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At high energy hadron colliders, particles are produced in fundamental collisions of
internal partons in the beam projectiles. The underlying parton densities are described
by parton distribution functions (PDFs). The associated production of multiple heavy-
flavor hadrons can be generated from a single parton scattering (SPS) or multiple parton
scatterings. The latter is necessary for the successful description of large charged-track
multiplicities and event-activity-dependent heavy-flavor production [1–4]. In a simple
model, assuming that the PDFs of two partons in the same projectile are independent,
the associated production cross-section of final-state particles A and B from two separate
partonic interactions, i.e. a double parton scattering (DPS) process, is related to the
inclusive production cross-section of A and B, σA and σB, as [5–14],

σABDPS =
1

1 + δAB

σAσB

σeff

. (1)

Here, δAB = 1 if A and B are identical and is zero otherwise, and σeff is the so-called
effective cross-section. The parameter σeff is related to the collision geometry and is
expected to be independent of the final state [15–17].

The production of two open charm hadrons, D1D2, and J/ψD meson pairs is of
particular interest in the study of SPS and DPS processes. In this Letter, D and D1,2 refer
to either a D0, D+ or D+

s meson and the inclusion of charge conjugate states is implied.
Both like-sign (LS) and opposite-sign (OS) open charm hadron pairs are considered. In
an LS pair the two hadrons have the same charm-quark flavor, while in an OS pair they
have opposite charm flavors. Opposite-sign pairs can be produced from a cc pair via
SPS, thus the kinematics of the two hadrons are correlated. This correlation may be
modified in heavy-ion data compared to proton-proton (pp) collisions, due to nuclear
matter effects [18–25]. The OS correlation is predicted to be sensitive to the properties of
the hot medium formed in ultra-relativistic heavy nucleus-nucleus collisions [26–36].

The two hadrons in an LS pair produced in a DPS process are expected to be
uncorrelated. Studies of LS pair production and correlation in different environments help
to test the universality of the parameter σeff and gain insight into the underlying parton
correlations. The ratio of DPS to SPS cross-sections in proton-lead (p-Pb) collisions is
estimated to be about three times larger than in pp collisions [10, 37–43]. Since DPS
production involves two parton pairs, it is very sensitive to the nuclear PDF (nPDF),
including its possible dependence on the position inside the Pb nucleus [44].

Production of OS charm and beauty pairs has been studied in fully reconstructed
decays [45–49] and using partially reconstructed decays [50–57], and the hadron and
anti-hadron are found to be correlated; in particular, the azimuthal angle, ∆φ, between
the two hadron directions projected to the plane transverse to the beam line favors values
close to ∆φ = 0 or π. Production of LS charm pairs, double quarkonium and multiple jets
at the Tevatron and the LHC revealed evidence of DPS signals [49,58–66]. The effective
cross-section is measured to be in the range of 10 to 20 mb for most final states, however,
a value as low as 5 mb is extracted using double quarkonium production [67–69]. More
measurements are required to resolve this puzzle.

This Letter presents the first measurement of charm pair production in p-Pb collisions
at a nucleon-nucleon center-of-mass energy of

√
sNN = 8.16 TeV. The data were collected

with the LHCb experiment at a low interaction rate in two distinct beam configurations. In
the pPb configuration, particles produced in the direction of the proton beam are analysed,
while in the Pbp configuration particles are analysed in the Pb beam direction. The pPb
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(Pbp) data correspond to an integrated luminosity of 12.2 ± 0.3 nb−1 (18.6 ± 0.5 nb−1).
The detector coordinate system is defined to have the z-axis aligned with the proton beam
direction. In the following, particle rapidities (y) are defined in the nucleon-nucleon rest
frame.

The LHCb detector is a single-arm forward spectrometer described in detail in
Refs. [70, 71]. The online event selection is performed by a trigger, which consists of
a hardware stage, based on information from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruction. Charm hadrons (Hc ≡
D0, D+, D+

s , J/ψ) are reconstructed online via the decays D0→ K−π+, D+→ K−π+π+,
D+
s → K−K+π+ and J/ψ→ µ+µ−. The data samples are selected by the hardware trigger

based on the calorimeter activity for D candidates and based on the muon system for J/ψ
candidates. Candidate pairs are formed by D0D0, D0D0 and D+D± combinations (same
species), and D0D±, D0D±

s , D+D±
s and J/ψD0,+ combinations (different species). Other

charm pairs are not considered due to their limited yield in the data. The tracks used to
reconstruct the D mesons are required to be positively identified as kaons or pions and
must be separated from every primary p-Pb collision vertex (PV). These tracks are also
required to have transverse momentum pT > 250 MeV/c and at least one track must have
pT > 500 MeV/c (pT > 1000 MeV/c) for D0 (D+, D+

s ) final states. The tracks are required
to form a vertex of good quality that is separated from every PV. The reconstructed D
mesons are required to be consistent with originating from a PV, which favors prompt
production over mesons from beauty-hadron decays (denoted as charm-from-b). The two
muons used to reconstruct J/ψ candidates are required to have pT > 500 MeV/c and form
a good-quality vertex.

