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In this paper, analogies between multiparticle production in high-energy collisions and the time
evolution of the early Universe are discussed. A common explanation is put forward under the assumption
of an unconventional early state: a rapidly expanding universe before recombination (last scattering
surface), followed by the cosmic microwave background, later evolving up to present days, versus the
formation of hidden/dark states in hadronic collisions followed by a conventional QCD parton shower
yielding final-state particles. In particular, long-range angular correlations are considered pointing out deep
connections between the two physical cases potentially useful for the discovery of new physics.
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I. INTRODUCTION

The study of correlations has decisively contributed to
the advancement of scientific knowledge in all branches of
physics, from condensed matter and quantum information
to particle physics and cosmology. In the latter case, the
systematic study of correlations was considered in the
context of the large structure of the Universe [1]. In this
sense, the homogeneity, thus long-range angular correla-
tions of the cosmic microwave background (CMB) across
the sky seen by the WMAP and Planck missions [2,3],
strongly supports an inflationary era of the early Universe
[4,5]. This proposal gave birth to a new paradigm in
astrophysics and cosmology, ultimately leading to the
standard cosmological model (ΛCDM).
Similarly, the study of angular correlations in high-

energy collisions has traditionally been a common tool to
understand multiparticle production in particle collisions
beginning with early studies of cosmic rays through to

current investigations at the LHC. In earlier papers, we
show that one consequence of the production of a new still
unknown stage of matter in high-energy hadronic collisions
is to enhance long-range angular correlations among final-
state particles [6–8]. This conclusion bears a certain
resemblance with the observed small temperature fluctua-
tions of the CMB requiring an inflationary period right after
the big bang.
As is well known, analogies between different fields of

knowledge have traditionally played an important role in
the advance of science. A paradigmatic example in physics
is provided by the analogy between superconductivity in
condensed matter physics, and the vacuum screening
currents leading to the Higgs mechanism in elementary
particle physics [9]. Although the physical origin may be
totally distinct (Cooper electron pairs versus a Higgs
quantum field current), a mapping can be established
between the equations governing both processes, as well
as some specific relations between the theory parameters.
Actually, such an analogy proved to be a useful guide for
getting a deeper understanding of the origin of mass and
further developments of the electroweak theory.
The main goal of this paper is showing an analogy

between the cosmic evolution of the Universe and multi-
particle production in high-energy collisions, as well as its
consequences as a new way of hunting hidden/dark matter
at the LHC and other future facilities. A caveat is in order
however: in the former case, there is only one universe
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(ours) to be observed, while in the latter a large number of
independent collisions are statistically considered alto-
gether. This difference should not alter the main conse-
quences of our analogy.

II. ANGULAR CORRELATIONS IN MODERN
COSMOLOGY

According to the firstly postulated big bang theory, the
angular scale of the horizon on the last scattering surface
(when the CMB was emitted) should be θ ≃ 1° [10]. This
implies that strong temperature inhomogeneities should
show up above this scale in contrast to real measurements
which reveal an extremely isotropic and homogeneous
microwave background. To solve this problem, an infla-
tionary era in the very early Universe was proposed,
flattening all fluctuations up to very large opening angles
covering the entire celestial sphere.
On the other hand, the emergence of large-scale features

in the CMB are attributed to density fluctuations in the
early Universe evolving into the large-scale structure as we
see today. In fact, it is common wisdom that such small
temperature fluctuations (of the order of 10−5 K) are the
seeds of the current observed galaxy distributions, galaxy
clusters and higher macrostructures of our Universe.
Two categories of temperature fluctuations observed in

the CMB can be distinguished according to the universal
time evolution: (a) primary anisotropies, prior to decou-
pling, and (b) secondary anisotropies developing as the
CMB propagates from the surface of the last scattering to
the observer. The former include temperature inhomoge-
neities due to photon propagation under metric fluctuations,
the so-called Sachs-Wolfe (SW) effect. This effect shows
up at rather large angles, i.e., for θ ≫ 1°, where θ stands for
the angular separation of different directions in the present
sky. Moreover, the primitive plasma also underwent acous-
tic oscillations prior to decoupling associated to a typical
angular scale θ ≲ 1°.
On the other hand, once photons decoupled from

