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Abstract

Motivated by the recent excess in the electron recoil from XENON1T experiment, we
consider the possibility of exothermic dark matter, which is composed of two states
with mass splitting. The heavier state down-scatters off the electron into the lighter
state, making an appropriate recoil energy required for the Xenon excess even for the
standard Maxwellian velocity distribution of dark matter. Accordingly, we determine
the mass difference between two component states of dark matter to the peak electron
recoil energy at about 2.5 keV up to the detector resolution, accounting for the recoil
events over ER = 2 − 3 keV, which are most significant. We include the effects of the
phase-space enhancement and the atomic excitation factor to calculate the required
scattering cross section for the Xenon excess. We discuss the implications of dark
matter interactions in the effective theory for exothermic dark matter and a massive
Z ′ mediator and provide microscopic models realizing the required dark matter and
electron couplings to Z ′.
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1 Introduction

The nature of dark matter has been a long standing mystery for astrophysics and particle
physics. Weakly Interacting Massive Particles (WIMPs) have been searched for in various
direct detection, cosmic-ray as well as collider experiments, and the indirect probe or con-
straint from the early Universe and the intensity frontier has expanded the WIMP paradigm
beyond weak scale.

Quite recently, a tantalizing hint has been announced for the potential dark matter
signals from the electron recoil events in the recoil energy, ER = 1−10 keV, from XENON1T
experiment [1]. The origin of the Xenon excess has been pondered over by particle physicists
as seen from a lot of the already published articles on the arXiv for the last few days [2–6].
A simple explanation with the solar axion or the neutrino magnetic dipole moment has been
put forward from the XENON1T collaboration, but both cases are inconsistent with the
star cooling constraints, because the electron coupling to the axion or the neutrino magnetic
dipole moment required for the Xenon excess exceeds them by the order of magnitude [1].

In this article, we consider the possibility that exothermic dark matter transits from
the heavy state to the light state in the event of the scattering with the electron. This
possibility was already discussed in a different context in the literature with a motivation
to explain the annual modulation signal at DAMA/LIBRA [7]. In this scenario, the down-
scattering of dark matter makes the recoiled energy of the electron much larger than the one
inferred from the elastic scattering between the non-relativistic dark matter in the standard
halo model and the electron. We discuss the details of the kinematics of exothermic dark
matter and calculate the scattering cross section for the Xenon events by including the
phase-space enhancement for inelastic scattering and the atomic excitation factor for a small
momentum transfer between dark matter and electron. We infer the required scattering
cross section for dark matter as a function of dark matter mass at a fixed recoil energy near
ER = 2− 3 keV up to the detector resolution. We remark that there was a recent discussion
on the monochromatic electron recoil spectrum in the case of 3 → 2 inelastic scattering
between dark matter and electron [8].

We also provide the model-independent discussion with a massive Z ′ mediator on the
effective model parameters explaining the Xenon excess and the dark matter relic density.
We develop it for microscopic origins of the dark matter transition as well as the electron
coupling, based on the Z ′-portal and the vector–like lepton portal.

A similar idea has been discussed in Ref. [5] while this article is being finalized. Our
results agree with theirs and complement with the detailed dynamics of exothermic dark
matter such as the phase-space enhancement, the constraints from dark matter relic density,
and concrete microscopic models realizing the scenario.
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2 Exothermic dark matter and electron recoil

In this section, we begin with the kinematics for exothermic dark matter in the case of down-
scattering off the electron. Then, we calculate the event rate for the electron recoil in the
Xenon atoms by including the phase-space enhancement and the atomic excitation factor.

2.1 Kinematics for exothermic dark matter

We first consider the inelastic scattering between dark matter and electron, χ1e → χ2e,
where two dark fermions, χ1 and χ2, have a small mass difference, ∆m = mχ1 −mχ2 > 0,
which is the exothermal condition for the transition in the dark matter states. We assume
that only χ1 or both χ1 and χ2 account for the observed relic density for dark matter. The
up-scattering process, χ2e → χ1e, is also possible if kinematically allowed in the tail of the
dark matter velocity distribution, for instance, at v ∼ 0.1 for ∆m ∼ keV. But, we regard
the up-scattering process as being effectively forbidden for the standard halo model. Thus,
we focus on the down-scattering process, χ1e→ χ2e, in the following discussion.

The electrons bound to Xenon atoms need the ionization energy to be excited to free
electrons, and they carry a nonzero velocity, ve ∼ Zeffα ∼ 10−2, where Zeff = 1 for outer
shell electrons and it is larger for inner shells. Moreover, since electrons are bound to the
atom, the entire atom recoils. In this case, the energy transferred to the electron can be
obtained in terms of the energy lost in the dark matter and the nuclear recoil energy [9], as
follows,

∆Ee = −∆EDM −∆EN

= ∆m

(
1− 1

2

(mχ1

mχ2

)
v2

)
+
mχ1

mχ2

~q · ~v − ~q2

2µχ2N

= ∆m

(
1− 1

2

(mχ1

mχ2

)
v2

)
− 1

2µχ2N

(
~q − mχ1

mχ2

µχ2N ~v

)2

≤ ∆m

(
1− 1

2

(mχ1

mχ2

)
v2

)
+

1

2
µχ2N

(mχ1

mχ2

)2

v2 (2.1)

where µχ2N is the reduced mass for dark matter χ2 and the nucleus, µχ2N = mχ2mN/(mχ2 +
mN). Thus, the electron recoil energy is maximized if ~q =

mχ1

mχ2
µχ2N ~v. Due to the bound

electrons, the recoil energy of the ionized electron is given by ER = ∆Ee − EBi where EBi
is the binding energy of the electron. We note that there is a crucial difference from the
elastic scattering, in that the upper bound on the electron energy is increased by the mass
difference between dark matter components.