In the offline selection, kaons and pions are required to have momentum p > 3 GeV/c,
and muons to have p > 6 GeV/c, pT > 750 MeV/c and be positively identified by using
information from all subdetectors [72, 73]. The K−K+ invariant mass from the D+

s →
K−K+π+ decay is required to be within ±20 MeV/c2 of the known φ(1020) mass [74].
A kinematic fit is performed on each charm hadron and on the pair, constraining them
to originate from a PV. Requirements on the fit qualities strongly reduce charm-from-b
contributions but retain more than 99% of prompt pairs.

Results are obtained in a charm-hadron kinematic region pT(Hc) < 12 GeV/c and
1.7 < y(Hc) < 3.7 (−4.7 < y(Hc) < −2.7) for pPb (Pbp) data. For D+ and D+

s mesons
the requirement pT(Hc) > 2 GeV/c is applied due to extremely small yields at lower pT.
Total cross-sections of D0D0, D0D0 and J/ψD0 pair production are also evaluated in the
full LHCb rapidity acceptance, 1.5 < y(Hc) < 4 (−5 < y(Hc) < −2.5) for pPb (Pbp) data,
in order to compare with single charm production [75,76].

The cross-section for a charm pair is calculated as σ = N corr/(L × B1 × B2), where
L is the integrated luminosity, and N corr is the signal yield after efficiency correction
and the subtraction of charm-from-b background. The branching fractions of the two
charm-hadron decays, B1,2, are taken from Ref. [74] for the D0, D+, J/ψ decays, and
B(D+

s → (K+K−)φπ
+) = (2.24 ± 0.13)% from Refs. [77, 78]. The raw signal yield is

determined from an unbinned maximum likelihood fit to the distribution of the invariant
masses, m1 and m2, of the two charm hadrons. The two-dimensional probability densities
comprise four components: signal-signal, background-background, signal-background
and background-signal for the first-second charm hadron in a pair. The background
is mainly from random combinations of tracks. The signal component for each charm
hadron is described by the sum of a Gaussian and a Crystal Ball function (CB) [79]
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Figure 1: (Left) Two-dimensional invariant-mass distributions of (m1,m2) for D0D0 pairs and
the projections on (middle) m1 and (right) m2 with the fit results superimposed. Shown in
the projection plots are (points with bars) pPb data, (solid blue) the total fit and its four
components.

and the background component by an exponential function. The distribution for pairs
of same-species hadrons is constructed to be independent of the ordering of m1 and m2.
As an example, the (m1,m2) distribution for D0D0 candidates and its projection on m1

and m2 are are shown in Fig. 1 for pPb data, with the fit projections overlaid. More
distributions are shown in the Supplemental Material. The raw signal yield is between
100 and 4000 for all hadron pairs considered.

The total detection efficiency for each individual charm hadron is evaluated from
simulated signal decays, properly corrected using control samples of p-Pb collisions. These
control samples are used to calibrate track finding and particle identification (PID)
efficiencies [80]. In the simulation, minimum-bias p-Pb collisions are produced using the
EPOS generator [81] according to beam configurations of the data. Charm hadrons are
generated in pp collisions at

√
s = 8.16 TeV using Pythia8 [82,83] and are embedded into

EPOS minimum-bias events. Particle decays are described by EvtGen [84], while the
particle interaction with the detector, and its response, are implemented using the Geant4
toolkit [85] as described in Ref. [86]. The track finding efficiency in data and simulation is
studied with a tag-and-probe method using J/ψ → µ+µ− decays [87]. Similarly, the PID
efficiency is measured using large control samples of D0 → K−π+ and J/ψ → µ+µ− decays
for K−, π+ and µ− tracks, in bins of track momentum and pseudorapidity (p, η). The
average charged-track multiplicity in OS data is similar to the one in the control samples,
while for LS data it is about 13% higher, which is consistent with a larger contribution
of multiple parton scattering in LS data [1–4]. The corresponding difference in detector
occupancy results in different detection efficiencies in LS and OS data, which is evaluated
in control samples. Efficiencies from control samples are combined with simulation to
obtain the efficiency for each charm hadron as a function of pT and y, ε(pT, y), which is

used to determine the efficiency corrected signal yield
∑

i
wi

ε1(piT,y
i)ε2(piT,y

i)
. Here wi is the

signal sPlot weight [88] used to remove the contribution of background and is obtained
from the fit to the invariant-mass distribution, and ε1,2(piT, y

i) is the efficiency for the first
and second hadron in the ith candidate pair in data. The signal yield is then corrected for
the charm-from-b contamination, which is estimated to be less than 1% for open charm
pairs and (4± 2)% ((3.0± 1.5)%) for J/ψD pairs in pPb (Pbp) data.

