±1̄ + 2ξ±2̄) + q(1248ξ±1̄ + 276ξ±2̄) +O(q2)

)
(6.8)

ZGU(1);C2
E

(q, ξ) = −(c3 + 2c4)q−1/2
(
(56ξ±1̄ + 2ξ±2̄) + q(1248ξ±1̄ + 276ξ±2̄) +O(q2)

)
.

These are uniquely completed into the exact expressions:

ZGU(1);CiE
(q, ξ) = 1

2(F · b ·Di
E) 1

η12(q) ξ∂ξE4,1(q, ξ) , (6.9)

which are in perfect agreement with general pattern (6.3). The threefold whose relative BPS
invariants are contained in ZCiE ;G(q, ξ) is the Calabi-Yau Y1

3 = Y4|p∗(C1) introduced already
in (5.21). Note that C1 is the curve dual on B2 to C1, whose class in turn corresponds to
the class of the curve Γ over which the E-string curves are fibered as in (6.2). Formula (6.3)
is hence very much analogous to the derivative contributions to the heterotic string elliptic
genus (5.16) in the same geometry. The difference is that the E-string curves CiE are
fibered only over Γ, and hence there appears only a single derivative contribution. For the
heterotic string, on the other hand, the curve C0 is fibered over all of B2 so that we must
sum over several contributions, each corresponding to one basis element Ci of H2(B2).

As for the example of section 5.2, we consider the two E-strings in the geometry
B3 = Bl1H1 with

D1
E = p∗(C1)− E = D2 , D2

E = E = D3 , (6.10)

and
(F · b ·D1

E) = −16c2 + 18c3 , (F · b ·D2
E) = 6c1 + 18c2 − 12c3 . (6.11)

The geometric intersection numbers are m1 = 1 and m2 = 3. By application of mirror
symmetry, we have computed the lowest relative BPS numbers, which assemble into the
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following expansions:

ZGU(1);C1
E

(q,ξ) = (−8c2+9c3)q−1/2
(
(56ξ±1̄+2ξ±2̄)

+ q(1248ξ±1̄+276ξ±2̄) (6.12)

+ q2(13464ξ±1̄+4716ξ±2̄+168ξ±3̄)

+ q3(103136ξ±1̄+46008ξ±2̄+3744ξ±3̄+4ξ±4̄)

+O(q4)
)
,

ZGU(1);C2
E

(q,ξ) = (c1+3c2−2c3)q−1/2
(
(54ξ±1̄+54ξ±2̄+6ξ±3̄)

+ q(1080ξ±1̄+1188ξ±2̄+504ξ±3̄+108ξ±4̄) (6.13)

+ q2(11016ξ±1̄+13122ξ±2̄+7350ξ±3̄+2376ξ±4̄+270ξ±5̄+6ξ±6̄)

+ q3(81216ξ±1̄+102060ξ±2̄+66264ξ±3̄+26244ξ±4̄+5400ξ±5̄+516ξ±6̄)

+O(q4)
)
.

These uniquely determine the elliptic genera as follows:

ZGU(1);C1
E

(q, ξ) = 1
2(F · b ·D1

E) 1
η12(q) ξ∂ξE4,1(q, ξ) , (6.14)

ZGU(1);C2
E

(q, ξ) = 1
6(F · b ·D2

E) 1
η12(q) ξ∂ξE4,3(q, ξ) , (6.15)

which again illustrates the general claim (6.3). We expect that the invariants encoded in
ZG;CiE

(q, ξ) are the relative BPS invariants with respect to CiE within the non-Calabi-Yau
threefold Y1

3, which was discussed around eq. (5.66) in the context of the heterotic string.
The two examples discussed so far are special to the extent that the four-dimensional

E-string is completely determined by its six-dimensional cousin, as reflected in the purely
derivative structure of the elliptic genus. As we will see in the next section, this is no longer
the case if the E-string curve lies inside a 7-brane and is threaded by gauge flux.

Before coming to this point, however, we take a brief digression to understand the
invariants encoded in Z−2,mi(q, ξ) via (6.3) also in terms of non-transversal (−2) fluxes,
analogous to what we found for the heterotic string. Irrespective of the details of B2, we
can give the general pattern by first considering the relative BPS invariants for the E-string
curves C1

E and C2
E at n = 0 and r = 0. The curves C1

E and C2
E are each fibered over the

curve Γ on B2. The class of the moduli space of both curves with one point fixed is hence
the surface Di

E on B3 traced out by this fibration, i.e.

µ(CiE) = S0 ∧Di
E , i = 1, 2 . (6.16)

A non-vanishing BPS number for CiE is only possible in a flux background which intersects
this surface. It is easy to see which types of 4-form fluxes on B3 have this property, because
the fibration structure of B3 implies that the only non-vanishing intersections with Di

E are

D1
E · S− · p∗(C) = C ·B2 Γ , Di

E ·D
j
E · p

∗(C) = (1− 2δij)C ·B2 Γ . (6.17)
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Here C represents some curve class on B2, and we used the fact that only C1
E is intersected

by S−. Whenever C intersects Γ transversally, it is natural to infer from the local nature
of the fibration that the 4-forms S− · p∗(C) and Di

E · p∗(C) restrict the moduli space of the
more general curve CiE + nEτ + C f

r in Y4 to Y4|p∗(C). Hence up to normalisation, which is
given by the intersection numbers (6.17), we expect to exactly reproduce the BPS numbers
as encoded in Z−2,mi(q, ξ).

This general expectation is perfectly confirmed by computation. For the two E-strings
of the model with base B3 = dP2 × P1

l′ of section 5.1 we find, for the basis (5.32) of
non-transversal (−2) fluxes

FG1;C1
E

= −q1/2 1
η12(q) E4,1(q, ξ) , FG2;C1

E
= 0 ,

FGE ;C1
E

= −q1/2 1
η12(q) E4,1(q, ξ) , FG0;C1

E
= 0

(6.18)

and
FG1;C2

E
= 0 , FG2;C2

E
= 0 ,

FGE ;C2
E

= +q1/2 1
η12(q) E4,1(q, ξ) , FG0;C2

E
= 0 .

(6.19)

The extra sign in the expression for FGE ;C2
E
reflects the fact that E ·C2

E = D2
E ·C2

E = −1.
Similarly, for B3 = Bl1H1 of section 5.2 for the basis (5.85) of non-transversal (−2) fluxes
we have

FG1;C1
E

= −q1/2 1
η12(q) E4,1(q, ξ) ,

FGE ;C1
E

= −q1/2 1
η12(q) E4,1(q, ξ) , FG0;C1

E
= 0

(6.20)

and
FG1;C2

E
= 0 ,

FGE ;C2
E

= +q1/2 1
η12(q) E4,3(q, ξ) , FG0;C2

E
= 0 .

(6.21)

Hence again certain threefold BPS invariants - here of the E-string curves CiE within
Y1

3 - are obtained as fourfold invariants in suitable, non-transversal (−2) flux backgrounds.
This does not mean, however, that all relative BPS invariants within a given threefold are
generated by one and the same (−2) flux. For instance, the flux G1 reproduces the relative
BPS invariants of C0 and C1

E within Y1
3, but not of C2

E , and GE gives the relative BPS
invariants for C1

E and C2
E in Y1

3, but not of C0, as comparison with (5.86) and (5.33) shows.

6.1.2 Genuinely four-dimensional E-string

While in the previous class of constructions the E-string genera are entirely of six-dimensio-
nal origin, we now present an example where one finds in addition a genuinely four-
dimensional contribution. The E-string lives inside a stack of 7-branes carrying a gauge
sector with G = SU(2). The background geometry, B3 = F1×P1, is detailed in appendix C.
The base is rationally fibered with projection p : B3 → B2 over B2 = CE × P1, where CE
is the base of F1. A D3-brane wrapping CE gives rise to a four-dimensional E-string. The
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E-string curve is trivially fibered over the extra P1, and this fibration traces out the divisor
DE = CE × P1 on B3.