For ∆m = 0, the typical momentum transfer in the elastic scattering between dark
matter and electron is given by qtyp ∼ µχevrel ∼ meve ∼ Zeff (4 keV) for mχ & 1 MeV.
But, for ∆m 6= 0, the approximate momentum transfer given by eq.(2.12) becomes almost
independent of the velocity and q2 ∼ me∆m � q2

typ ∼ m2
ev

2
e for ∆m � mev

2
e ∼ 0.05 keV.

Then, we can also ignore the nuclear recoil energy in the above formula (2.1), because

∆EN = ~q2

2µχ2N
∼ me

mχ2
(∆m)� ∆m for me � mχ2 < mN .
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In the following discussion, we include a nonzero velocity of electron in the lab frame and
ignore the nuclear recoil effects to show the salient effect of the mass splitting for the electron
recoil energy. We take the electron and dark matter χ1 to have nonzero velocities in the lab
frame, ve and v, respectively, then their initial kinetic energies are given by Ee = 1

2
mev

2
e and

E0 = 1
2
mχ1v

2. From the energy conservation, the total energy after scattering satisfies the
following relation,

mχ2 +
p2

2M2

+
p2

cm

2µ2

= mχ1 + E0 + Ee (2.2)

where µ2 is the reduced mass of the dark matter-electron system after scattering, given by
µ2 = memχ2/(me + mχ2), and M2 = me + mχ2 , p is the total 3-momentum and pcm is the
dark matter momentum in the center of mass frame after scattering. Then, we can solve
eq. (2.2) to get

pcm =

√
2µ2

(
∆m+ E0 + Ee −

p2

2M2

)
(2.3)

with ∆m = mχ1 −mχ2 . On the other hand, we also get the total 3-momentum in terms of
the initial kinetic energies,

p2 = 2mχ1E0 + 2meEe + 4 cosα
√
memχ1E0Ee (2.4)

with α being the angle between electron and dark matter velocities.

The electron recoil energy is given by the difference between the electron kinetic energies
before and after scattering,

∆Ee =
1

2me

(
me

M2

~p− ~pcm

)2

− Ee

=
1

2me

(
m2
e

M2
2

p2 + p2
cm −

2me

M2

p pcm cos θ

)
− Ee (2.5)

where θ is the scattering angle in the center of mass frame. Then, using eq. (2.3), we obtain
the exact expression for the electron recoil energy in terms of as

∆Ee =
me

2M2
2

p2 +
µ2

me

(
∆m+ E0 + Ee

)
− µ2

2meM2

p2 − Ee

− p

M2

cos θ

√
2µ2(∆m+ E0 + Ee)−

µ2

M2

p2. (2.6)

On the other hand, the 3-momentum transfer q is also given by

q2 = 2me∆Ee +m2
ev

2
e − 2meve cosψ

√
me∆Ee (2.7)

where ψ is the scattering angle of the electron in the lab frame. Here, we note that q2 =
2me∆Ee only for the electron at rest, which is the standard relation between the recoil energy
and the electron, when the target electron is at rest.

In the following subsections, we divide our discussion on the electron recoil energy, de-
pending on the masses of dark matter components.
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2.1.1 Heavy dark matter

First, we take the limit with mχ1E0 & meEe, which is the case for mχ1 & me(ve/v) ∼ 10 MeV,
i.e. heavy dark matter. In the next section, our detailed discussion on the Xenon electron
events will be based on this case. Then, we can approximate the total 3-momentum to be
p2 ' 2mχ1E0 from eq. (2.4). As a result, from eq. (2.6), we obtain the approximate electron
recoil energy as follows,

∆Ee '
µ2∆m

me

(
1− E0

M2

)
− me

M2

Ee +
µ2

2E0

memχ2

[(
1 +

mχ1

mχ2

)
− 2
√
κ cos θ

]
(2.8)

with

κ ≡ mχ1

mχ2

(
1 +

mχ1Ee
µ2E0

)
+
mχ1∆m

µ2E0

(
1− E0

M2

)
=

mχ1

mχ2

(
1 +

mev
2
e

µ2v2

)
+

2∆m

µ2v2

(
1− µ2v

2

2me

mχ1

mχ2

)
. (2.9)

In the case for heavy dark matter, taking the limits for ∆m � me � mχ1 and ∆m �
mev

2
e ∼ 50 eV, we can approximate eq. (2.9) as

κ ' mev
2
e + 2∆m

mev2

' ∆m
1
2
mev2

' 2.2× 104

(
220 km/s

v

)2(
∆m

3 keV

)
. (2.10)

Indeed, choosing ∆m ' 3 keV from Xenon electron recoil energy and v ' 220 km from the
averaged velocity of dark matter in the standard halo model, we obtain κ� 1. In this case,
from eq. (2.8), the electron recoil energy becomes simplified to

∆Ee ' ∆m

(
1− 1

2

(mχ1

mχ2

)
v2

)
− m2

ev
2
e

2mχ1

+mev
2
(

1−
√
κ cos θ

)
' ∆m

(
1− 2√

κ
cos θ

)
. (2.11)

On the other hand, from eq. (2.7), for ∆Ee ' ∆m� mev
2
e , we can also get the approximate

result for the momentum transfer as

q2 ' 2me∆Ee ' 2me∆m

(
1− 2√

κ
cos θ

)
. (2.12)

Therefore, either the recoil energy or the momentum transfer depend little on either the
dark matter and electron velocities or the scattering angle. As a result, we get a tiny
momentum transfer fixed by the mass difference, for which the atomic excitation factor
becomes important [3, 5, 10,11], as will be discussed later.

For ∆m� me � mχ1 but with κ ' 1, we have the following approximate results,

∆Ee ' ∆m+mev
2(1− cos θ), (2.13)
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q2 ' 2m2
ev

2(1− cos θ). (2.14)

In this case, the recoil energy is bounded by 2mev
2 ' 5.5×10−4 keV� ∆m for v ∼ 220 km/s,

which is too small to account for the Xenon experiment. Thus, we focus on the regime with
κ� 1 in the following discussion, which is sufficient for explaining the Xenon excess.