Several sources of systematic uncertainties are investigated. The variation of the
signal yield is studied with fits to the invariant-mass distribution using a different signal
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or background model. A maximum relative variation of 2% is obtained on the signal
yield. The dominant systematic uncertainty arises from the limited control sample size to
determine the track finding efficiency, which is on average about 5% (10%) per track in
pPb (Pbp) data. An uncertainty of 2% per hadron track is introduced to account for the
loss of particles due to interactions with the detector material. Due to the small sample
size and the choice of (p, η) binning for each track, the PID efficiencies obtained from
control samples introduce an uncertainty of less than 1% on the total efficiency of each
charm hadron. Other contributions include the uncertainty on the total efficiency due to
the size of the simulation sample, the uncertainty on the charm decay branching fractions,
the uncertainty on the luminosity measurements and on the charm-from-b fraction. These
uncertainties are propagated to the cross-section measurements.

Total cross-sections are determined for all charm pairs. Results are detailed in the
Supplemental Material. For LS open charm pairs, the measurements are in good agreement
with theoretical calculations including both SPS and DPS production [42]. The J/ψD0

cross-section is found to be generally higher than SPS production, calculated using the
weighted EPPS16 nPDF [89–92].

Prompt single charm cross-sections in pPb data were measured to be smaller than those
of Pbp data [76,93], which is explained by modifications of the nPDF. The same effect
would result in even stronger suppression of DPS production in pPb compared to Pbp
data due to the participation of two pairs of partons. For charm pairs, the cross-section
ratio between pPb and Pbp data, the forward-backward ratio (RFB), is determined for
2.7 < |y(Hc)| < 3.7, pT(Hc) > 2 GeV/c, to be 0.40 ± 0.05 ± 0.10 (0.61 ± 0.04 ± 0.12)
averaged over LS (OS) open charm pairs, and is 0.26 ± 0.06 ± 0.04 for J/ψD pairs. Here
and in the following, the first uncertainty is statistical and the second is systematic. The
results indicate reduced production in pPb compared to Pbp data for both LS and OS pairs.
The RFB of OS production is compatible with that of prompt D0 mesons [76,93], while
that of LS production is smaller. The ratio between the RFB of LS and OS production,
0.66 ± 0.09 ± 0.03, is in good agreement with the RFB of OS data and the RFB of prompt
D0 production. The measurements favor the interpretation of LS production via DPS.

The LS over OS cross-section ratio, RD1D2 ≡ σD1D2/σD1D2 , is determined for all
studied D1D2 pairs under the pT(D) > 2 GeV/c requirement, giving an average value of
0.308± 0.015± 0.010 and 0.391± 0.019± 0.025 for pPb and Pbp data respectively. The
measurements agree with the calculations in Ref. [42] of 0.57+0.16

−0.41 (pPb) and 0.52+0.17
−0.38 (Pbp),

and are significantly larger than that in pp collisions where RD0D0
= 0.109± 0.008 [49],

indicating an enhancement of LS pair production over OS pairs in p-Pb collisions. The
differential results as a function of y(Hc) is shown in the Supplemental Material.

The correlations of kinematics between the two charm hadrons in a pair are investigated
from the distributions of the two-charm invariant mass (mDD) and their relative azimuthal
angle ∆φ. The differential cross-section for each variable is normalized by the total
cross-section, such that the largest systematic uncertainty, the one from the track finding
efficiency, almost completely cancels. As examples, in Fig. 2, the mDD distribution is
shown for D0D0 and D0D0 pairs without any requirement on pT(D). The difference
between D0D0 and D0D0 pairs is determined to be more than three (two) standard
deviations in pPb (Pbp) data, studied using a χ2 test. For both D0D0 and D0D0 pairs,
the mDD distribution is compatible between pPb and Pbp data. The D0D0 pair shows
a similar mDD distribution to that of the Pythia8 simulation, in which the fraction of
inclusive charm production that contains more than one charm pair within the LHCb
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Figure 2: Two-charm hadron invariant-mass distribution of (red) D0D0 and (blue) D0D0 pairs
in (left) pPb, (right) Pbp data and (magenta dashed line) Pythia8 simulation. Vertical bars
(filled box) are statistical (systematic) uncertainties.

acceptance is about 7%.
The ∆φ distribution is shown in Fig. 3 for D0D0 and D0D0 pairs with and without

the requirement pT(D0) > 2 GeV/c. Without this condition, the ∆φ distribution is almost
uniform for both LS and OS pairs, similar to that in Pythia8 simulation. However,
with the pT(D0) > 2 GeV/c requirement, the D0D0 pair favors values ∆φ ∼ 0, while that
of D0D0 pairs is still compatible with being flat, and both show inconsistency with the
Pythia8 simulation. In general, the behaviour that mDD distribution in D0D0 pairs peaks
at higher values compared to that of D0D0 pairs and the flat D0D0 ∆φ distribution are
qualitatively consistent with a large DPS contribution in LS pair production. Distributions
of the pair transverse momentum and the two-charm relative rapidity are found to be
compatible in OS data, LS data and the Pythia8 simulation.