baryons after recombination, the CMB propagated through
a large structure where the gravitational and intercluster gas
which are not be necessarily isotropic nor homogeneous on
small spatial scales. Examples of such secondary anisot-
ropies of the CMB include the Sunyaev-Zeldovich effect
due to thermal electrons and the integrated SW effect,
induced by the time variation of gravitational potentials.
These effects are mainly expected to produce temperature
fluctuations on arc-minute scales. In this work, we shall
consider them altogether under a common parametrization
of very-short-range correlations.
Let us emphasize that what matters in our analogy on

angular correlations is the existence of two well differ-
entiated steps in the evolution of the Universe, before and
after recombination. Therefore, rather than modeling an
inflationary epoch in the primitive Universe, we sill assume
a linearly expanding universe whose scale factor reads:

aðtÞ ¼ t=tf, where t stands for the universal time and tf for
the time elapsed since the big bang to present. In
Refs. [11,12], a model of this kind was proposed and
developed to explain the observed correlations of the
CMB. Then, the maximum fluctuation size at any given
time t can be estimated as λmax ¼ 2πRðtÞ with R as the
cosmic horizon radius.
Following the reasoning of [11], the comoving distance

to the last scattering surface (at recombination time trec)
reads

rrec ¼ ctf

Z
tf

trec

dt
t
¼ ctf ln

�
tf
trec

�
: ð1Þ

Thus, the maximum angular size θ0 of fluctuations asso-
ciated to the CMB emitted at trec is given by

θ0 ¼
λmax

RðtrecÞ
; ð2Þ

where

RðtrecÞ ¼ aðtrecÞrrec ¼ ctrec ln
�
tf
trec

�
: ð3Þ

Finally, one gets

θ0 ∼
2π

ln ½tf=trec�
≃
π

5
; ð4Þ

where the numerical estimate corresponds to tf¼13.8Gyr
and trec ¼ 3.8 × 105 yr. This value roughly agrees with the
curve determined from Planck data (≃π=3) as shown in
[11]. Let us remark that Eq. (4) is considered here as a
simple indicator of long-range angular correlations in the
CMB, to be later “translated” to high-energy hadronic
collisions.

III. NEW PHYSICS FROM AZIMUTHAL
CORRELATIONS IN HIGH-ENERGY COLLISIONS

Long-range angular correlations (both in pseudorapidity
and azimuth) also show up in multiparticle production
in both pp and heavy-ion collisions [13]. From general
arguments based on causality, such long-range correlations
can be traced back to the very early times after the primary
parton-parton hadronic interactions. As stressed in Ref. [6],
if the parton shower were to be altered by the presence of a
nonconventional state of matter, final-state particle corre-
lations should be sensitive to it.
We focus on strongly interacting dark sectors arising

in a wide variety of new physics scenarios like e.g., the
hidden valley [14–16]. Hidden valley models predict the
existence of a hidden/dark sector connected to the Standard
Model (SM) of particle physics through heavy medi-
ators via different mechanisms (tree-level, higher loop
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diagrams). One of the most interesting situations from a
phenomenological viewpoint corresponds to a QCD-
inspired scenario with a hidden (running) coupling constant
and a confinement scale Λh. Then the hidden/dark quarks,
which could be much lighter than the energy scale set by
the heavy mediator Mh, can form bound states at Λh as
hadrons in QCD. Usually the masses of the hidden sector
particles are assumed to lie below the electroweak scale,
while the mediators may have TeV-scale masses. Therefore,
it seems quite natural to expect large hierarchies between
Λh and the hidden quark masses mh [17],

mh ∼ Λh ≪ Mh; ð5Þ

where the condition on the relative value of Λh ∼mh can be
taken quite loosely without changing the main conclusions
of this paper.
In our numerical estimates, we assume that the strongly

coupled hidden sector includes some families of hidden
quarks that bind into hidden hadrons at energies below
Λh ∼Oð10Þ GeV, playing a similar role as ΛQCD in the
conventional strong interaction. Such a simplified picture is
compatible with the expected walking behavior requiring a
strong coupling over a large energy window before reach-
ing Λh, thereby yielding a large number of hidden partons
and ultimately, high multiplicity events where the primary
energy is democratically shared by final-state particles.
On the other hand, the SM sector could feebly couple to

the hidden sector (and the equivalent hadronic hidden
particles and states) with a substantial freedom in the form
of the portal interaction: via a tree-level neutral Z0 or
higher-order loops involving particles with charges of both