The elliptic fibration Y4 over B3 models a stack of 7-branes with gauge group G =
SU(2) wrapped on the divisor

b = CE × P1 . (6.22)

Since the E-string curve CE lies inside the 7-brane divisor b, its intersection number with
b is negative,

b · CE = −1 . (6.23)

In the elliptic fibration over B3, the elliptic fiber over b splits into two rational curves which
intersect like the nodes of the affine Dynkin diagram of SU(2). Fibering both curves over
b defines two exceptional divisors e0 and e1 with e0 + e1 = π∗(b), where the fiber of e0
is associated with the affine node. The generator of the Cartan U(1) within SU(2) can
be identified with the divisor −e1. To understand the normalisation, note that matter
excitations in the fundamental representation arise from M2-branes wrapping a curve C f

in the fiber over a curve on b. The holomorphic curve C f satisfies −e1 ◦ C f = 1, so that
matter excitations from an M2-brane along C f have charge r = 1 under the U(1) generated
by −e1.

For this geometry we consider a transversal flux background of the form

G = (−e1) ∧ π∗(F ) , F = c1D1 + c2D2 + c3D3 , (6.24)

which corresponds to the Cartan U(1) of SU(2). Here

D1 = C0 × P1 , D2 = C0 × P1 + CE × P1 , D3 = p∗(CE) . (6.25)

As before, we determine via mirror symmetry a number of relative BPS invariants
NCE ;G(n, r) and so obtain the first terms in the expansion of the elliptic genus. While
we refer to eq. (C.11) in the appendix for more data, we present here just the lowest order
in q:20

q1/2 ZCE ;G(q, ξ) = q[c1(16ξ−2 − 160ξ−1 + 768− 2400ξ + 5616ξ − 10752ξ3 + 17920ξ4

−27136ξ5 + 38400ξ6 − 51712ξ7 + 67072ξ8 + · · · ) (6.26)
+c3(6ξ−2 − 40ξ−1 − 472ξ + 2042ξ2 − 4608ξ3 + 8192ξ4 − 12800ξ5

+18432ξ6 − 25088ξ7 + 32768ξ8 + · · · )] +O(q2) .

The noteworthy feature is that at any given order of q there is an infinite series in ξ. This
points to the expansion of a ξ-dependent denominator. Such behaviour is expected from
experience with non-critical strings of six-dimensional N = (1, 0) SCFT’s with nontrivial
gauge symmetry [43, 44, 49, 55, 58–60, 65, 67–69, 72], which are obtained when D3-branes
wrap a curve that is also wrapped by 7-branes. In six dimensions, such strings are inter-
preted as instanton strings with respect to the non-abelian gauge group localized on the
stack of 7-branes. The point is that for a coincident 7-brane/D3-brane system, the open

20Note that the flux labelled by c2 does not contribute.
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strings in the 3-7 sector lead to massless charged chiral fields the N = (0, 2) supersymmet-
ric worldsheet theory, and in turn to charged bosonic excitations in spacetime. These are
responsible for the appearance of an ξ-dependent denominator in the elliptic genus.

Our goal is to understand the four-dimensional elliptic genus as the derivative of a
six-dimensional elliptic genus, possibly augmented by a genuinely four-dimensional piece.
To find the six-dimensional contribution, recall that the curve CE is trivially fibered over
the P1 factor in B3, thereby tracing out the divisor DE within B3. This suggests that we
must consider the E-string within a threefold, Y3, obtained by restricting Y4 to the fiber
of this fibration. This threefold is simply

Y3 = Y4|D3 , (6.27)

where the divisor D3 cuts out the Hirzebruch surface F1 on B3. This threefold happens
to be a Calabi-Yau space, and thus we can easily compute the relevant BPS invariants
via mirror symmetry. The first terms in the expansion of the elliptic genus for the six-
dimensional E-string in Y3 leads to the BPS numbers presented in (C.13). These BPS
numbers can be identified as the expansion coefficients of

Z−2,−1(q, ξ) = − 1
η(τ)12

4∑
i=2

θi(0, τ)10

θi(2z, τ)2 . (6.28)

In accord with our expectations, this coincides with the elliptic genus of an instanton string
of a six-dimensional N = (1, 0) SCFT with SU(2) gauge symmetry and SO(20) flavor
symmetry [58], in the limit where the chemical potentials of its SO(20) flavor symmetry
have been switched off and the only nonvanishing chemical potential is the one for the
Cartan generator of SU(2).

While we expect (6.28) to contribute to the elliptic genus of the four-dimensional E-
string with a derivative, it turns out that for general Cartan flux G, the four-dimensional
elliptic genus receives in addition a fully modular, non-derivative contribution without a
six-dimensional origin. In fact, the elliptic genus of our four-dimensional E-string can be
brought into the following form, in full agreement with conjecture 2 in section 3.2:

ZCE ;G(q, ξ) = (F · CE)Z−1,m(q, ξ) + 1
m

(F · b ·DE)ξ∂ξZ−2,m(q, ξ) , (6.29)

where21

m = b · CE = −1 (6.30)

and the flux-dependent parameters are

F · CE = c1 , F · b ·DE = −c3 . (6.31)

21Note that in the definition of m we have not included a factor of 1
2 . This reflects the different normali-

sation of the U(1) as Cartan subgroup of SU(2), as compared to the non-Cartan U(1)’s studied in the other
examples in this work. The value of m defined in this way gives the U(1) fugacity index of the modular
forms. Correspondingly, the prefactor of the derivative term in (6.29) is 1

m
, rather than 1

2m .

– 67 –



J
H
E
P
0
1
(
2
0
2
1
)
1
6
2

Note again that the flux labelled by c2 does not contribute. The first term,

Z−1,−1(q, ξ) = 16 i θ1(z, τ)10

θ1(2z, τ)3η(τ)9 , (6.32)

represents a genuinely four-dimensional contribution to the elliptic genus. Evidently, fluxes
for which F · CE 6= 0 affect the spectrum of the solitonic string in a more drastic way
if the string lies inside a 7-brane stack, and as a result the four-dimensional E-string
can no longer simply be viewed as a fibered version of a six-dimensional E-string. The
final expression (6.29) then nicely disentangles via the fluxes the universal six-dimensional
contribution and the genuinely four-dimensional contribution to the elliptic genus.

6.2 Four-dimensional string on B3 = P3

As our final example, we present the elliptic genus of a non-critical string that probes a
base geometry without any fibration structure. Nonetheless, we will be able to write the
elliptic genus in the general form advertised in section 3.2.

We will consider the simplest possible elliptic fourfold fibration, namely where the
base is given by B3 = P3. We will focus on the elliptic genus of the non-critical string
obtained by wrapping a D3-brane along some curve Cb, whose class is given in terms of
the hyperplane class by

Cb = H ·H . (6.33)

To keep things simple, we engineer a gauge group G = U(1) with associated height-pairing
b = 2K̄B3 = 8H. The details of the geometry can be found in appendix D. The transversal
U(1) flux is of the form

GU(1) = σ ∧ π∗(F ) , with F = cH . (6.34)

The elliptic genus of the non-critical string is expected to encode the relative BPS invariants
NCb;G(n, r) via

ZGU(1);Cb(q, ξ) = − 1
q2

∑
n,r

NGU(1);Cb(n, r)qnξr , (6.35)

where the prefactor q−2 = q−E0/2 reflects the vacuum energy E0 = Cb · K̄B3 = 4 on
the string. The lowest invariants can be computed by mirror symmetry as discussed in
appendix D. Exploiting modularity, we can completely determine the elliptic genus as

ZGU(1);Cb(q, ξ) = (F · Cb)Z−1,m(q, ξ) + 1
2m(F · b ·H)ξ∂ξZ−2,m(q, ξ) , (6.36)

where Z−1,m(q, ξ) and Z−2,m(q, ξ) are meromorphic Jacobi forms for which explicit ex-
pressions are presented in eqs. (D.11) and (D.12). Moreover, the U(1) fugacity index is
given by

m = 1
2b · Cb = 4 , (6.37)

while
F · Cb = c , F · b ·H = 8 c . (6.38)
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Recall that the single flux parameter c is defined in (6.34); since h1,1(B3) = 1 there is not
enough room for different types of U(1) fluxes to separate out the modular and derivative
components, so that just a single linear combination appears.