The effective cross-section σeff, pPb is calculated according to Eq. 1 using the D0D0

and J/ψD0 cross-sections [6], assuming solely DPS production, where the prompt J/ψ
and D0 production are evaluated from LHCb measurements [75, 76]. The results are
displayed in Table 1 with a typical value of order 1 b. The σeff, pPb measurement is about
a factor of three smaller than the one obtained by the scaling the σeff, pp result [78]
by the Pb nucleus mass number 208, under the assumption that there is no nuclear
modification for DPS production, which is shown in Table 1 as pp extrapolation. The
result confirms the expectation that DPS production in p-Pb collisions is enhanced by a
factor of three [10, 37–42]. The σeff, pPb value measured using J/ψD0 production is smaller
than that observed in D0D0 production, as measured in pp data [78], which could be due

Table 1: The effective cross-section σeff, pPb (in b) measured using J/ψD0 and D0D0 pair
production in p-Pb data and the extrapolated values from pp data [78].

Pairs −5 < y(Hc) < −2.5 1.5 < y(Hc) < 4 pp extrapolation
D0D0 0.99± 0.09± 0.09 1.41± 0.11± 0.10 4.3± 0.5
J/ψD0 0.64± 0.10± 0.06 0.92± 0.22± 0.06 3.1± 0.3
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Figure 3: The ∆φ distribution for (red) D0D0 and (blue) D0D0 pairs in (left) pPb, (right)
Pbp data and the (magenta dashed line) Pythia8 simulation, (bottom) with and (top) with-
out the pT(D0) > 2 GeV/c requirement. Vertical bars (filled box) are statistical (systematic)
uncertainties.

to SPS contamination [94] or DPS enhancement in J/ψD0 production. The pPb data
shows a higher σeff, pPb value compared to Pbp data, suggesting a different level of DPS
enhancement when comparing pPb and Pbp data.

The nuclear modification factor, R ≡ σpPb

208σpp
, is measured for J/ψD0 and D0D0 pairs

with RHcH′
c = RHc ×RH′

c × 208σeff, pp

σeff, pPb
, where σpPb and σpp are the cross-sections of charm

pairs in p-Pb and pp collisions, respectively. Assuming variations of R and σeff, pp as a
function of collision energy are small for pT-integrated production, using measurements of
σeff, pp [49], RJ/ψ [75] and RD0

[93], RD0D0
= 1.3± 0.2 (4.2± 0.8) and RJ/ψD0

= 1.5± 0.5
(4.6± 1.3) for pPb (Pbp) data are obtained, where the uncertainties are the total. The
results are about a factor of three larger compared to that of single J/ψ or D0 hadron
production [75,93].

To summarise, the production of LS and OS open charm hadron pairs as well as
J/ψD pairs are studied in p-Pb collisions at

√
sNN = 8.16 TeV using fully reconstructed

decays. The cross-section ratio between LS and OS pairs is found to be a factor of three
higher than that in pp data. The forward-backward ratio of OS pairs is compatible with
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single charm production, while a smaller value is found for LS pairs. Distributions of
the two-charm invariant mass and relative azimuthal angle show a difference between
LS and OS pairs, and the LS pairs exhibit a flat relative azimuthal angle distribution
independent of charm hadron pT. The measured effective cross-sections of J/ψD0 and
D0D0 pairs are significantly different from values scaled from pp collisions assuming no
nuclear modification. The effective cross-section and nuclear modification factor for J/ψD0

and D0D0 are in general compatible with the expected enhancement factor of three for
DPS production. The findings indicate the first direct observation of enhanced double
parton scattering for charm production in p-Pb data. The σeff, pPb result is different
between pPb and Pbp data and between J/ψD0 and D0D0 pairs may suggest additional
effects not considered yet, which deserve further investigation using future LHCb data
samples.
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Supplemental Material