SM and hidden sectors. In fact, for some (reasonable)
values of the parameter space in hidden valley models,
hidden particles can promptly decay back into SM par-
ticles, altering the subsequent conventional parton shower
[16] and yielding (among others [17]) observable conse-
quences, e.g., extremely long-range correlations especially
in azimuthal space [7].
The maximum length, i.e., time,1 of a parton shower

initiated by a parton, down to a low virtuality scale Q0, can
be estimated as [18]

Lmax ≃
E
Q2

0

; ð6Þ

where E stands for the typical energy of the parton
cascade; Q0 is expected to be of the order of ΛQCD for a
conventional QCD cascade and of the order of Λh for a
dark cascade.
In Fig. 1, we show pictorially the foreseen evolution after

a primary hard parton-parton interaction producing a
hidden shower as a first stage of the cascade ultimately
yielding final-state particles via a QCD parton cascade.
Three steps can be distinguished:

(i) Production of heavy mediators of massOð103Þ GeV
in the primary partonic collision. This is assumed to
occur at a tiny fraction of a second (≃1 am=c), fixed
by the energy scale Mh.

(ii) Hidden shower and formation of hidden bound
states (equivalent to recombination in cosmology),

FIG. 1. Time evolution of the parton shower in high-energy collisions with formation of an initial hidden stage of matter evolving into
bound states (equivalent to recombination in cosmology) after a time t, followed by a decay back to SM quarks and gluon partons lasting
about tQCD. There could also be hidden particles not decaying back to SM and therefore, not detected, represented as dashed arrows.

1Hereafter, natural units, c ¼ ℏ ¼ 1, will be used unless
otherwise stated.
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at typical time th ¼ Mh=Q2, where Q2 stands for the
virtuality of the hidden shower. Assuming that Q2 is
of the order of Λ2

h ≃ 100 GeV2, one gets a time scale
of the order of 1 fm=c.

(iii) Once the hidden bound states (or a part of them)
decay back to QCD partons (quarks and gluons), a
“conventional” cascade takes place with typical time
tQCD ¼ Λh=Λ2

QCD ∼ several fm=c, where we have
assumed that the typical energy of the now conven-
tional parton shower is provided by Λh ∼mh.

IV. COSMOLOGICAL ANALOGIES

Since the successful running of the heavy-ion program at
the LHC, it has become popular to compare the evolution of
the Universe, some seconds after the big bang, with the
formation of very dense matter at high temperature (pre-
sumably forming a soup of quarks and gluons) in hadronic
collisions. It has even become customary talking somewhat
loosely about a “little big bang” at the LHC. Moreover,
such a parallelism between the space-time developments
of heavy-ion collisions and the early Universe has been
considered beyond purely outreach purposes as a source of
physical inspiration; see, e.g., Ref. [19]. In a recent paper
[20], the authors established a correspondence between
high-energy collions at future eþe− colliders (ILC and
CLIC) and the CMB map.
It should be mentioned that the physics underlying

angular correlations is completely different in the two
cases: the cosmological evolution is fundamentally
described by general relativity, whereas the parton cascade
evolution in high-energy collisions is essentially governed
by conventional or hidden strong interaction dynamics.
However, on the one hand, they share a common fact put
forward to explain long-range correlations: a rapidly
growing initial state. On the other hand, the typical values
of the angular scales are (by coincidence) quite similar as
we shall see. Indeed, primary long-range angular correla-
tions are of the order of 1 radian, while secondary scales
lie 1 order of magnitude or more below. Such a numerical
concordance of scales, together with the fact that the time
evolution in both cases is not continuous but rather involves
different well-defined steps, makes a connection between
the two cases.
Now, turning to high-energy collisions and naively

applying the same expression (3) used for a particular
cosmological model, setting th ¼ Mh=Λ2

h, tQCD¼Λh=Λ2
QCD

and tf ≃ th þ tQCD (see Fig. 1), we get for the maximal
azimuthal correlation angle,