We conclude from this example that the four-dimensional elliptic genus can receive a
derivative contribution even if the base, B3, is not a fibration. The invariants contained in
the derivative piece Z−2,4(q, ξ) once more appear in the background of a non-transversal
(−2) flux. In the present case, the only non-trivial (−2) flux is of the form

GH = π∗(H) ∧ π∗(H) . (6.39)

For an elliptic fibration over P3 without U(1) gauge group, such fluxes were investigated
in [76, 77]. As we show in appendix D, the generating function for the BPS invariants in
this flux background precisely encodes the invariants contained in Z−2,4(q, ξ), i.e.

FGH ;Cb = −q2Z−2,4(q, ξ) . (6.40)

It is interesting to wonder if the invariants Z−2,4(q, ξ) are again the invariants of a
certain embedded threefold but we have no evidence that this is the case in this example.
In fact, in [107] we will give very direct arguments for the relation between certain (−2)
flux invariants and the invariants of embedded threefolds, but these do not apply to the
flux background (6.39).

7 Conclusions and outlook

In this work we have investigated the rich interplay between the modular properties of
elliptic genera, the enumerative geometry of genus zero relative BPS invariants on elliptic
fourfolds with background fluxes, and the structure of U(1) anomalies for effective field
theories in four dimensions. Our analysis has been distilled to conjecture 2 in section 3.2,
which disentangles the flux-induced elliptic genus in four dimensions into a sum of mod-
ular Jacobi forms, quasi-modular Jacobi forms, and derivatives thereof. Our conjecture
applies in particular to critical heterotic strings and to non-critical solitonic strings in four
dimensions with N = (0, 2) worldsheet supersymmetry. Such theories can be engineered
in F-theory as worldvolume theories of D3-branes compactified on curves which lie in the
base, B3, of an elliptic fourfold Y4.

That the elliptic genus in four dimensions is not necessarily a (quasi-)modular Jacobi
form per se had been explicitly observed already in [6], and is in agreement with the general
results of [24] and with the conjecture [25] that the generating functions of BPS invariants
of elliptic fibrations are captured in terms of quasi-Jacobi forms. According to conjecture 2
of the present paper, the non-(quasi-)modular components of the elliptic genus are, in fact,
of a simple derivative form. Apart from breaking modular invariance, they also break the
elliptic shift symmetriy which corresponds to spectral flow in the U(1) current algebra.
These anomalies can be remedied at the cost of introducing a non-holomorphic derivative
as in (1.12). This results in eq. (1.13), which can be seen as a concrete realization of the
elliptic holomorphic anomaly equation that was proposed in [25], thereby giving further
support of it.
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Our arguments are based on a central observation of this paper, namely that the
derivative contributions to the elliptic genus in the presence of transversal flux can be
obtained in two a priori independent ways: first, they arise from the partition function of
BPS invariants in the background of non-transversal fluxes. This is in accordance with the
elliptic holomorphic anomaly equation that was introduced in [25]. A main result in our
work concerns a second, novel interpretation of these invariants, namely as BPS invariants
of certain threefolds Yi3 that are embedded in Y4. Taking the second point of view in fact
allowed us to independently derive the elliptic holomorphic anomaly equation.

In special cases, the threefolds Yi3 are themselves Calabi-Yau manifolds and their BPS
invariants can easily be computed by means of mirror symmetry. By analysing a variety of
examples, we find that these BPS invariants indeed match the derivative sector of elliptic
genera. This lends strong support to our claims. More generally, the concept of relative
BPS invariants is well-defined also for non-Calabi-Yau geometries, and we gather circum-
stantial evidence that the observed pattern persists for such Yi3. It would be intriguing to
develop techniques to compute these invariants more directly, from first principles, in order
to compare them with our predictions.

In the special case of a heterotic string, we have been able to prove the geometric
interpretation of the BPS invariants in the derivative sector, at least at the first energy
level n = 1 of the elliptic genus. This rests on the geometric interpretation of the fourfold
BPS invariants in terms of the moduli space of curves in the fourfold. It would be desirable
to extend this proof to all levels n [107]. This would open up the fascinating possibility
of using mirror symmetry on Calabi-Yau fourfolds to determine relative BPS invariants of
non-Calabi-Yau threefolds.

From a physics perspective, the embedded threefolds Yi3 can be thought of as formally
defining six-dimensional sectors in the following sense. If the Yi3 are Calabi-Yau manifolds,
the derivative part of the elliptic genus can be literally interpreted as a collection of six-
dimensional elliptic genera. For instance, for the case of a heterotic solitonic string, we
can go to the dual weakly coupled eigenframe which describes a compactification on a K3
surface with gauge bundle. In this case the six-dimensional elliptic genus we talk about
is precisely the elliptic genus of such a compactification. We have also discussed the more
generic situation where Yi3 is not Calabi-Yau: while the arguments are not as sharp, we
can still make a formal analogy and consider a dual heterotic geometry associated with
some elliptic surface, which however is not a K3 surface any longer.

We have illustrated conjecture 2 by a number of examples covering a variety of four-
dimensional, critical as well as non-critical strings, and their elliptic genera. For the special
case of the critical heterotic string, the modular properties of the elliptic genus reflect the
intricacies of the Green-Schwarz anomaly cancelling mechanism in four dimensions. As
described, contrary to what happens in six dimensions, the elliptic genus in four dimensions
is not necessarily a (quasi-)modular Jacobi form, and we show in detail how this ties in
with anomaly cancellation involving extra B-fields. Specifically, the modular part of the
elliptic genus is linked to the universal B-field, while the other sectors reflect the presence
of further B-fields, in general of both perturbative and non-perturbative nature.
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We have furthermore analysed two types of examples of non-critical strings in four
dimensions. The first is a generalisation of the concept of an E-string to four dimensions:
its elliptic genus is generally the sum of a derivative piece (which is related to the familiar
six-dimensional E-string), plus a genuinely four-dimensional contribution, whose details de-
pend on the flux background. While the E-strings are special in that they can be decoupled
from gravity in four dimensions, we have tested conjecture 2 also for a non-critical string
which is associated with a non-shrinkable curve in P3, so that gravity cannot be decoupled.
Clearly the handful of prototypical examples provided in this work only form the beginning
of a much more systematic study of elliptic genera of strings in four dimensions.
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A Modular forms

A.1 Rings of Jacobi (J∗,∗), quasi-modular Jacobi (JQM∗,∗ ), and quasi-Jacobi
(JQJ∗,∗ ) forms

Jacobi forms [153], as holomorphic functions of two variables, Φ(τ, z) : H × C → C, are
primarily characterized by their simple transformation properties under the modular group:

Φw,m

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we2πi mc

cτ+d z
2
Φw,m(τ, z) for

(
a b

c d

)
∈ SL(2,Z), (A.1)

Φw,m (τ, z + λτ + µ) = e−2πim(λ2τ+2λz)Φw,m(τ, z) , λ, µ ∈ Z . (A.2)

They possess a Fourier expansion

Φw,m =
∑
n≥0

∑
r2≤4mn

c(n, r) e2πi(nτ+rz) , (A.3)

and are the natural building blocks [33–35] of elliptic genera (1.1) that are refined by an
extra U(1) current. There exists an extensive literature about Jacobi forms (for example,
besides the original work [153], also [36, 154, 155]), so we can be brief. We just mention
here some aspects that are important in this work. A Jacobi form Φw,m(τ, z) is called

• a holomorphic Jacobi form if c(n, r) = 0 unless 4mn ≥ r2,

• a Jacobi cusp form if c(n, r) = 0 unless 4mn > r2,

• a weak Jacobi form if c(n, r) = 0 unless n ≥ 0 .
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One furthermore defines a weakly (or nearly) holomorphic Jacobi form by requiring c(n, r) =
0 unless n ≥ n0 for a negative integer n0.