Invariant mass distributions and fit projections

The invariant mass distributions and the fit projections are shown in Fig. 4 for D0D0

pairs in Pbp data, and in Figs. 5 and 6 for D0D0 and J/ψD0 pairs in both pPb and Pbp
data.
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Figure 4: (Left) Two-dimensional invariant-mass distributions of (m1,m2) for D0D0 pairs and
the projections on (middle) m1 and (right) m2 with the fit results superimposed. Shown in the
projection plots are (points with error bars) Pbp data, (solid blue) the total fit and the four fit
components.
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Figure 5: (Left) Two-dimensional invariant-mass distributions of (m1,m2) for D0D0 pairs and
the projections on (middle) m1 and (right) m2 with the fit results superimposed. Shown in the
projection plots are (points with error bars) data data, (solid blue) the total fit and the four fit
components. The plots in the top (bottom) row correspond to pPb (Pbp) data.
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Figure 6: (Left) Two-dimensional invariant-mass distributions of (m
J/ψ
1 ,mD0

2 ) for J/ψD0 pairs

and the projections on (middle) m
J/ψ
1 and (right) mD0

2 with the fit results superimposed. Shown
in the projection plots are (points with error bars) data data, (solid blue) the total fit and the
four fit components. The plots in the top (bottom) row correspond to pPb (Pbp) data.

Cross-sections and cross-section ratios

The total cross-sections measured in the reduced charm hadron rapidity (y(Hc)) range
1.7 < y(Hc) < 3.7 (−4.7 < y(Hc) < −2.7) for pPb (Pbp) are shown in Table 2 under the
requirement, pT > 0 GeV/c for J/ψ,D0 and pT > 2 GeV/c for D+, D+

s . The cross-section
of J/ψD0 pair production is compared with the theoretical calculation of SPS production
using the reweighted EPPS16 nuclear PDF [89–92]. Those with the additional requirement
pT(D0) > 2 GeV/c are shown in Table 3, and those in full rapidity acceptance for D0D0,
D0D0 and J/ψD0 pairs are shown in Table 4.

In Table 5 and Fig. 7, the ratio between cross-sections of like-sign and opposite-sign
pairs is shown in bins of charm hadron rapidity for pT(Hc) > 2 GeV/c.
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Table 2: Total cross-sections of charm pair production (in mb) in pPb and Pbp data for the pT

requirement on the charm hadron, pT > 0 GeV/c for J/ψ,D0 and pT > 2 GeV/c for D+, D+
s . The

rapidity range is for each charm hadron in the pair. The first uncertainty is statistical and the
second is systematic. The prediction of SPS J/ψD0 production calculated using the weighted
EPPS16 nuclear PDF [89–92] is also listed for comparison, where the first uncertainty is from
uncertainties of scales, feed-down contribution and model parameters, and the second due to
nuclear PDF uncertainties.

Quantity 1.7 < y(Hc) < 3.7 −4.7 < y(Hc) < −2.7
D0D0 11.0± 0.7± 1.2 16.5± 1.1± 3.5
D0D0 34.1± 1.2± 3.6 35.1± 1.3± 5.9
D0D+ 4.0± 0.3± 0.6 5.3± 0.4± 1.7
D0D− 12.7± 0.4± 1.7 11.6± 0.4± 2.8
D0D+

s 2.1± 0.6± 0.3 3.6± 0.7± 1.2
D0D−

s 5.4± 0.6± 0.8 7.1± 1.0± 1.8
D+D+ 0.46± 0.05± 0.09 0.53± 0.08± 0.24
D+D− 1.38± 0.07± 0.22 1.26± 0.08± 0.42
D+D−

s 1.43± 0.21± 0.25 1.32± 0.20± 0.44
D+D+

s 0.32± 0.12± 0.05 0.80± 0.27± 0.40
J/ψD0 0.46± 0.05± 0.04 0.57± 0.07± 0.09
J/ψD+ 0.08± 0.01± 0.01 0.10± 0.01± 0.02

J/ψD0 SPS [89–92] 0.051+0.467
−0.043

+0.009
−0.009 0.055+0.426

−0.053
+0.004
−0.003

Table 3: Total production cross-sections (in mb) of open charm pairs involving the D0 meson in
pPb and Pbp data with the pT(D0) > 2 GeV/c requirement. The rapidity range is for each charm
hadron in the pair. The first uncertainty is statistical and the second is systematic. Predictions
for the D0D0 and D0D0 cross-sections from Ref. [42] are given in the last two rows of the Table.

Pairs 1.7 < y(Hc) < 3.7 −4.7 < y(Hc) < −2.7
D0D0 2.36± 0.16± 0.24 2.28± 0.15± 0.33
D0D0 7.36± 0.28± 0.71 6.01± 0.24± 0.81
D0D+ 1.83± 0.12± 0.26 1.97± 0.13± 0.54
D0D− 6.27± 0.19± 0.82 5.06± 0.17± 1.07
D0D+

s 0.84± 0.19± 0.13 1.46± 0.50± 0.38
D0D−

s 3.03± 0.34± 0.45 2.38± 0.29± 0.50
J/ψD0 0.21± 0.02± 0.02 0.22± 0.02± 0.03

D0D0 [42] 3.62+5.92
−3.37 2.93+4.72

−2.69

D0D0 [42] 6.34+8.66
−4.79 5.59+7.41

−3.79
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Table 4: Total cross-sections (in mb) in pPb and Pbp data for full rapidity acceptance without
any pT(Hc) requirement. The first uncertainty is statistical and the second is systematic.