2.1.2 Light dark matter

In the opposite limit with mχ1E0 . meEe, that is, mχ1 . me(ve/v) ∼ 10 MeV, that is, light
dark matter, we can approximate the total momentum as p2 ' 2meEe. In this case, from
eq. (2.6), we get the approximate recoil energy as follows,

∆Ee '
µ2

me

(∆m+ E0)− 2µ2

M2

Ee

(
1 +
√
κ̃ cos θ

)
(2.15)

with

κ̃ ≡ 1 +
me

µ2Ee
(∆m+ E0)

= 1 +
1

µ2v2
e

(2∆m+mχ1v
2). (2.16)

In the case for light dark matter, taking the limits for ∆m � me � mχ1 and mχ1v
2 .

100 eV� ∆m, we can approximate eq. (2.16) as

κ̃ ' ∆m
1
2
mev2

e

' 102

(
10−2c

ve

)2(
∆m

3 keV

)
. (2.17)

Then, from eq. (2.15), the electron recoil energy becomes simplified to

∆Ee ' ∆m
(

1 +
mχ1v

2

2∆m

)
− m2

ev
2
e

mχ1

(
1 +
√
κ̃ cos θ

)
' ∆m

(
1− 2me

mχ1

1√
κ̃

cos θ

)
. (2.18)

On the other hand, from eq. (2.7), for ∆Ee ' ∆m� mev
2
e , we can also get the approximate

result for the momentum transfer as

q2 ' 2me∆Ee ' 2me∆m

(
1− 2me

mχ1

1√
κ̃

cos θ

)
. (2.19)

Then, as in the case for heavy dark matter, the electron recoil energy depends little on
either the dark matter and electron velocities or the scattering angle, but it is determined
dominantly by the mass difference.
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2.2 The event rate for electron recoil

We begin with the general expression for the event rate per target mass [12], given by

dR =
ρχ1v

mχ1mT

dσ f1(v)dv (2.20)

where mT is the target nucleus mass and f1(v) = 4v2

v3
0

√
π
e−v

2/v2
0 with v0 = 220 km/s for the

Maxwellian velocity distribution of dark matter and
∫∞

0
f1(v)dv = 1, and ρχ1 is the local

energy density of dark matter, which is given by ρχ1 = 0.4 GeV/cm3 if χ1 occupies the full
dark matter.

We note that the differential scattering cross section for the inelastic scattering is given
by

dσ

dER
=

2meσ̄e
q2

+ − q2
−

∫ q+

q−

a2
0 q
′ dq′K(ER, q

′)P 2(v), (2.21)

where σ̄e is the total cross section in the limit of elastic scattering for the fixed momentum
transfer at q = 1/a0, with a0 = 1

αme
being the Bohr radius, K(ER, q

′) is the atomic enhance-

ment factor, and P 2(v) is the phase space factor, which is unity for the elastic scattering.
Then, from eqs. (2.20) and (2.21), we obtain the differential event rate per target mass as

dR

dER
=

2meσ̄eρχ1

mχ1mT

Kint(ER)

∫ ∞
vmin

vP 2(v)

q2
+ − q2

−
f1(v) dv (2.22)

where the integrated atomic enhancement factor is given by

Kint(ER) =

∫ q+

q−

a2
0 q
′ dq′K(ER, q

′), (2.23)

and vmin is the minimum velocity of dark matter required for a given recoil energy ER. We
note that the total recoil energy is also deposited significantly near ER ∼ keV to ionize the
electrons bound to the Xenon atoms, and the atomic excitation factor can be important for
a small momentum transfer [3, 5, 10, 11]. As a result, we get the event rate per detector as

RD = MT

∫ ∞
ET

dR

dER
dER (2.24)

where ET is the detector threshold energy and MT is the fiducial mass of the detector, given
by MT ' 4.2× 1027(MT/tonne)mT for Xenon.

Now we apply the general result in eq. (2.22) for the case with down-scattering dark
matter. Assuming that dark matter mass mχ1 is greater than 10 MeV, we can use our
results for heavy dark matter in Section 2.1.1. Then, we take κ � 1, for which the recoil
energy is appreciable. In this case, we obtain the phase space factor P 2(v) in eq. (2.26) as

P 2(v) '

√
1 +

2∆m

µ1v2
'
√

2∆m

me

1

v
. (2.25)
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Then, using eq. (2.22) with q2
± ' 2me∆m

(
1± 2√

κ

)
from eq. (2.12), we obtain the differential

event rate for E− < ER < E+ with E± = ∆m
(
1± 2√

κ

)
as

dR

dER
' σ̄eρχ1

2memχ1mT

Kint(ER)

∫ vmax

0

f1(v)

v
dv θ(ER − E−)θ(E+ − ER) (2.26)

where vmin = 0, vmax =
√

2∆m
me

at κ = 1. For E+ − E− � E±, we can approximate

θ(ER − E−)θ(E+ − ER) ' (E+ − E−)δ(ER −∆m). Therefore, we can rewrite eq. (2.26) as

dR

dER
'

(2∆m

me

)1/2 σ̄eρχ1

mχ1mT

Kint(ER)δ(ER −∆m)

∫ vmax

0

f1(v)dv (2.27)

We note that for ∆m� 1.3× 10−4 keV, we have vmax � v0, resulting in
∫ vmax

0
f1(v)dv ' 1.

Therefore, we find that there is no Boltzmann suppression due to an enhancement factor
P 2(v) in eq. (2.25), as compared to the case with elastic scattering.