Jacobi forms form a bi-graded ring which we denote by

J∗,∗ = ⊕w,mJw,m . (A.4)

For even weight and integer index, J2k,m is freely generated by φ0,1 and φ−2,1 with coeffi-
cients given by polynomials in the Eisenstein series E4 and E6. The Eisenstein series, as
well as the generators φ0,1 and φ−2,1, can be expressed in terms of the Dedekind function
η(τ) = q

1
24
∏∞
n=1(1− qn) and the familiar Jacobi theta functions as follows:22

E4(τ) = 1
2

4∑
`=1

ϑ`(τ, 0)8, (A.5)

E6(τ) = 1
2
(
ϑ2(τ, 0)8(ϑ3(τ, 0)4 + ϑ4(τ, 0)4) + ϑ3(τ, 0)8(ϑ2(τ, 0)4 − ϑ4(τ, 0)4) (A.6)

−ϑ4(τ, 0)8(ϑ2(τ, 0)4 + ϑ3(τ, 0)4)
)
,

φ−2,1(τ, z) = −ϑ1(τ, z)2

η6(τ) , (A.7)

φ0,1(τ, z) = 4
(
ϑ2(τ, z)2

ϑ2(τ, 0)2 + ϑ3(τ, z)2

ϑ3(τ, 0)2 + ϑ4(τ, z)2

ϑ4(τ, 0)2

)
. (A.8)

For odd weight and integer index, J2k+1,m has a single extra generator

φ−1,2(τ, z) = iϑ1(τ, 2z)
η3(τ) , (A.9)

which implies that any odd-weight Jacobi form of integer index must be proportional to
φ−1,2. This is of great significance in the present work, since the relevant elliptic genus of
four-dimensional theories has weight w = −1 and integer m. Note that the odd generator
obeys the relation

432φ2
−1,2 = φ−2,1

(
φ3

0,1 − 3E4φ
2
−2,1φ0,1 + 2E6φ

3
−2,1

)
(A.10)

so that effectively it appears at most linearly. So altogether the ring of weak Jacobi forms
is generated by

J∗,∗ : {E4, E6, φ0,1, φ−2,1, φ−1,2} , (A.11)

modulo the relation (A.10).
For reference, we define q = e2πiτ , ξ = e2πiz, ξ±n = ξn + ξ−n, ξ±n̄ = ξn − ξ−n, and

ẑ = 2πiz, and list the following expansions:

φ0,1(τ, z) = 10 + ξ±1 + (108− 64ξ±1 + 10ξ±2)q + . . . (A.12)

= 12 + E2ẑ
2 + 1

24(E2
2 + E4)ẑ4 + . . . ,

22Note that we adopt conventions different to those of [6].
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φ−2,1(τ, z) = −2 + ξ±1 − (12− 8ξ±1 + 2ξ±2)q + . . . (A.13)

= ẑ2 + 1
12E2ẑ

4 + 1
1440(5E2

2 − E4)ẑ6 + . . . ,

φ−1,2(τ, z) = ξ±1̄ + (3ξ±1̄ − ξ±3̄)q + . . . (A.14)

= 2ẑ + 1
3E2ẑ

3 + 1
180(5E2

2 − 2E4)ẑ5 + . . . .

Moreover, an important rôle is played by holomorphic quasi-modular forms. The ring
of such forms is generated by the Eisenstein series E4 and E6 plus

E2(τ) = 1
2πi

∆′(τ)
∆(τ) = 1− 24q − 72q2 +O(q3) , (A.15)

where ∆ = η24 = 1
1728(E3

4 − E2
6). As is well-known, it is not fully modular but transforms

with an extra piece

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ)− 6i

π
c(cτ + d) . (A.16)

This modular anomaly can be remedied at the expense of holomorphicity by defining

Ê2(τ) = E2(τ)− 3
πImτ . (A.17)

In this paper we consider two extensions: a simpler one and a more complicated one
which contains the first.23 The simple one is what we call the ring JQM∗,∗ of quasi-modular
Jacobi forms. It is defined similar to J∗,∗ except that the coefficients are polyomials in E2
as well as in E4 and E6. That is, its generators are

JQM∗,∗ : {E2, E4, E6, φ0,1, φ−2,1, φ−1,2} . (A.18)

The more complicated extension is obtained by first defining an “almost holomorphic”
function on H× C of the form

Φ(τ, z) =
∑
i,j≥0

Φi,j(τ, z)
( 1

Imτ

)i ( Imz
Imτ

)j
, (A.19)

where the sum runs over finitely many terms and the Φi,j(τ, z) are holomorphic (and ap-
propriately convergent). If the non-holomorphic function Φ(τ, z) obeys the transformation
laws of a Jacobi form as given in (A.1) and (A.2), then the holomorphic first term in the
sum is defined to be a quasi-Jacobi form:

Φ0,0(τ, z) ∈ JQJ∗,∗ . (A.20)

Note that JQM∗,∗ ⊂ JQJ∗,∗ as it corresponds to the special case of almost holomorphic Jacobi
forms (A.19) for which j ≡ 0. For more thorough definitions, see [23–25].

23An even more drastic extension would be in terms of more general mock-modular Jacobi forms, see for
example ref. [36]. However this appears not to be relevant for the compact geometries we consider.
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Summarizing, quasi-modular Jacobi forms can be made modular by reparing the
anomalous transformation behaviour of the generator E2 in (A.16) by adding a non-
holomorphic piece as in (A.17). This has many known manifestations in the physics liter-
ature.

On the other hand, quasi-Jacobi forms have a worse transformation behaviour that
cannot be remedied in this simple way, and needs extra treatment in the form of Imz

Imτ . The
quasi-Jacobi forms that appear in this paper all arise as z-derivatives of modular or quasi-
modular Jacobi forms. More precisely, if we start from a Jacobi form Φw,m(τ, z) ∈ Jw,m
with given weight and index, then

Φw+1,m(τ, z) = ∇z,mΦw,m(τ, z) , (A.21)

∇z,m := ∂z + 4πim Imz
Imτ , (A.22)

is almost holomorphic while modular with weight w + 1 under the transformations (A.1)
and (A.2). This follows from the transformation property of α ≡ Imz

Imτ :

α

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)α(τ, z)− c z , (A.23)

α (τ, z + λτ + µ) = α(τ, z) + λ . (A.24)

It then follows that by definition ∂zΦw,m ∈ JQJw+1,m. Analogous arguments apply if Φw,m ∈
JQMw,m .

A.2 Eisenstein-Jacobi forms

In this section we identify a set of Jacobi forms which are closely related to the Eisenstein
series E4(τ) and E6(τ). This parametrization of the ring of Jacobi forms, J∗,∗, is naturally
adapted to the geometries we consider, and makes certain properties more manifest. Specif-
ically, we are interested in holomorphic Jacobi forms Φw,m(q, ξ) = Φw,m(τ, z), of weight
w = 4 or 6 and index m characterized by the following properties:

• Φw,m(q, ξ = 1) ≡ Φw,m(τ, z = 0) = Ew(τ),

• Φw,m(q, ξ) =
∑
n≥0

∑
r∈Z c(n, r)qnξr, where c(n, r) ∈ Z and c(0, r) = δ0,r.