Pairs 1.5 < y(Hc) < 4 −5 < y(Hc) < −2.5
D0D0 14.72± 1.10± 2.25 24.05± 2.12± 5.19
D0D0 45.99± 2.09± 5.04 52.05± 2.40± 8.91
J/ψD0 0.51± 0.12± 0.05 0.82± 0.13± 0.14

Table 5: Ratios of differential cross-sections in bins of charm hadron rapidity for charm pT(Hc) >
2 GeV/c. The average over all the pairs in each rapidity interval is also presented.

Pairs −4.7 < y(Hc) < −3.7 −3.7 < y(Hc) < −2.7 1.7 < y(Hc) < 2.7 2.7 < y(Hc) < 3.7

D0D0/D0D0 0.286± 0.067± 0.011 0.363± 0.040± 0.009 0.305± 0.041± 0.009 0.335± 0.060± 0.012
D0D+/D0D− 0.239± 0.046± 0.017 0.387± 0.047± 0.026 0.259± 0.045± 0.010 0.256± 0.037± 0.009
D+D+/D+D− 0.300± 0.090± 0.037 0.518± 0.157± 0.079 0.332± 0.070± 0.018 0.266± 0.061± 0.012
D0D+

s /D
0D−

s 0.321± 0.260± 0.043 0.504± 0.172± 0.028 0.201± 0.096± 0.006 0.303± 0.139± 0.014
D+D+

s /D
+D−

s 0.291± 0.590± 0.080 0.582± 0.340± 0.113 0.143± 0.116± 0.009 0.234± 0.113± 0.013
Average 0.262± 0.035± 0.019 0.384± 0.029± 0.019 0.278± 0.026± 0.010 0.274± 0.027± 0.011

4− 2− 0 2 4
)D(y
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σ
R LHCb

 = 8.16 TeVNNs
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D0D(σ)/0D0D(σ
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    Average

Figure 7: Ratios of differential cross-sections in bins of charm hadron rapidity under the
pT(D) > 2 GeV/c requirement. The average over all the pairs listed in Table 5 for each rapidity
interval is also presented. The boxes (bars) correspond to systematic (statistical) uncertainties.
Points are shifted horizontally to improve visibility.

4



References

[1] H. Abramowicz et al., Summary of the workshop on multi-parton interactions
(MPI@LHC 2012), arXiv:1306.5413.

[2] ALICE collaboration, B. Abelev et al., J/ψ production as a function of charged
particle multiplicity in pp collisions at

√
s = 7 TeV, Phys. Lett. B712 (2012) 165,

arXiv:1202.2816.

[3] ALICE collaboration, S. Acharya et al., Measurement of electrons from heavy-flavour
hadron decays as a function of multiplicity in p-Pb collisions at

√
sNN = 5.02 TeV,

JHEP 02 (2020) 077, arXiv:1910.14399.

[4] P. Bartalini and J. R. Gaunt, Multiple parton interactions at the LHC, Adv. Ser.
Direct. High Energy Phys. 29 (2018) 1.

[5] CDF collaboration, F. Abe et al., Double parton scattering in p̄p collisions at
√
s =

1.8 TeV, Phys. Rev. D56 (1997) 3811.

[6] M. H. Seymour and A. Siodmok, Extracting σeffective from the LHCb double-charm
measurement, arXiv:1308.6749.

[7] J. R. Gaunt and W. J. Stirling, Double parton distributions incorporating perturbative
QCD evolution and momentum and quark number sum rules, JHEP 03 (2010) 005,
arXiv:0910.4347.

[8] J. R. Gaunt, C.-H. Kom, A. Kulesza, and W. J. Stirling, Same-sign W pair production
as a probe of double parton scattering at the LHC, Eur. Phys. J. C69 (2010) 53,
arXiv:1003.3953.

[9] C. H. Kom, A. Kulesza, and W. J. Stirling, Pair production of J/ψ as a probe of double
parton scattering at LHCb, Phys. Rev. Lett. 107 (2011) 082002, arXiv:1105.4186.

[10] M.  Luszczak, R. Maciu la, and A. Szczurek, Production of two cc̄ pairs in double-parton
scattering, Phys. Rev. D85 (2012) 094034, arXiv:1111.3255.

[11] S. P. Baranov, A. M. Snigirev, and N. P. Zotov, Double heavy meson production
through double parton scattering in hadronic collisions, Phys. Lett. B705 (2011) 116,
arXiv:1105.6276.

[12] P. Bartalini et al., Multi-parton interactions at the LHC, 2011, arXiv:1111.0469.