Consequently, from eq. (2.24) with eq. (2.27), we get the total event rate per Xenon
detector with mT = mXe as

RD '
(
MT σ̄e ρχ1

mχ1mT

)(
2∆m

me

)1/2

Kint(∆m)

' 50

(
MT

tonne− yrs

)(
Kint(∆m)

2.6

)(
ρχ1

0.4 GeV cm−3

)
×
(

σ̄e/mχ1

1.2× 10−43 cm2/GeV

)(
∆m

2.5 keV

)1/2

(2.28)

where we has used the normalization for the integrated atomic excitation factor at ER '
2 keV and for the momentum transfer peaked at q ' 50 keV.

For comparison to the experimental data, the mono-energetic event rate can be convo-
luted with the detector resolution by

dRD

dER
=

RD√
2πσ

e−(ER−∆m)2/(2σ2) α(E) (2.29)

where σ is the detector resolution, which varies between 20% at E = 2 keV and 6% at
E = 30 keV, and α(E) is the signal efficiency [1]. For ER = 2− 10 keV, the signal efficiency
is given by α(E) ∼ 0.7− 0.9 [1].

The XENON1T excess is most significant from the electrons at ER = 2 − 3 keV with
the detector resolution being about σ = 0.4 keV, so we take the recoil energy of the mono-
energetic electron in our model to be ER ' ∆m ' 2.5 keV. Moreover, from α(E) ' 0.8 at
ER ' 2.5 keV, we need to rescale the total event rate per detector in eq. (2.28) by a factor
0.8. Therefore, taking into account the total exposure in XENON1T for SR1, which is 0.65
tonne-yrs [1], and for ρχ1 = 0.4 GeV cm−3, we can get about 50 events near ER = 2− 3 keV
for the XENON1T electron recoil events for σ̄e/mχ1 ' 3.4× 10−43 cm2/GeV.
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Figure 1: The event rate for electron recoil as a function of recoil energy ER in keV. We have taken
∆m = 2.5 keV and σ̄e/mχ1 = 1.0, 1.4, 1.8× 10−43 cm2 from bottom to top lines (purple, black and
blue. The red line is the background model used by Xenon experiment [1].

In Fig. 1, we depict the expected event rate for the signal + background in units of
events per t− yr− keV as a function of the electron recoil energy in keV in our model with
exothermic dark matter. The expected event rates are shown in blue lines for ∆m = 2.5 keV
and σ̄e/mχ1 = 1.0, 1.4, 1.8× 10−43 cm2, from bottom to top, and the red line corresponds to
the background model used by Xenon experiment [1]. The values of the mass difference and
σ̄e/mχ1 can be varied for the global fit with the observed electron recoil spectrum, but the
monochromatic shape of the signal from exothermic dark matter above the flat background
remains the same up to the detector resolution. We can compare our case to the existing
global fit of the XENON electron recoil spectrum for the case with axion-like dark matter
whose mass is fixed to ma = 2.3± 0.2 keV with 3.0σ local significance [1].

3 The effective theory for exothermic dark matter

We continue to discuss the effective theory for exothermic dark matter in the presence of a
massive Z ′ mediator and constrain the parameter space for the Z ′ couplings and the mass
parameters from the Xenon excess. For completeness, we also provide the formulas for dark
matter annihilation cross sections in the effective theory and comment on the compatibility
of the Xenon excess with the correct relic density.
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3.1 The effective interactions and the Xenon excess

We consider two Majorana dark matter fermions, χ1 and χ2, with different masses, mχ1 >
mχ2 , and a massive dark gauge boson Z ′ with mass mZ′ . We take the effective Lagrangian
with Z ′ couplings to dark fermions, electron and electron neutrino, in the following form,

Leff =
(
gZ′Z

′
µ χ̄2γ

µ(vχ + aχγ
5)χ1 + h.c.

)
+ gZ′Z

′
µ ē(ve + aeγ

5)e

+gZ′Z
′
µ ν̄γ

µ(vν + aνγ
5)ν (3.1)

where vi, ai with i = χ, e, ν are constant parameters. In the next subsection, we will show
a microscopic model for the above effective interactions. For ∆m < mZ′ and ∆m < 2me,
there is no tree-level decay process for the dark matter fermion χ1.

For ae 6= 0, the effective vertex interaction for one Z ′ and two photons, Z ′µ(q)−Aλ(q1)−
Aσ(q2), with q = q1 + q2, is induced by the electron loops, taking the following form for
q2 � 4m2

e [15],

Γµλσ(q, q1, q2) ' εq1λσµ · aee
2gZ′

4π2

(
1 +

q2

12m2
e

)
. (3.2)

Then, the heavy state of dark matter can decay into the lighter state of dark matter and
two photons, with the decay rate given by

Γ(χ1 → χ2γγ) '
a2
e(v

2
χ + a2

χ)e4g2
Z′

2560π7

(∆m)5

m4
Z′

. (3.3)

Therefore, in this case, the lifetime of the dark fermion χ1 is much longer than the age of the
Universe for perturbative effective couplings. However, the diffuse X-ray background [16]
puts the bound on the lifetime of the dark fermion χ1 to τχ1 > 1024 sec, which gives rise to

|ae|gZ′
√
v2
χ + a2

χ < 2.5× 10−6

(
2.5 keV

∆m

)5/2(
mZ′

1 GeV

)2

. (3.4)

As a result, we need a small axial vector coupling to the electron to satisfy the X-ray bounds
for exothermic dark matter and light Z ′ mediator. As we will discuss in the next section, some
microscopic models with vector-like leptons can induce a suppressed axial vector coupling to
the electron.

Moreover, there is another loop process for the three-photon decay channel, χ1 → χ2+3γ,
but the corresponding decay rate is highly suppressed by Γ ∝ (∆m)13/(m4

Z′m
8
e) [5], thus

being consistent with X-ray bounds [16].