ϕ0 ≃
2π

ln ½tf=th�
≃ π; ð7Þ

for Λh ≃ 10 GeV and Mh ≃ 1 TeV as reference values.
As already commented, this result points at very long-
range correlations emerging in a “universe” under the

above-mentioned evolution conditions.2 Such an order-
of-magnitude estimate is in agreement with our earlier
estimates [8] about the expected long-range correlation
length in azimuthal space arising from new physics. Here,
we explore further the analogies between cosmic evolution
and hadronic evolution under the presence of a hidden
sector on top of the QCD shower. Note that temperature
fluctuations are supposed to be the seeds of the current
observed galaxy distributions, galaxy clusters, and higher
macrostructures of our Universe. Similarly, hidden (bound)
states would act as the seeds of clusters (jets in a broad
sense) of final-state particles.
The two-point correlation function is defined in many

different (though essentially related) ways in the literature.
For example, in the case of the temperature correlations of
the CMB seen in directions n⃗1 and n⃗2 of the sky, the two-
point correlation function can be written as the ensemble-
average product,

C2ðcosΔθÞ ¼ hTðn⃗1ÞTðn⃗2Þi; ð8Þ
where isotropy and homogeneity of space have been
assumed, and cosΔθ ¼ n⃗1 · n⃗2. It measures the conditional
probability of having two CMB temperatures in the sky
plane differing by Δθ ¼ θ1 − θ2. Furthermore, the three-
point angular correlation function is defined as [21]

C3ðcosΔθ12; cosΔθ13Þ ¼ hTðn⃗1ÞTðn⃗2ÞTðn⃗3Þi; ð9Þ
where now three different directions in the sky are labeled
by three vectors n⃗i, i ¼ 1, 2, 3, and Δθ12 ¼ θ1 − θ2,
Δθ13 ¼ θ1 − θ3. Note that actually only two angular
differences are independent, here chosen Δθ12 and Δθ13,
so that Δθ23 ¼ θ2 − θ3 ¼ Δθ13 − Δθ12.
Notice that already since some time ago, the study of

three-point correlations has been recognized as a powerful
probe of the origin and evolution of structures of the
Universe; see, e.g., [22–24]. Specifically, non-Gaussian
contributions to cosmological correlations should play a
leading role in understanding the physics of the early
Universe, when primordial seeds for large-scale structures
were created, and their subsequent growth at later times.
Interestingly, the correlation function method was recently
proposed in Ref. [25] to distinguish between quantum and
classical primordial fluctuations in a sense close to our
consideration.
In high-energy collisions, the two-particle correlation

function C2ðϕ1;ϕ2Þ is similarly defined, where ϕi stands
for the azimuthal emission angle of particle i measured on
the transverse plane of a reference frame whose z axis
corresponds to the beams direction. Under rotation
symmetry, the two-point correlation function actually

2Of course, the actual situation in high-energy particle colli-
sions at colliders is not the same as in an expanding universe,
where space itself is being created as the expansion goes on.
Nevertheless, one can still keep in mind the picture of a growing
particle horizon to be identified somehow with the radius of a
growing sphere containing the developing parton cascade inside.
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depends only on the azimuthal difference Δϕ ¼ ϕ1 − ϕ2,
i.e., C2ðϕ1;ϕ2Þ ¼ C2ðΔϕÞ.
Again, higher-order correlations are useful as well to

get a deeper insight into multiparticle dynamics in
hadronic collisions [26]. A dependence of the correlations
on angular differences is expected too, e.g., the three-
particle azimuthal correlation function C3ðΔϕ12;ϕ13Þ,
where Δϕ12¼ϕ1−ϕ2, Δϕ13 ¼ ϕ1 − ϕ3. Let us point out
that three-point/particle correlations constitute the lowest-
order statistical tool to check the non-Gaussianity of
distributions. Furthermore, they can place strong con-
straints on underlying clustering structures, thereby becom-
ing specially suited to uncover new physics in multiparticle
production in particle collisions as stressed in [27].
Generally speaking, three-particle angular correlations
may suggest the formation of primary clusters [28]; larger
cluster sizes imply stronger three-particle correlations.
In our approach to multiparticle production, correlations