[13] J.-P. Lansberg, H.-S. Shao, N. Yamanaka, and Y.-J. Zhang, Prompt J/ψ-pair pro-
duction at the LHC: Impact of loop-induced contributions and of the colour-octet
mechanism, Eur. Phys. J. C79 (2019) 1006, arXiv:1906.10049.

[14] M. Alvioli, M. Azarkin, B. Blok, and M. Strikman, Revealing minijet dynamics via
centrality dependence of double parton interactions in proton-nucleus collisions, Eur.
Phys. J. C79 (2019) 482, arXiv:1901.11266.

[15] M. G. Ryskin and A. M. Snigirev, A fresh look at double parton scattering, Phys. Rev.
D83 (2011) 114047, arXiv:1103.3495.

5

http://arxiv.org/abs/1306.5413
https://doi.org/10.1016/j.physletb.2012.04.052
http://arxiv.org/abs/1202.2816
https://doi.org/10.1007/JHEP02(2020)077
http://arxiv.org/abs/1910.14399
https://doi.org/10.1142/10646
https://doi.org/10.1142/10646
https://doi.org/10.1103/PhysRevD.56.3811
http://arxiv.org/abs/1308.6749
https://doi.org/10.1007/JHEP03(2010)005
http://arxiv.org/abs/0910.4347
https://doi.org/10.1140/epjc/s10052-010-1362-y
http://arxiv.org/abs/1003.3953
https://doi.org/10.1103/PhysRevLett.107.082002
http://arxiv.org/abs/1105.4186
https://doi.org/10.1103/PhysRevD.85.094034
http://arxiv.org/abs/1111.3255
https://doi.org/10.1016/j.physletb.2011.09.106
http://arxiv.org/abs/1105.6276
http://arxiv.org/abs/1111.0469
https://doi.org/10.1140/epjc/s10052-019-7523-8
http://arxiv.org/abs/1906.10049
https://doi.org/10.1140/epjc/s10052-019-6998-7
https://doi.org/10.1140/epjc/s10052-019-6998-7
http://arxiv.org/abs/1901.11266
https://doi.org/10.1103/PhysRevD.83.114047
https://doi.org/10.1103/PhysRevD.83.114047
http://arxiv.org/abs/1103.3495


[16] D. Treleani, Double parton scattering, diffraction and effective cross section, Phys.
Rev. D76 (2007) 076006, arXiv:0708.2603.

[17] G. Calucci and D. Treleani, Proton structure in transverse space and the effective
cross-section, Phys. Rev. D60 (1999) 054023, arXiv:hep-ph/9902479.

[18] R. Vogt, Heavy flavor azimuthal correlations in cold nuclear matter, Phys. Rev. C98
(2018) 034907, arXiv:1806.01904.

[19] R. Vogt, bb kinematic correlations in cold nuclear matter, Phys. Rev. C101 (2020)
024910, arXiv:1908.05320.

[20] C. Marquet, C. Roiesnel, and P. Taels, Linearly polarized small-x gluons in forward
heavy-quark pair production, Phys. Rev. D97 (2018) 014004, arXiv:1710.05698.

[21] J. L. Albacete, G. Giacalone, C. Marquet, and M. Matas, Forward dihadron back-to-
back correlations in pA collisions, Phys. Rev. D99 (2019) 014002, arXiv:1805.05711.

[22] LHCb collaboration, LHCb measurement projections in proton-lead collisions during
Run 3 and 4, LHCb-CONF-2018-005, 2018.

[23] S. Shi, X. Dong, and M. Mustafa, A study of charm quark correlations in ultra-
relativistic p + p collisions with PYTHIA, arXiv:1507.00614.

[24] S. Cao, G.-Y. Qin, and S. A. Bass, Modeling of heavy-flavor pair correlations in
Au-Au collisions at 200A GeV at the BNL Relativistic Heavy Ion Collider, Phys. Rev.
C92 (2015) 054909, arXiv:1505.01869.

[25] X. Zhu et al., DD correlations as a sensitive probe for thermalization in high-energy
nuclear collisions, Phys. Lett. B647 (2007) 366, arXiv:hep-ph/0604178.

[26] T. Lang, H. van Hees, J. Steinheimer, and M. Bleicher, Dileptons from correlated D-
and D̄-meson decays in the invariant mass range of the QGP thermal radiation using
the UrQMD hybrid model, arXiv:1305.7377.

[27] H. He, Y. Liu, and P. Zhuang, Ωccc production in high energy nuclear collisions, Phys.
Lett. B746 (2015) 59, arXiv:1409.1009.

[28] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Hadronization in heavy ion
collisions: Recombination and fragmentation of partons, Phys. Rev. Lett. 90 (2003)
202303, arXiv:nucl-th/0301087.