If the neutrino couplings to Z ′ are nonzero, the dark matter fermion χ1 would decay
into a neutrino pair via the off-shell Z ′ gauge boson, which is bounded by the lifetime of
dark matter for explaining the XENON1T electron recoil excess. The decay rate of the dark
fermion χ1 is given [14] by

Γ(χ1 → χ2νν̄) ' NνG
′2
F (∆m)5

30π3
(v2
χ + 3a2

χ) (v2
ν + a2

ν) (3.5)
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where Nν is the number of neutrinos coupled to Z ′, and G′F ≡ g2
Z′/(
√

2m2
Z′). Then, for

∆m = 2.5 keV and vχ = −aχ = 1
2
, the lifetime of the dark fermion χ1 is longer than the age

of the Universe, as far as

G′F
√
Nν(v2

ν + a2
ν) < 2.4× 10−6 GeV−2. (3.6)

Nonetheless, neutrino experiments such as Super-Kamiokande [17] would constrain the life-
time of dark matter to τχ1 > 1024 sec for ∆m > 0.1 MeV [18]. But, for ∆m = 2.5 keV, the
energy of the produced neutrinos is below those of solar neutrinos, so there is no current
bound from neutrino experiments. As will be shown in the next section, the effective neu-
trino couplings are induced in the case of Z ′ portal with a gauge kinetic mixing, but there
is no bound on them other than the lifetime bound from the age of the Universe.

For me,mχ1 ,mZ′ � q ∼ me∆m, me � mχ1 , and ∆m � mχ1 , the total scattering cross
section for χ1e→ χ2e, up to the phase space factor P 2(v) in eq. (2.25), is given by

σ̄e '
v2
χv

2
eg

4
Z′µ

2
1

πm4
Z′

'
(
vχgZ′

0.6

)2(
vegZ′

10−4e

)2(
1 GeV

mZ′

)4( µ1

me

)2

× 10−44 cm2 (3.7)

where e is the electromagnetic coupling. Thus, we need to have nonzero vector couplings to
both dark matter and electron for the scattering cross section without velocity suppression.
In order to explain the XENON1T electron recoil events near ER = 2− 3 keV in our model,
we take ∆m ' 2.5 keV and the required scattering cross section gives rise to the following
useful formula, (

vχgZ′

0.6

)2(
vegZ′

10−4e

)2(
1 GeV

mZ′

)4(
0.3 GeV

mχ1

)(
ΩDM

Ωχ1

)
' 1 (3.8)

where ΩDM is the observed total abundance of dark matter and Ωχ1 is the abundance of the
dark fermion χ1. Therefore, light dark matter and Z ′ mediator are favored by the explanation
of the Xenon excess with exothermic dark matter. As we scale up the Z ′ gauge coupling,
we can take a larger value of m4

Z′mχ1 in order to maintain the number of the electron recoil
events.

We remark on the choices of the Z ′ couplings in view of the Xenon electron excess.
First, we took the Z ′ couplings to be consistent with the dilepton bounds from BaBar,
|ve|gZ′ . 10−4e for 0.02 GeV < mZ′ < 10.2 GeV [19], or the bound from mono-photon +
MET from BaBar [20], |ve|gZ′ . (4 × 10−4 − 10−3) e for mZ′ < 8 GeV. There are other
bounds from beam dump experiments [21] that limit |ve|gZ′ at the level of 10−3 or stronger
for mZ′ . 0.1 GeV than in BaBar experiment. In the parameter space of our interest, we
focus on mZ′ & 0.1 GeV, for which the BaBar bounds are most stringent at present. Thus,
we take into account only the BaBar bounds in the later discussion on phenomenological
constants in the next subsection and the next section on microscopic models.
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3.2 Dark matter annihilation and relic density

Dark matter fermions χ1 and χ2 can co-annihilate into a pair of electrons as well as into a
pair of Z ′ gauge bosons if kinematically allowed. Then, taking ∆m� mχ1 and ignoring the
lepton masses, the total annihilation cross section for nDM = nχ1 + nχ2 with χ1χ̄2 → eē, νν̄
and χ1χ̄1, χ2χ̄2 → Z ′Z ′ is given by

〈σv〉 =
1

2
〈σv〉χ1χ̄2→eē,νν̄ +

1

2
〈σv〉χ1χ̄2→Z′Z′ (3.9)

with

〈σv〉χ1χ̄2→eē,νν̄ =
g4
Z′v

2
χ

π

[
v2
e + a2

e +Nν(v
2
ν + a2

ν)
] m2

χ1

(m2
Z′ − 4m2

χ1
)2 + Γ2

Z′m
2
Z′
, (3.10)

〈σv〉χ1χ̄1,χ2χ̄2→Z′Z′ =
g4
Z′

4π

[
v4
χ + a4

χ + 2v2
χa

2
χ

(
4
m2
χ1

m2
Z′
− 3
)] m2

χ1

(m2
Z′ − 2m2

χ1
)2

(
1− m2

Z′

m2
χ1

)3/2

.(3.11)

We note that the contributions coming from aχ to the annihilation cross section are p-wave
suppressed. Since we need vχ 6= 0 for explaining the Xenon electron excess, the p-wave
annihilations are sub-dominant.