are modeled by using Gaussian distributions for either
cluster and final state particle production in high-energy
collisions [29]. Thereby, we make use of Gaussian widths
to parametrize the typical correlation lengths in the differ-
ent steps of hadron production.

As shown in [7], the three-particle correlation function
can be written as

C3ðΔϕ12;Δϕ13Þ ¼
1

hNhi2
hð1ÞðΔϕ12;Δϕ13Þ

þ 1

hNhi
hð2ÞðΔϕ12;Δϕ13Þ

þ hð3ÞðΔϕ12;Δϕ13Þ; ð10Þ

where each term on the rhs represents the correlations due
to one, two, and three initial sources of hidden particles,
indicated by the upper index of the h functions, produced in
the same initial partonic interaction; hNhi denotes the mean
number of hidden sources per collision. Note that the h
functions include the angular dependence due to all
possible correlations, namely, particle correlations in clus-
ters, cluster correlations, and hidden source correlations.
The bigger long-range correlations for the three-particle

correlation function C3ðΔϕ12;Δϕ13Þ in a three-step cas-
cade are given by the hð3ÞðΔϕ12;Δϕ13Þ term, associated to
three initial hidden/dark particles,

hð3ÞðΔϕ12;Δϕ13Þ ∼ exp

�
−
ðΔϕ12Þ2 þ ðΔϕ13Þ2 − Δϕ12Δϕ13

3δ2hϕ þ δ2hϕ

�
þ exp

�
−

ðΔϕ12Þ2
2ð2δ2cϕ þ δ2hϕÞ

�

þ exp

�
−

ðΔϕ13Þ2
2ð2δ2cϕ þ δ2hϕÞ

�
þ exp

�
−
ðΔϕ12Þ2 þ ðΔϕ13Þ2 − 2Δϕ12Δϕ13

2ð2δ2cϕ þ δ2hϕÞ
�
: ð11Þ

Here, δhϕ and δcϕ represent the expected correlation length
due to the first and second steps in the evolution of the
parton cascade using a simplified model. In turn, correla-
tions of particles from clusters are parametrized by δϕ,

which can be referred to as the cluster decay width in the
transverse plane (see [7,29]). The full set of expressions for
the three-particle correlation function C3ðΔϕ12;Δϕ13Þ in a
three-step cascade process can be found in [7].
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FIG. 2. Left: Contour plot of the three-particle correlation function C3ðΔϕ12;Δϕ13Þ of a three-step cascade with an initial long-range
contribution from a hidden sector. Right: Diagonal projection of C3ðΔϕ12;Δϕ13Þ, where the peak at Δϕ1 ¼ Δϕ2 ¼ 0 is normalized to
unity. The dotted (red), dashed (magenta) and thin solid (blue) curves show the contributions from one, two, and three hidden particles,
respectively. The weighted sum is shown by the thick (turquoise) curve. Plots are taken from our work [7].

COSMOLOGICAL ANALOGIES IN THE SEARCH FOR NEW … PHYS. REV. D 102, 035013 (2020)

035013-5



The plots of the three-particle correlation function
obtained from numerical estimates of a three-step cascade
with an initial long-range contribution from a hidden sector
are shown in Fig. 2. The left panel shows a typical
(spiderweb) structure of the three-particle correlations in
a two-dimensional (Δϕ12, Δϕ13) plot. The right panel
shows its projection along the diagonal Δϕ12 ¼ Δϕ13.
The latter plot stands for three-particle correlations disen-
tangling the diverse sources of short-range and long-range
angular correlations.
Turning to the cosmological analogy, we apply the same

analysis of angular correlations in the CMB as employed in
high-energy collisions with the following correspondence
in our Gaussian parametrization: δhϕ → δhθ for long-range
correlations, δcϕ → δcθ for short-range correlations, and
δϕ → δθ for very-short-range (within-cluster) correlations,
respectively.
As commented above, two kinds of anisotropies can be

distinguished in the CMB:
(1) Primary anisotropies produced prior to recombina-

tion/decoupling, yielding rather long-range correla-
tions, mainly due to the SW effect. In our
parametrization, it corresponds to δhθ ≃ 1 rad [see
Eq. (4)]. Also, baryon acoustic oscillations of the
plasma contribute to anisotropies but at a smaller
scale, implying δcθ ≲ 1°.