We further restrict our attention to Jacobi forms with index m ≤ 4 and integral expansion
coefficients which are relevant to the examples that appear in this paper. It is straight-
forward to construct explicitly all such forms within the ring J∗,∗. Specifically, for any
w = 4,m ≤ 3, as well as for w = 6,m ≤ 2, there is a unique such form, which coincides
with the Jacobi-Eisenstein series Ew,m of [153]. These are given by:

E4,0 = E4 = 1 + 240q +O(q2), (A.25)

E4,1 = 1
12 (E4φ0,1 − E6φ−2,1) = 1 + (ξ±2 + 56ξ±1 + 126)q +O(q2), (A.26)

E4,2 = 1
122

(
E4φ

2
0,1 − 2E6φ0,1φ−2,1 + E2

4φ
2
−2,1

)
= 1 + (14ξ±2 + 64ξ±1 + 84)q +O(q2),

(A.27)
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E4,3 = 1
123

(
E4φ

3
0,1 − 3E6φ

2
0,1φ−2,1 + 3E2

4φ0,1φ
2
−2,1 − E4E6φ

3
−2,1

)
(A.28)

= 1 + (2ξ±3 + 27ξ±2 + 54ξ±1 + 74)q +O(q2) ,

and

E6,0 = E6 = 1− 504q +O(q2), (A.29)

E6,1 = 1
12
(
E6φ0,1 − E2

4φ−2,1
)

= 1 + (ξ±2 − 88ξ±1 − 330)q +O(q2), (A.30)

E6,2 = 1
122

(
E6φ

2
0,1−2E2

4φ0,1φ−2,1+E4E6φ
2
−2,1

)
= 1− (10ξ±2+128ξ±1+228)q +O(q2).

(A.31)

On the other hand, for w = 4,m = 4 and for w = 6,m = 3 and 4, the sought-after Jacobi
forms cannot be Jacobi-Eisenstein series, as the latter do not have integer coefficients.
For each of these cases there is a one parameter family of Jacobi forms with the required
properties, which we denote by Ew,m,t, t ∈ Z:

E4,4,t = 1
124

(
E4φ

4
0,1 − 4E6φ

3
0,1φ−2,1 + 6E2

4φ
2
0,1φ

2
−2,1 − 4E4E6φ0,1φ

3
−2,1 + (9E3

4 − 8E2
6)φ4
−2,1

)
− t∆φ4

−2,1

= 1 +
(
ξ±4 + 56ξ±2 + 126ξ±1 − t(1− ξ)

8

ξ4

)
q +O(q2), (A.32)

E6,3,t = 1
123

(
E6φ

3
0,1 − 3E2

4φ
2
0,1φ−2,1 + 3E4E6φ0,1φ

2
−2,1 − E2

6φ
3
−2,1

)
− t∆φ3

−2,1

= 1−
(
ξ±3 + 27ξ±2 + 135ξ±1 + 178 + t

(1− ξ)6

ξ3

)
q +O(q2), (A.33)

E6,4,t = 1
124

(
E6φ

4
0,1 − 4E2

4φ
3
0,1φ−2,1 + 6E4E6φ

2
0,1φ

2
−2,1 − 4E2

6φ0,1φ
3
−2,1 + E2

4E6φ
4
−2,1

)
− t∆φ0,1φ

3
−2,1

= 1−
(

4ξ±3 + 44ξ±2 + 124ξ±1 + 160 + t
(1− ξ)6

ξ3 (ξ±1 + 10)
)
q +O(q2). (A.34)

In the paper, we employ these forms to express the U(1) dependence numerator of the
heterotic string elliptic genus on K3, which in the limit z → 0 reduces to 2E4(τ)E6(τ).
In fact, in the examples we make a further specialization and write the elliptic genera in
terms of the following set of Jacobi forms:

F6,3 := E6,3,9, G6,3 := E6,3,−3, F4,4 := E4,4,1, G4,4 := E4,4,0,

F6,4 := E6,4,0, G6,4 := E6,4,−1, (A.35)

together with the Eisenstein-Jacobi forms (A.25)–(A.31).

We note that there exist a number of bilinear relations among this set of Jacobi forms:

E4,0F4,4 − 4E4,1E4,3 + 3E2
4,2 = 0,

E4,0E6,2 + E4,2E6,0 − 2E4,1E6,1 = 0,
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E4,0F6,3 + 3E4,1E6,2 − 9E4,2E6,1 + 5E4,3E6,0 = 0,
E4,0G6,3 − 3E4,1E6,2 + 3E4,2E6,1 − E4,3E6,0 = 0, (A.36)

E4,1F6,3 − 3E4,3E6,1 + 2F4,4E6,0 = 0,
E4,1G6,3 − 3E4,2E6,2 + 3E4,3E6,1 − F4,4E6,0 = 0,

E4,0F6,4 − 3E4,2E6,2 + 2E4,3E6,1 = 0,
E4,0G6,4 − 2E4,1G6,3 + 2E4,3E6,1 −G4,4E6,0 = 0.

Moreover we find that the following relations hold:

E4,1∇̂E4,2 = 12∆φ−1,2φ−2,1,

E4,1∇̂E4,3 = 2∆φ−1,2φ0,1φ−2,1,

E6,1∇̂E4,1 = 144∆φ−1,2,

E6,1∇̂E4,2 = E6,2∇̂E4,1 = 12∆φ−1,2φ0,1, (A.37)
E6,1∇̂E4,3 = ∆φ−1,2(φ2

0,1 + E4φ
2
−2,1),

E6,2∇̂E4,2 = ∆φ−1,2(φ2
0,1 − E4φ

2
−2,1),

F6,3∇̂E4,1 = ∆φ−1,2(φ2
0,1 + 9E4φ

2
−2,1),

G6,3∇̂E4,1 = ∆φ−1,2(φ2
0,1 − 3E4φ

2
−2,1).

The operator ∇̂ acts on a pair of Jacobi forms Φw1,m1 , Φw2,m2 of nonzero index to produce
the a Jacobi form of weight w1 +w2 +1 and index m1 +m2, and has the following definition:

Φm1,k1∇̂Φm2,k2 = 1
m2

Φm1,w1(ξ∂ξ)Φm2,w2 −
1
m1

φm2,w2(ξ∂ξ)Φm1,w1 . (A.38)

B 4d heterotic and E-strings for B3 = dP2 × P1
l′

Here we will provide details of the geometry of the elliptic Calabi-Yau fourfold, Y4, and of
the embedded threefolds Yi3, as discussed in section 5.1.

The toric coordinates of the threefold base

B3 = dP2 × P1
l′ (B.1)

are listed in the upper-left part of table 1, in terms of the U(1) charges of a gauged linear
sigma model (GLSM).

As a basis of H1,1(B3) we take

D1 = νz0 = f = p∗(C1) ,
D2 = νz3 = h = S− ,

D3 = νx0 = l′ = p∗(C2) ,
D4 = νz1 = f + h− E = p∗(C1) + S− − E .

(B.2)

The notation f and h refers to the pullback to B3 of the respective classes of the fiber and
base of the Hirzebruch surface F1 whose blowup constitutes dP2; that is, f ' C0 × P1

l′ and
h ' P1

h × P1
l′ . The rest of the notation has been introduced in section 5.1.
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νx0 νx1 νz0 νz1 νz2 νz3 νz4 νu νv νw νs

f − E 0 0 1 1 1 0 0 0 3 6 0
h 0 0 0 1 0 1 0 0 2 4 0
E 0 0 1 0 0 0 1 0 2 4 0
l′ 1 1 0 0 0 0 0 0 2 4 0
S0 0 0 0 0 0 0 0 1 1 2 0
S 0 0 0 0 0 0 0 0 1 1 1

Table 1. GLSM charges of the toric coordinates of the Bl1P2
112 fibration over B3 = dP2 × P1

l′ .
The upper-left part, as separated by the horizontal and the vertical double lines corresponds to the
description of the base B3 alone.