For light dark matter with sub-GeV mass, once χ1χ̄1, χ2χ̄2 → Z ′Z ′ is open, the resultant
annihilation cross section would be too large for a sizable gZ′ to account for the correct relic
density. Thus, in this case, we can take mχ1 < mZ′ such that the annihilation of the dark
matter fermion χ1 into a pair of Z ′ is forbidden at zero temperature, but it is open in the tail
of the Boltzmann distribution at a finite temperature during freeze-out [13]. Then, from the
detailed balance condition for the forbidden channels, the effective annihilation cross section
for the forbidden channels, χ1χ̄1, χ2χ̄2 → Z ′Z ′ becomes

〈σv〉χ1χ̄1,χ2χ̄2→Z′Z′ =
(neq

Z′)
2

neq
χ1n

eq
χ2

〈σv〉Z′Z′→χ1χ̄1,χ2χ̄2 (3.12)

with

〈σv〉Z′Z′→χ1χ̄1,χ2χ̄2 =
4g4

Z′

9πm2
Z′

[
v4
χ + a4

χ

(m2
Z′ + 2m2

χ1

m2
Z′ +m2

χ1

)
+ 2v2

χa
2
χ

(3m2
Z′ − 2m2

χ1

m2
Z′ +m2

χ1

)]
×
(

1 +
m2
χ1

m2
Z′

)(
1−

m2
χ1

m2
Z′

)3/2

. (3.13)

Here, for ∆m� mχ1 , the Boltzmann suppression factor can be approximated to

(neq
Z′)

2

neq
χ1n

eq
χ2

'
(
neq
Z′

neq
χ1

)2

' 9

4

(mZ′

mχ1

)3

e−2(mZ′−mχ1 )/T . (3.14)

The forbidden channels are important for obtaining the correct relic density for light dark
matter, because the strong annihilation cross section can be compensated by the Boltzmann
suppression factor [13].
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Furthermore, for mχ1 > mχ2 , we have additional annihilation channels active even at
zero temperature, χ1χ1 → χ2χ2, χ1χ̄1 → χ2χ̄2, and their complex conjugates. Then, the
additional annihilation cross sections for χ1 are given by

〈σv〉χ1χ1→χ2χ2 =

√
2

16π

g4
Z′m

2
χ1

m4
Z′

√
∆m

mχ1

(v4
χ + 6a2

χv
2
χ + 9a4

χ), (3.15)

〈σv〉χ1χ̄1→χ2χ̄2 =

√
2

8π

g4
Z′m

2
χ1

m4
Z′

√
∆m

mχ1

(v4
χ + 3a4

χ). (3.16)

For T & ∆m = 2.5 keV, the inverse annihilation processes, χ2χ2 → χ1χ1, χ2χ̄2 → χ1χ̄1, and
their complex conjugates, occur as often as the above annihilation, so the additional anni-
hilation processes have no impact on the total dark matter density at the time of freeze-out
of the annihilation processes, given in eq. (3.9). However, the χ1 component could keep an-
nihilating and its abundance would be Boltzmann suppressed by e−∆/Tχ1 with Tχ1 = T 2/Tkd

where Tkd is the kinetic decoupling temperature, which is the smaller of the decoupling tem-
perature of dark matter and the electron decoupling temperature ∼ 1 MeV. Then, in order
to avoid the Boltzmann suppression for the relic abundance of the heavier component, we
need to impose

Tχ1 & ∆m, (3.17)

which corresponds to the bound on the radiation temperature,

T &
√
Tkd∆m. (3.18)

The decoupling temperature for the 2→ 2 annihilation processes is determined by

nχ1 max
(
〈σv〉χ1χ1→χ2χ2 , 〈σv〉χ1χ̄1→χ2χ̄2

)
= H. (3.19)

Thus, imposing the above equation with eq. (3.17) and for |vχ| = |aχ|, we find the upper
limit on the Z ′ gauge coupling as follows,

|vχ|gZ′mχ1

mZ′
. 0.035

(
ΩDM/2

Ωχ1

)1/4(
mχ1

100 MeV

)1/2(
mχ1/∆m

4× 104

)3/8(
∆m/(2.5 keV)

Tkd/(10 MeV)

)1/8

.(3.20)

Therefore, we need to impose the above condition that the annihilation processes, χ1χ1 →
χ2χ2, χ1χ̄1 → χ2χ̄2, decouple sufficiently early at Tχ1 & ∆m, in the following discussion on
the relic density.

As a consequence, the dark matter number density is given by nDM = nχ1 + nχ2 with
nχ1 ' nχ2 for the early decoupling of the 2 → 2 annihilations, so the corresponding relic
abundance is determined as

ΩDMh
2 = 0.12

(
10.75

g∗(Tf )

)1/2 (xf
20

)(4.3× 10−9 GeV−2

xf
∫∞
xf
x−2〈σv〉

)
(3.21)
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Figure 2: Parameter space for relic density and XENON1T electron excess. The favored region
by XENON1T electron excess is along the green line, the relic density is satisfied along the blue
line. The purple region on the left plot is excluded by the BaBar limits on the visible and invisible
decays of Z ′. We have taken vχ = −aχ = 0.5, ae = 0, and mχ = 0.3, 0.5 GeV on left and right
plots, respectively, and gZ′ = 0.3 on left and ve = 10−3 on right. In the orange region, the relic
density for the heavier state is Boltzmann-suppressed for Tkd = 1 MeV.

where 〈σv〉 is given by eq. (3.9) and xf = mχ1/Tf at freeze-out temperature. Therefore,

parametrizing the effective annihilation cross section by 〈σv〉 =
α2

eff

m2
χ1

, we can achieve a correct

relic density, provided that

mχ1 ' 150 MeV

(
αeff

10−5

)
. (3.22)

As a result, we can get the correct relic density by taking a small effective coupling αeff from
small SM couplings, ve, vν , or due to the Boltzmann-suppression, αeff ∼ g2

Z′ e
−xf (mZ′−mχ1 ),

for gZ′ = 0.6 and
mZ′
mχ1
− 1 ' 0.4, being consistent with the constraint from the Xenon excess

with Ωχ1 ' 1
2
ΩDM in eq. (3.8).

In Fig. 2, we show the parameter space for relic density in comparison to Xenon electron
excess, for mZ′ vs ve on left and mZ′ vs gZ′ on right. We have fixed vχ = −aχ = 0.5,
ae = 0, and mχ = 0.3, 0.5 GeV on left and right plots, respectively, and gZ′ = 0.3 on left and
ve = 10−3 on right. We have imposed the BaBar bounds from visible and invisible decays of
Z ′ on the effective electron coupling ve. The correct relic density is saturated along the blue
lines, showing that there is a parameter space compatible with the Xenon electron excess in
green lines and the BaBar bounds as well as the late decoupling in orange region.