(2) Secondary anisotropies developing as the CMB
propagates from the last scattering surface to the
present observer leading to very-short-range angular
correlations. The set of such effects yields in our
parametrization to δθ ≪ 1°.

Notice that the angular scales showing up as anisotropies
in the CBM are not too much different from the expected
azimuthal scales stemming from multiparticle production

via a hidden sector on top of the partonic shower in high-
energy collisions [7].
Figure 3 shows the three-point correlation function

C3ðΔθ12;Δθ13Þ plots for cosmological estimates using a
simple model which takes into account the overall sources
of short-range and long-range correlations. The left panel
shows the two-dimensional plot of C3ðΔθ12;Δθ13Þ as a
function of Δθ12 and Δθ13, while the right panel shows the
on diagonal projection of the function. This figure is
analogous to Fig. 2 for high-energy collisions. Again,
the three-point correlation function is arbitrarily normalized
to unity at Δθ12 ¼ Δθ13 ¼ 0, since we are here interested
rather in disentangling the different sources to angular
correlations. Of course, a more realistic study should
incorporate the absolute normalization and relative weights
using a more detailed model. Note that the hðΔθ12;Δθ13Þ
functions, i.e., the equivalent cosmological terms in
Eq. (10) for high-energy collisions, are similarly sensitive
to very-short-range, short-range and long-range correla-
tions, respectively. This is an important result of our work.
By comparing Figs. 2 and 3, an equivalent structure can

be appreciated in both panels as expected from the common
existence of angular short-range and long-range correla-
tions, no matter their physical origin. Again, as in the case
of high-energy hadronic collisions, several distinct corre-
lation scales clearly show up: short-range correlation
lengths (secondary angular correlations), and a long-range
correlation length (primary angular correlations) associated
to the early epoch of the Universe. The diagonal projection
suggests a pattern which might be useful to disentangle
possible sources of angular correlations present in the
CMB. Short-range and very-short-range correlations are
behind the peak structure while longer correlations deter-
mine the smooth falling off. Further detailed structure can
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FIG. 3. Left: Contour plot of the three-point correlation function C3ðΔθ12;Δθ13Þ in the cosmological case using a toy model to take
into account different sources of short-range and long-range correlations. Right: Diagonal projection of C3ðΔθ12;Δθ13Þ showing the
different contributions in analogy to Fig. 2.
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vary depending on the different underlying effects, but the
overall behavior is expected to be quite similar.

V. CONCLUSIONS

In this paper, we discuss an intriguing similarity between
long-range angular correlations observed in the CMB and
those obtained from multiparticle production in high-
energy collisions. Although the physical origin of such
long-range angular correlations is completely different in
the two physical situations, the analogy is supported by the
following facts: the time evolution in both cases (yielding
complex structures from a primitive state of matter, either
galaxies or final-state particles) is not continuous but rather
involves different well-defined steps, with similar angular
scales. Based on this observation, a common explanation
has been proposed upon the assumption of the existence
of an unconventional early state: an expanding universe
before recombination/decoupling (last scattering surface),
where the CMB was released, evolving up to present
days, versus the formation of hidden/dark states in
hadronic collisions followed by a conventional QCD

cascade resulting in final-state particles. Using simple
modeling, we show that three-point/three-particle correla-
tions should be a useful tool to disentangle the different
contributions to short-range and long-range correlations in
the Universe evolution or in multiparticle production,
highlighting deep connections between both fields in the
search for new physics and phenomena either at the LHC or
future accelerators.
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