We now turn to the geometry of the elliptic fibration π : Y4 → B3. The elliptic fiber is
constructed as a general hypersurface of degree 4 in Bl1P2

112, which is a convenient way of
realising a U(1) gauge symmetry via a rank-1 Mordell-Weil group of rational sections [128].
Specifically, the fourfold Y4 is obtained by the vanishing locus of

PMP := sw2 + b0s
2u2w + b1suvw + b2v

2w + c0s
3u4 + c1s

2u3v + c2su
2v2 + c3uv

3 , (B.3)

where u, v, w and s are the four homogeneous coordinates of the ambient space Bl1P2
112 of

the fiber. The coefficients bi and ci are sections of appropriate line bundles on B3, whose
degrees are parametrized by a cohomology class β ∈ H2(B3,Z) as follows:

Sections b0 b1 b2 c0 c1 c2 c3 c4

Classes β K̄B3 2K̄B3 − β 2β K̄B3 + β 2K̄B3 3K̄B3 − β 4K̄B3 − 2β

If we denote by Lu and Ls the line bundles of which the coordinates u and v are sections,
the remaining fibral ambient coordinates w and s are in turn sections of the bundles,

v ∈ H0(Y4,Lu ⊗ Ls ⊗O(β − K̄B3)) , (B.4)
w ∈ H0(Y4,L2

u ⊗ Ls ⊗O(β)) ,

which can be seen from the defining polynomial (B.3). For the concrete fibration Y4 we
make the following choice:

β = 4D1 + 2D2 + 4D3 + 2D4 (B.5)
= 2K̄B3 ,

which leads to the toric description for Y4 as described in table (1).
Moreover, note that the height pairing divisor b of the section S, defined as the image

σ(S) under the Shioda homomorphism σ [122],

b := −π∗(σ(S) · σ(S)) , (B.6)

takes, taking into account (B.5), the form:

b = 6K̄B3 − 2β = 2K̄B3 . (B.7)
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Given this toric data for Y4, upon performing appropriate combinatorial computations,
e.g., by making use of PALP [156, 157] and SAGE [158], we can easily extract the generators
l(a) of the Mori cone, M(Y4):

l(1) = ( 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, −1) ,
l(2) = ( 0, 0, 0, 0, 0, 0, 0, −1, 1, 0, 2) ,
l(3) = ( 0, 0, 1, 0, 1, −1, 0, −1, 0, 0, 0) ,
l(4) = ( 0, 0, 0, 0, −1, 1, 1, −1, 0, 0, 0) ,
l(5) = ( 0, 0, 0, 1, 1, 0, −1, −1, 0, 0, 0) ,
l(6) = ( 1, 1, 0, 0, 0, 0, 0, −2, 0, 0, 0) .

(B.8)

These generators are described in terms of their intersection numbers with the toric divisors
dρ := {νρ = 0}, for ρ = x0, x1, . . . , w, s, as ordered in table 1. The quartic intersection
numbers of Y4 can be obtained via combinatorial computations as well, and we endode
them in the following intersection polynomial:

I(Y4) = 1302J1
4+672J1

3J2+336J1
2J2

2+168J1J2
3+84J2

4+120J1
3J3+64J1

2J2J3

+ 32J1J2
2J3+16J2

3J3+180J1
3J4+96J1

2J2J4+48J1J2
2J4+24J2

3J4

+ 14J1
2J3J4+8J1J2J3J4+4J2

2J3J4+14J1
2J4

2+8J1J2J4
2+4J2

2J4
2

+ 120J1
3J5+64J1

2J2J5+32J1J2
2J5+16J2

3J5+14J1
2J3J5+8J1J2J3J5

+ 4J2
2J3J5+14J1

2J4J5+8J1J2J4J5+4J2
2J4J5+105J1

3J6+56J1
2J2J6 (B.9)

+ 28J1J2
2J6+14J2

3J6+14J1
2J3J6+8J1J2J3J6+4J2

2J3J6+21J1
2J4J6

+ 12J1J2J4J6+6J2
2J4J6+3J1J3J4J6+2J2J3J4J6+3J1J4

2J6+2J2J4
2J6

+ 14J1
2J5J6+8J1J2J5J6+4J2

2J5J6+3J1J3J5J6+2J2J3J5J6+3J1J4J5J6

+ 2J2J4J5J6 ,

where Ja are the generators of the Kähler cone that obey∫
l(a)

Jb = δab . (B.10)

Equipped with the topological data listed above, we can compute the BPS invariants,
NG;Cb(n, r), to any given order for curves of the form

C = Cb + nEτ + C f
r , (B.11)

with respect to the transversal U(1) flux

G ≡ GU(1) = σ ∧ π∗F , where F =:
4∑

α=1
cαDα . (B.12)

The base curves, Cb, that are of interest in our examples are

Cb =
{
C0, C1

E , C
2
E

}
. (B.13)

These correspond respectively to the heterotic string featuring section 5.1, and to the two
types of E-strings discussed in section 6.1.
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The computation of the BPS invariants proceeds by mirror symmetry, in practice
using A. Klemm’s Mathematica package inst.m and extensions thereof. For this purpose
we need to expand the various curves appearing on the r.h.s. of (B.11) over the Mori cone
generators. This is achieved by making use of the explicit form for the curves (B.8), as
well as of the intersection data (B.9). This leads to the identification

C0 = l(4) + l(5) , (B.14)
C1
E = l(4) , (B.15)

C2
E = l(5) , (B.16)
Eτ = 3l(1) + 2l(2) , (B.17)

C f
r=1 = l(1) + l(2) . (B.18)

We have calculated the relative BPS invariants up to certain finite degrees, and list them
below in terms of the generating functions

FG;Cb =
∑
n,r

NG;Cb(n, r)qn ξr . (B.19)

Concretely, for each of the three base curves (B.13) under consideration, we get

FG;C0 = q[96c1ξ
±1̄ + 48c2ξ

±1̄ + 84c3ξ
±1̄ + 96c4ξ

±1̄]

+ q2[c1(69280ξ±1̄ + 20384ξ±2̄ + 288ξ±3̄ − 8ξ±4̄)
+c2(99552ξ±1̄ + 29088ξ±2̄ + 480ξ±3̄ − 12ξ±4̄) (B.20)
+c3(65164ξ±1̄ + 18896ξ±2̄ + 252ξ±3̄ − 8ξ±4̄)
+c4(134192ξ±1̄ + 39280ξ±2̄ + 624ξ±3̄ − 16ξ±4̄)]

+O(q3) ,
FG;C1

E
= q[c2(112ξ±1̄ + 4ξ±2̄) + c3(56ξ±1̄ + 2ξ±2̄)]

+ q2[c2(2496ξ±1̄ + 552ξ±2̄) + c3(1248ξ±1̄ + 276ξ±2̄)] (B.21)
+ q3[c2(26928ξ±1̄ + 9432ξ±2̄ + 336ξ±3̄) + c3(13464ξ±1̄ + 4716ξ±2̄ + 168ξ±3̄)]
+O(q4) ,

FG;C2
E

= q[c3(56ξ±1̄ + 2ξ±2̄) + c4(112ξ±1̄ + 4ξ±2̄)]

+ q2[c3(1248ξ±1̄ + 276ξ±2̄) + c4(2496ξ±1̄ + 552ξ±2̄)] (B.22)
+ q3[c3(13464ξ±1̄ + 4716ξ±2̄ + 168ξ±3̄) + c4(26928ξ±1̄ + 9432ξ±2̄ + 336ξ±3̄)]
+O(q4) .

Here, the coefficients cα parametrise the four-form flux G as in (B.12).
In the main text of the paper we argue that the derivative part of the elliptic genera

is given by a formally six-dimensional structure, which manifests itself in terms of the
threefolds

πi : Yi3 → Bi2 , i = 1, 2 , (B.23)

whose two-fold bases are given by
Bi2 = p∗(Ci) . (B.24)
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Here we will provide some relevant details of these, for the sample geometry we consider.
Concretely, we have C1 = C2 and C2 = C1 and the respective bases are thus given by

B1
2 ' dP2 , (B.25)

B2
2 ' C0 × C2 ' F0 . (B.26)

Since the self-intersections of p∗(Ci) vanish on B3, the normal bundles NBi2/B3 are trivial
and hence so are NYi3/Y4 . This implies that the induced fibrations Yi3 are Calabi-Yau
threefolds, once again defined by the polynomials of the form (B.3). For the geometries
under consideration, the restrictions preserve the arithmetic structure of the sections and
are described by the classes of the height-pairings by

bi := b|Bi2 = 2K̄Bi2
, (B.27)

where, in the second step, we have used b = 2K̄B3 and NBi2/B3 = OBi2
.