In the above discussion, we focused on the annihilation channels in the minimal scenario
for the Xenon electron excess. However, if the aforementioned annihilation channels with
Z ′ interactions are not sufficient for a correct relic density, due to small Z ′ couplings to the
SM, we can also consider the dark matter self-interactions for dark matter annihilation, in
particular, as in the case of SIMP dark matter [22, 23] where sub-GeV light dark matter is
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a natural outcome of the 3→ 2 annihilations with strong self-interactions. In this case, the
relic density condition on the visible coupling becomes weaker, so there is more parameter
opening up for the Xenon electron excess.

4 Microscopic models

In this section, we propose a microscopic model for exothermic dark matter by taking two left-
handed dark fermions, ψ1 and ψ2, with opposite charges, +1 and −1, under the dark U(1)′

symmetry. We also introduce a dark Higgs φ with charge −2 under the U(1)′. We assume
that all the SM particles are neutral under the U(1)′, but dark matter can communicate
with the SM through 1) the gauge kinetic mixing, sin ξ, or 2) the mixing between electron
and an extra vector-like lepton. We first discuss the dark matter interactions and proceed
to derive the effective interactions for the electron in each case of portal models.

The Lagrangian for the dark sector is given, as follows,

L = −1

4
F ′µνF

′µν + |Dµφ|2 − V (φ,H)

+iψ̄1Lγ
µDµψ1L + iψ̄2Lγ

µDµψ2L

−mψψ1ψ2 − y1φψ1ψ1 − y2φ
∗ψ2ψ2 + h.c. (4.1)

where F ′µν = ∂µZ
′
ν − ∂νZ

′
µ, Bµν is the field strength tensor for the SM hypercharge, the

covariant derivatives are Dµφ = (∂µ + 2igZ′Z
′
µ)φ, Dµψ1L = (∂µ − igZ′Z

′
µ)ψ1L, Dµψ2L =

(∂µ + igZ′Z
′
µ)ψ2L, mψ is the Dirac mass for dark fermions, and y1,2 are the Yukawa couplings

for dark fermions. Here, V (φ,H) is the scalar potential for the singlet scalar φ and the SM
Higgs.

After the dark Higgs gets a VEV as 〈φ〉 = vφ, the Z ′ gauge boson receives mass mZ′ =
2
√

2gZ′vφ, and there appears a mass mixing between ψ1 and ψ2. Then, diagonalizing the
mass matrix for the dark fermions, we get the mass eigenvalues and the mixing matrix, as
follows,

m2
χ1,2

= m2
ψ + 2(y2

1 + y2
2)v2

φ ± 2
√

(y2
1 − y2

2)2v4
φ + (y1 + y2)2v2

φm
2
ψ, (4.2)

and (
χ1

χ2

)
=

(
cos θ − sin θ
sin θ cos θ

)(
ψ2

ψ1

)
(4.3)

with

sin 2θ = −4(y1 + y2)vφmψ

m2
χ2
−m2

χ1

. (4.4)

For simplicity, we take y1 = y2, then the mass eigenvalues become mχ1,2 = mψ ± 2y1vφ
and the mixing angle is given by θ = π

4
. Then, the mass difference can be small as far as
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Figure 3: Parameter space for relic density and XENON1T electron excess in microscopic models.
(Left) Z ′ portal: We have taken vχ = −aχ = 0.5, gZ′ = 0.3 and mχ = 0.3 GeV. The color notations
are the same as those in Fig. 2. (Right) Vector-like lepton portal: We have taken vχ = −aχ = 0.5,
gZ′ = 0.3 and mχ = 0.3 GeV. The red region is excluded by the X-ray searches and the gray region
is disfavored by the electron mass. In the orange region, the relic density for the heavier state is
Boltzmann-suppressed for Tkd = 1 MeV.

2|y1|vφ � mψ. There was a recent discussion on the microscopic model for exothermic dark
matter with a complex scalar field where the breaking of dark U(1)′ makes a small mass
splitting between the real scalar fields [5].

For instance, for mψ ∼ 1 GeV, we need y1 ∼ 1.5 × 10−6. As a result, including the
Z ′-portal couplings to the SM fermions for a small gauge kinetic mixing, we summarize the
Z ′ gauge interactions as follows,

LDM = −gZ′Z ′µ
(
χ̄1γ

µPLχ2 + χ̄2γ
µPLχ1

)
. (4.5)

Then, we obtain the effective dark matter couplings in the Lagrangian (3.1) as

vχ = −aχ = −1

2
. (4.6)

As a result, we can realize the transition interactions between two states of dark matter via
the Z ′ mediator, that are necessary for explaining the Xenon excess.

4.1 Z ′-portal

In the presence of a gauge kinetic mixing,

Lkin−mix = −1

2
sin ξBµνF

′µν , (4.7)
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the mixing between Z ′ and Z gauge bosons gives rise to the Z ′ gauge interactions to the SM
as

Leff,I = −eεZ ′µ
(
ēγµe+

m2
Z′

2c2
Wm

2
Z

ν̄γµPLν

)
+ · · · (4.8)

where ε ≡ ξ cos θW and the ellipse denotes the electromagnetic and neutral current inter-
actions for the rest of the SM fermions. Therefore, there are not only electron couplings
but also neutrino couplings, although the latter being further suppressed by m2

Z′/m
2
Z [24].