[29] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Hadron production in heavy ion
collisions: Fragmentation and recombination from a dense parton phase, Phys. Rev.
C68 (2003) 044902, arXiv:nucl-th/0306027.

[30] J.-P. Blaizot, D. De Boni, P. Faccioli, and G. Garberoglio, Heavy quark bound states
in a quark–gluon plasma: Dissociation and recombination, Nucl. Phys. A946 (2016)
49, arXiv:1503.03857.

[31] S. Cho and S. H. Lee, Production of multicharmed hadrons by recombination in heavy
ion collisions, Phys. Rev. C101 (2020) 024902, arXiv:1907.12786.

6

https://doi.org/10.1103/PhysRevD.76.076006
https://doi.org/10.1103/PhysRevD.76.076006
http://arxiv.org/abs/0708.2603
https://doi.org/10.1103/PhysRevD.60.054023
http://arxiv.org/abs/hep-ph/9902479
https://doi.org/10.1103/PhysRevC.98.034907
https://doi.org/10.1103/PhysRevC.98.034907
http://arxiv.org/abs/1806.01904
https://doi.org/10.1103/PhysRevC.101.024910
https://doi.org/10.1103/PhysRevC.101.024910
http://arxiv.org/abs/1908.05320
https://doi.org/10.1103/PhysRevD.97.014004
http://arxiv.org/abs/1710.05698
https://doi.org/10.1103/PhysRevD.99.014002
http://arxiv.org/abs/1805.05711
http://cdsweb.cern.ch/search?p=LHCb-CONF-2018-005&f=reportnumber&action_search=Search&c=LHCb+Conference+Contributions
http://arxiv.org/abs/1507.00614
https://doi.org/10.1103/PhysRevC.92.054909
https://doi.org/10.1103/PhysRevC.92.054909
http://arxiv.org/abs/1505.01869
https://doi.org/10.1016/j.physletb.2007.01.072
http://arxiv.org/abs/hep-ph/0604178
http://arxiv.org/abs/1305.7377
https://doi.org/10.1016/j.physletb.2015.04.049
https://doi.org/10.1016/j.physletb.2015.04.049
http://arxiv.org/abs/1409.1009
https://doi.org/10.1103/PhysRevLett.90.202303
https://doi.org/10.1103/PhysRevLett.90.202303
http://arxiv.org/abs/nucl-th/0301087
https://doi.org/10.1103/PhysRevC.68.044902
https://doi.org/10.1103/PhysRevC.68.044902
http://arxiv.org/abs/nucl-th/0306027
https://doi.org/10.1016/j.nuclphysa.2015.10.011
https://doi.org/10.1016/j.nuclphysa.2015.10.011
http://arxiv.org/abs/1503.03857
https://doi.org/10.1103/PhysRevC.101.024902
http://arxiv.org/abs/1907.12786


[32] R. L. Thews, M. Schroedter, and J. Rafelski, Enhanced J/ψ production in deconfined
quark matter, Phys. Rev. C63 (2001) 054905, arXiv:hep-ph/0007323.

[33] A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Statistical hadronization
of charm in heavy ion collisions at SPS, RHIC and LHC, Phys. Lett. B571 (2003)
36, arXiv:nucl-th/0303036.

[34] V. Greco, C. M. Ko, and R. Rapp, Quark coalescence for charmed mesons in ultrarel-
ativistic heavy ion collisions, Phys. Lett. B595 (2004) 202, arXiv:nucl-th/0312100.

[35] ALICE collaboration, B. Abelev et al., J/ψ suppression at forward rapidity in
Pb-Pb collisions at

√
sNN = 2.76 TeV, Phys. Rev. Lett. 109 (2012) 072301,

arXiv:1202.1383.

[36] X. Yao and B. Müller, Quarkonium inside the quark-gluon plasma: Diffusion,
dissociation, recombination, and energy loss, Phys. Rev. D100 (2019) 014008,
arXiv:1811.09644.

[37] M. Strikman and D. Treleani, Measuring double parton distributions in nucleons at
proton nucleus colliders, Phys. Rev. Lett. 88 (2002) 031801, arXiv:hep-ph/0111468.

[38] D. d’Enterria and A. M. Snigirev, Same-sign WW production in proton-nucleus
collisions at the LHC as a signal for double parton scattering, Phys. Lett. B718
(2013) 1395, arXiv:1211.0197.

[39] S. Salvini, D. Treleani, and G. Calucci, Double parton scatterings in high-energy
proton-nucleus collisions and partonic correlations, Phys. Rev. D89 (2014) 016020,
arXiv:1309.6201.
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F.A. Garcia Rosales11, L. Garrido44, D. Gascon44, C. Gaspar47, R.E. Geertsema31, D. Gerick16,
L.L. Gerken14, E. Gersabeck61, M. Gersabeck61, T. Gershon55, D. Gerstel10, Ph. Ghez8,
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