As both of the induced fibrations, Y1
3 and Y2

3, are torically constructed, they admit a
description in terms of an abelian GLSM, analogous as for Y4 in table 1. The most general
such descriptions for the bases (B.25) and (B.26) can be found, for instance, in [4] (see table
4.2, as well as table 4.1 with a = 0); for the specific fibrations Y1

3 and Y2
3 under scrutiny, we

set (x, y1, y2) = (6, 2, 2) in the former case and (x, y) = (4, 4) in the latter. By determining
their Mori cones and intersection rings, we can calculate the BPS invariants, N i

Cb
(n, r), for

the curve classes of the form (B.11) on Yi3, just like it was done for the fourfold Y4. As
result we present these invariants via their generating functions of the form,

F iCb =
∑
n,r

N i
Cb(n, r)qn ξr , (B.28)

for each of the two geometries and base curves (B.13). For Y1
3 we get for the heterotic base

curve and for the two E-string curves, respectively:

F1
C0 = −2 +

(
252 + 84ξ±1

)
q +

(
116580 + 65164ξ±1 + 9448ξ±2 + 84ξ±3 − 2ξ±4

)
q2

(B.29)

+
(
6238536 + 3986964ξ±1 + 965232ξ±2 + 65164ξ±3 + 252ξ±4

)
q3 +O(q4) ,

F1
Ci=1,2
E

= 1 + (138 + 56ξ±1 + ξ±2)q + (2358 + 1248ξ±1 + 138ξ±2)q2 (B.30)

+ (23004 + 13464ξ±1 + 2358ξ±2 + 56ξ±3)q3 +O(q4) .

On the other hand, since Y2
3 does not contain (−1)-curves in its base B2

2 ' F0, all we get
is invariants for Cb = C0:

F2
C0 = −2+

(
288 + 96ξ±1

)
q+
(
123756 + 69280ξ±1 + 10192ξ±2 + 96ξ±3 − 2ξ±4

)
q2+O(q3) .

C Non-abelian 4d E-string for B3 = F1 × P1
l′

Here we present some details on the geometry that underlies the four-dimensional E-string
model presented in section 6.1. The base space of the elliptic fourfold Y4 is given by
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νx νy νz νe1 νe0 νz1 νz2 νz3 νz4 νz5

Z 2 3 1 0 0 0 0 0 0 0
e1 −1 −1 0 1 −1 0 0 0 0 0
h 4 6 0 0 1 0 1 0 0 0
f 6 9 0 0 0 1 1 1 0 0
l′ 4 6 0 0 0 0 0 0 1 1

Table 2. GLSM charges of the toric coordinates of the su(2)-enhanced E-string model on F1×P1
l′ .

B3 = F1 × P1
l′ , which is related to the base dP2 × P1

l′ discussed before in appendix B by a
simple blowdown. Hence

H1,1(B3) = Span
〈
l′, f, h

〉
, (C.1)

with triple intersections
I(B3) = l′(fh− h2) (C.2)

and anti-canonical class
K̄B3 = 2l′ + 3f + 2h . (C.3)

We construct an elliptic fibration Y4 with base B3 and design an SU(2) gauge symme-
try over the divisor b = h. The model is obtained as the resolution of an SU(2) Tate
model [159]. For a flat fibration Y4 over B3, one finds two phases that are related via a flop
transition. Both phases lead to the same elliptic genus and in the following we present our
analysis for just one phase of our choice. The GLSM data can be found in table 2. The
Mori cone is generated by the following curves,

l(1) = ( 1 1 0 −1 1 0 0 0 0 0),
l(2) = ( 0 0 −2 0 1 0 1 0 0 0),
l(3) = ( −1 0 1 3 −3 0 0 0 0 0),
l(4) = ( 0 0 −1 0 −1 1 0 1 0 0),
l(5) = ( 0 0 −2 0 0 0 0 0 1 1),

(C.4)

and the intersection polynomial reads

I(Y4) = 3576J1
4 + 324J1

3J2 + 18J1
2J2

2 + 1236J1
3J3 + 108J1

2J2J3 + 6J1J2
2J3

+ 424J1
2J3

2 + 36J1J2J3
2 + 2J2

2J3
2 + 144J1J3

3 + 12J2J3
3 + 48J3

4 + 188J1
3J4

+ 18J1
2J2J4 + 68J1

2J3J4 + 6J1J2J3J4 + 24J1J3
2J4 + 2J2J3

2J4 + 8J3
3J4

+ 200J1
3J5 + 27J1

2J2J5 + 3J1J2
2J5 + 70J1

2J3J5 + 9J1J2J3J5 + J2
2J3J5 (C.5)

+ 24J1J3
2J5 + 3J2J3

2J5 + 8J3
3J5 + 16J1

2J4J5 + 3J1J2J4J5 + 6J1J3J4J5

+ J2J3J4J5 + 2J3
2J4J5 ,

where Ja are the Kahler cone generators. As a basis of H1,1(B3), we can pick

D1 = νz1 = J4,

D2 = νz2 = J2,

D3 = νz4 = J5.

(C.6)
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In terms of these, we take b = D2 − D1, and furthermore the zero-section of the elliptic
fibration and the exceptional divisor for the U(1) ⊂ SU(2) subgroup are

Z = −2J2 + J3 − J4 − 2J5,

e1 = −J1 + 3J3 .
(C.7)

Matter of U(1) charge r = 1 arises from an M2-brane wrapping the fibral curve C f
r=1 = l(1).

The latter has the following intersection numbers

Z ◦ C f
r=1 = 0 , (−e1) ◦ C f

r=1 = 1 . (C.8)

The U(1) ⊂ SU(2) flux is then of the form

G = π∗F ∧ (−e1) , F = c1D1 + c2D2 + c3D3 . (C.9)

The four-dimensional non-critical E-string in question arises as soliton from a D3-brane
that wraps the curve CE = l(4). By mirror symmetry we find that the first terms in the
expansion of its elliptic genus

ZCE ;G(q, ξ) = −q−1/2∑
n,r

NCE ;G(n, r)qnξr (C.10)

are given by

q1/2 ZCE ;G(q, ξ) = q[c1(16ξ−2 − 160ξ−1 + 768− 2400ξ + 5616ξ − 10752ξ3 + 17920ξ4

−27136ξ5 + 38400ξ6 − 51712ξ7 + 67072ξ8 + · · · )
+c3(6ξ−2 − 40ξ−1 − 472ξ + 2042ξ2 − 4608ξ3 + 8192ξ4 − 12800ξ5

+18432ξ6 − 25088ξ7 + 32768ξ8 + · · · )]
+q2[c1(48ξ−4 − 640ξ−3 + 3936ξ−2 − 15360ξ−1 + 44032− 101376ξ

+198816ξ2 − 345472ξ3 + 546768ξ4 − 804864ξ5 + 1120256ξ6 + · · · )
+c3(20ξ−4 − 240ξ−3 + 1188ξ−2 − 2640ξ−1 − 11696ξ + 56156ξ2

−128784ξ3 + 229356ξ4 − 358400ξ5 + 516096ξ6 + · · · )]
+q3[c1(96ξ−6 − 1440ξ−5 + 10272ξ−4 − 47040ξ−3 + 158592ξ−2

−427872ξ−1 + 975360− 1946784ξ + 3487872ξ2 + · · · )
+c3(42ξ−6 − 600ξ−5 + 3960ξ−4 − 15840ξ−3 + 40854ξ−2 − 57432ξ−1

−154536ξ + 807018ξ2 + · · · )]
+q4[c1(160ξ−8 − 2560ξ−7 + 19776ξ−6 − 99840ξ−5 + 376480ξ−4

−1146240ξ−3 + 2958848ξ−2 − 6680192ξ−1 + 13473792 + · · · )
+c3(72ξ−8 − 1120ξ−7 + 8316ξ−6 − 39600ξ−5 + 136180ξ−4

−353808ξ−3 + 671876ξ−2 − 740096ξ−1 + · · · )]
+O(q5) .