Consequently, we can identify the effective couplings in the Lagrangian (3.1), as follows,

ve = − eε

gZ′
, ae = 0, vν = −aν = − eεm2

Z′

4c2
WgZ′m

2
Z

. (4.9)

Then, the lifetime of the dark fermion χ1 is given by

τχ1 =
1

Γ(χ1 → χ2νν̄)
=

(
10−4e

εgZ′

)2(
2.5 keV

∆m

)5

8.9× 1024 sec. (4.10)

Therefore, the dark fermion χ1 is much long-lived than the age of the Universe, so it can
be responsible for the Xenon electron excess through the inelastic scattering, as discussed in
the previous section.

On the left of Fig. (3), we show the parameter space in ε vs mZ′ , that is consistent with
the Xenon electron excess, the correct relic density as well as the BaBar bounds. We have
taken vχ = −aχ = 0.5, gZ′ = 0.3 and mχ ≡ mχ1 = 0.3 GeV. Since the effective axial coupling
ae vanishes, there is no bound from the X-ray searches. In the orange region, the relic density
for the heavier state is Boltzmann-suppressed due to the 2→ 2 self-annihilations. As a result,
there is a consistent parameter space for the Xenon electron excess, which can be probed in
the future experiments.

4.2 Vector-like lepton portal

We introduce an extra vector-like charged lepton E which has charge −2 under the U(1)′

but is singlet under the SU(2)L. Then, the mixing between the SM right-handed electron
and the vector-like lepton is given by

LVL = −MEĒE − (yEφĒeR + h.c.) (4.11)

As a consequence, the mass matrix for the electron and the vector-like lepton takes

Me =

(
me 0
yEvφ ME

)
. (4.12)

Then, the mass eigenvalues are given by

m2
f1,2

=
1

2

(
m2
e +M2

E + y2
Ev

2
φ ∓

√
(m2

e + y2
Ev

2
φ −M2

E)2 + 4y2
Ev

2
φM

2
E

)
. (4.13)
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On the other hand, the mixing angles for the right-handed electrons and the left-handed
electrons are given [25], respectively, by

sin(2θR) = − 2yEvφME

m2
f1
−m2

f2

, (4.14)

sin(2θL) =
m2
e

mf1mf2

sin(2θR). (4.15)

Therefore, for me, yEvφ � ME and (yEvφ/ME)2 . (me/ME), the mass eigenvalues are

approximated to mf1 ∼ me and mf2 ∼ ME, and the mixing angles become θR ∼ 2yEvφ
ME

and
θL ∼ me

ME
θR. Given the experimental bound on the vector-like charged lepton from LEP

and LHC, ME & 100 GeV, we have me
ME

. 5 × 10−6, so we can ignore the mixing for the
left-handed electrons. But, for mf1 ∼ me, the mixing angle for the right-handed electrons

is bounded by θR .
√

me
ME

, thus θR can be as large as 2.2 × 10−3. On the other hand,

we note that the suppressed mixing angle θL for the left-handed electron is consistent with
electroweak precision data.

Consequently, we get the following effective interactions for Z ′,

Leff,II = −2gZ′Z
′
µ

(
ĒγµE + θ2

R ēγ
µPRe− θRĒγµPRe− θR ēγµPRE

+θ2
Lēγ

µPLe− θLĒγµPLe− θL ēγµPLE
)

− g

2cW
Zµ

(
ēLγ

µPLe+ θLĒγ
µPLe+ θL ēγ

µPLE + θ2
LĒγ

µPLE
)

− g√
2
θLĒγ

µPLνW
−
µ + h.c. (4.16)

Here, we used the same notations for mass eigenstates as for interaction eigenstates, electron-
like and vector-like. Therefore, we can identify the effective couplings in the Lagrangian (3.1),
as follows,

ve = ae = −θ2
R, vν = aν = 0. (4.17)

As a result, we obtain the necessary electron coupling to Z ′ for explaining the Xenon excess
through the small mixing between the SM right-handed electron and the vector-like lepton.
In the model with vector-like lepton portal, however, there is no direct coupling between Z ′

and neutrinos. Even the Z ′ − e− E vertex with E decaying into the SM particles does not
make the dark fermion χ1 to decay, provided that ∆m < 2me is chosen.

On the right of Fig. (3), we show the parameter space in θR vs mZ′ , that is consistent
with the Xenon electron excess, the correct relic density as well as the BaBar bounds. We
have taken vχ = −aχ = 0.5, gZ′ = 0.3 and mχ = mχ1 = 0.3 GeV. Since the effective axial
coupling ae is nonzero, the bound from the X-ray searches in gray excludes the relic density
condition in blue line, and the consistent parameter space is pushed towards a larger gZ′ or
the resonance region near mZ′ ∼ 2mχ. We note that the gray region is disfavored by the
electron mass. We also note that in the orange region, the relic density for the heavier state
is Boltzmann-suppressed due to the 2→ 2 self-annihilations.
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5 Conclusions

We proposed exothermic dark matter to explain the recent electron excess reported by
XENON1T experiment. Even for a small dark matter velocity, as known from the stan-
dard Maxwellian velocity distribution of dark matter, we achieved the appropriate recoil
electron recoil energy at about 2.5 keV by considering the down-scattering of the heavier
dark matter state off the electron into the lighter state. Thus, we showed that about 50 re-
coil events over ER = 2−3 keV, which are most significant, can be explained in this scenario
up to the detector resolution.

Including the effects of the phase-space enhancement and the atomic excitation factor, we
derived the required scattering cross section for the Xenon excess to be about σe ∼ 10−44 cm2

for sub-GeV light dark matter. We took the effective theory approach for exothermic dark
matter with a massive Z ′ mediator and discussed the implications of the Xenon excess
for dark matter interactions to Z ′ and the dark matter relic density. We also provided
microscopic models with Z ′ portal and vector-like portal, realizing the required dark matter
and electron couplings to Z ′, while the heavier state of dark matter is long-lived enough to
satisfy the bounds from the X-ray or the neutrino experiments.
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