(C.11)
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We can interpret the elliptic genus as the derivative of a formal six-dimensional elliptic
genus, possibly augmented by a genuinely four-dimensional piece. The curve CE is trivially
fibered over the P1

l′ factor in B3, thereby tracing out the divisor DE = h = D2−D1 within
B3. This suggests that we should consider the E-string within the threefold defined by

Y3 = Y4|π∗(l′) , (C.12)

where the divisor l′ = D3 cuts out the Hirzebruch surface F1 of B3.
The relative BPS invariants for CE on Y3 can be computed via mirror symmetry as

well and be packaged into the partition function

Z−2,m(q, ξ) = −q−1/2

−
(
3ξ−2 − 40ξ−1 + 198 + 472ξ − 1021ξ2 + 1536ξ3 − 2048ξ4 + 2560ξ5

−3072ξ6 + · · ·
)
q1/2

−(5ξ−4 − 80ξ−3 + 594ξ−2 − 2640ξ−1 + 5788 + 11696ξ − 28078ξ2 + · · · )q3/2

−(7ξ−6 − 120ξ−5 + 990ξ−4 − 5280ξ−3 + 20427ξ−2 + · · · )q5/2 +
−(9ξ−8 − 160ξ−7 + 1386ξ−6 + · · · )q7/2 +O(q9/2) . (C.13)

This can be recognised as the series expansion in q = e2πiτ and ξ = e2πiz of the following
meromorphic Jacobi form of weight w = −2 and U(1) fugacity index m = −1:

Z−2,−1(τ, z) = − 1
η(τ)12

4∑
i=2

θi(0, τ)10

θi(2z, τ)2 . (C.14)

As discussed in section 6.1.2, this has the interpretation as the elliptic genus of an instanton
string of the six-dimensional SCFT with SU(2) gauge symmetry.

D Non-critical string for B3 = P3

In this appendix we provide some of the technical details that underlie the example of
section 6.2. It is devoted to a non-critical string obtained by wrapping a D3-brane on the
curve Cb = H ·H on the base B3 = P3 of an elliptic fibration.

The model without U(1) gauge symmetry has been discussed in much detail in [75–
77]. Here we consider an extension of this model in order to support a transversal flux
in conjunction with a chiral U(1) gauge symmetry, which allows for a nontrivial elliptic
genus. For this we implement the gauge symmetry associated with the height-pairing given
by b = 2K̄B3 = 8H. The fourfold Y4 we thus consider is characterized by the Mori vectors

l(1) = ( −1, −1, 0, 0, 0, 0, 0, 1, 1),
l(2) = ( −2, 2, 1, 0, 0, 0, 0, 0, −1),
l(3) = ( 0, 0, 0, 1, 1, 1, 1, 0, −4) .

(D.1)

The intersection polynomial, in terms of the dual basis of Kähler cone generators, reads

I(Y4) = 1984J1
4 + 512J1

2J2
2 + 128J2

4 + 28J1
2J3

2 + 8J2
2J3

2 + 256J2
3J1 + 3J3

3J1

+ 1024J1
3J2 + 2J3

3J2 + 16J3
2J1J2 + 240J1

3J3 + 32J2
3J3 + 64J2

2J1J3 (D.2)
+128J1

2J2J3 .
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Moreover we define the following curve classes

Cb = l(3) (D.3)
Eτ = 3l(1) + 2l(2)

C f = l(1) + l(2) ,

and determine the BPS invariants, NG;Cb(n, r), for the curves of the form

C = Cb + nEτ + C f
r , (D.4)

with respect to fluxes G ∈ H2,2
vert(Y4). As a basis of fluxes we pick

GU(1) = σ ∧ π∗(F ) with F = cH ,

= 1
1441

[
−156

(
4J1

2 + J1J3
)

+ 115
(
4J2

2 + 8J1J2 − 2J1J3 + J2J3
)]

,

GH = π∗(H) ∧ π∗(H) = J3
2 , (D.5)

G0 = −8J3
2 + 1

1441
[
316

(
4J1

2 + J1J3
)
− 196

(
4J2

2 + 8J1J2 − 2J1J3 + J2J3
)]

.

Above, H denotes the hyperplane class on P3 and c a numerical constant. Moreover, as
always, σ denotes the Shioda map associated with the U(1) symmetry. This basis leads to
a convenient block-diagonal intersection form on H2,2

vert(Y4) given by

Ω =

−8c2 0 0
0 0 4
0 4 0

 . (D.6)

We now perform a standard mirror symmetry computation to obtain the Gromov-Witten
invariants and assemble them, for each of the above fluxes, into the following partition
function24

ZG;Cb(q, ξ) := − 1
q2

∑
NG;Cb(n, r)qnξr . (D.7)

The fluxes GH and G0 are the fluxes considered in [76, 77] and are associated with mero-
morphic modular forms of weight w = −2 and w = 0, respectively. These are non-
transversal fluxes which do not admit a lift to four-dimensional F-theory. On the other
hand, the transversal flux GU(1) leads to the U(1)-refined elliptic genus we are interested
in, with modular weight w = −1.

In terms of ξ±r = ξr + ξ−r, ξ±r̄ = ξr − ξ−r, the first few terms of the expansions take
the form

1
c
ZGU(1);Cb(q, ξ) = −1152

q
ξ±1̄ + 576

(
380ξ±1̄ + 127ξ±2̄

)
(D.8)

−384q
(
90633ξ±1̄ + 53472ξ±2̄ + 7825ξ±3̄

)
+ . . .

ZGH ;Cb((q, ξ) = 20
q2 −

1536
q

(3 + ξ±1) + 192
(
4161 + 2264ξ±1 + 343ξ±2

)
(D.9)

−1024q
(
99294 + 65817ξ±1 + 18666ξ±2 + 1805ξ±3

)
+ . . .

24We have factored out 1/q2 in order to account for the vacuum energy of the string.
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ZG0;Cb(q, ξ) = −160
q2 + 7680

q
(3 + ξ±1)− 768

(
4179 + 2248ξ±1 + 305ξ±2

)
(D.10)

+512q
(
393396 + 257535ξ±1 + 68112ξ±2 + 5405ξ±3

)
+ . . .

Matching against Ansaetze of Jacobi forms yields an overdetermined system of equations,
and in this way we find the following closed expression for the weight w = −2 flux:

ZGH ;Cb(q, ξ) = 4
124η48

[
− 5

72
(
35E4

4E6 + 37E4E
3
6

)
φ4

0,1

− 1
432

(
835E6

4E6 + 1252E3
4E

3
6 + 73E5

6

)
φ4
−2,1

+ 1
864

(
2173E7

4 + 12406E4
4E

2
6 + 2701E4E

4
6

)
φ3
−2,1φ0,1

− 1
12
(
191E5

4E6 + 169E2
4E

3
6

)
φ2
−2,1φ

2
0,1 (D.11)

+ 1
864

(
2281E6

4 + 13342E3
4E

2
6 + 1657E4

6

)
φ−2,1φ

3
0,1

]
.

Moreover we find for the elliptic genus:

ZGU(1);Cb(q, ξ) = (F · Cb)Z−1,4(q, ξ) + 1
8(F · b ·H)ξ∂ξZ−2,4(q, ξ), (D.12)

where

Z−2,4(q, ξ) = ZGH ;Cb(q, ξ) (D.13)

and

Z−1,4(q, ξ) = 1
124η48 φ−1,2

[
64E2

4E6
(
E3

4 − E2
6

)
φ−2,1φ0,1

+1
6
(
134E4

4E
2
6 + 29E4E

4
6 − 163E7

4

)
φ2
−2,1 (D.14)

− 1
6
(
13E6

4 + 166E3
4E

2
6 − 179E4

6

)
φ2

0,1

]
are weak Jacobi forms. In (D.12) we used the fact that F · Cb = c and F · b ·H = 8c. No-
tably, (D.13) states that the very same function Z−2,4(q, ξ) figures both as generating func-
tion ZGH ;Cb(q, ξ) for the (−2)-flux, and in the derivative part of the elliptic genus (D.12)
associated with the transversal flux GU(1). This confirms again our expectations.
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