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Space charge is typically one of the performance limitations for the operation of high intensity
and high brightness beams in circular accelerators. In the Proton Synchrotron (PS) at CERN,
losses are observed for vertical tunes above Qy = 6.25, especially for beams with large space charge
tune shift. The work presented here shows that this behaviour is associated to structure resonances
excited by space charge due to the highly symmetric accelerator lattice of the PS, typical for first
generation alternating gradient synchrotrons. Experimental studies demonstrate the dependency of
the losses on the beam brightness and the harmonic of the resonance, and simulation studies reveal
the incoherent nature of the resonance. Furthermore, the calculation of the Resonance Driving
Terms (RDT) generated by the space charge potential shows that the operational working point of
the PS is surrounded by multiple space charge driven incoherent resonances. Finally, measurements
and simulations on both lattice driven and space charge driven resonances illustrate the different
behaviour of the beam loss depending on the source of the resonance excitation and on the beam
brightness.

I. INTRODUCTION

Space charge effects in combination with betatron reso-
nances can be one of the main performance limitations for
high brightness beams in circular accelerators. The space
charge force generates an incoherent tune shift that de-
pends on the line density of the longitudinal beam profile
and the transverse beam size evolution around the ma-
chine. Different tune shifts of individual particles lead to
a tune spread in the transverse tune space. The inter-
play between the space charge tune spread and excited
resonances was previously studied on a controlled normal
octupole resonance [1–3]. The experimentally observed
transverse emittance growth and beam loss was identified
to be caused by the periodic resonance crossing and trap-
ping of individual particles due to the modulation of the
transverse space charge force through the synchrotron os-
cillations. More recently, the same mechanism was stud-
ied at a coupled sextupole resonance [4]. However, in
addition to the induced incoherent tune spread, the non-
linear transverse space charge potential can also directly
excite structure resonances, as shown in [5–7].

The CERN Proton Synchrotron (PS) provides an ex-
cellent test bench for the study of space charge effects due
to its highly symmetric lattice and the long beam stor-
age time required at low energy in normal operation [8].
Moreover, space charge is the major performance limita-
tion for high brightness beams required in the context of
the LHC Injectors Upgrade (LIU) project [9]. The PS
consists of 100 combined function main magnets, each
divided into a focusing and defocusing half unit, result-
ing in a total of 50 cells. The bare tunes of Qx = 6.25,
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Qy = 6.28 are determined by the quadrupolar compo-
nents of the main magnets. The tunes can be adjusted
either using dedicated quadrupoles or circuits of pole face
windings (PFW) on the main magnet poles [10]. Each
of these two options comes with disadvantages, namely a
large perturbation of the periodicity of the machine for
large tune adjustments with the dedicated quadrupoles
(as they are not placed symmetrically around the ring),
while the tune control through the PFWs also generates
unavoidable higher order field components. In the usual
operation of the PS, the dedicated quadrupoles are pre-
ferred for the tune adjustment at low energy, while the
PFW are used to control tunes and chromaticities dur-
ing the ramp. Even though the 50-fold periodicity of the
bare lattice is slightly perturbed by the insertion of 20
long straight sections, the optics remain highly regular
and the main harmonic of the lattice is 50, as can be
seen through the optics and the harmonic analysis of the
beam size in Fig. 1. The presence of this strong lattice
harmonic suggests that resonances of the same harmonic,
i.e. mQx + nQy = 50, where (m,n) are integer num-
bers indicating the order of the resonance, can be driven
by systematic errors in the machine and even by space
charge itself.

The maximum incoherent space charge tune shifts for
the operational LHC beams at injection in the PS are
∆Qx ≈ −0.19 and ∆Qy ≈ −0.24 and the bare tunes
are usually set to Qx = 6.20 and Qy = 6.24. The need
to accommodate an even higher incoherent space charge
tune shift of beams with even higher brightness in the
course of the LIU project drives the need for detailed
resonance and space charge studies in order not to exceed
the allocated 5 % emittance growth and 5 % loss budgets.

To guide the choice of the optimal working point for
these high brightness beams, dynamic tune scan mea-
surements were performed using a low brightness beam
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FIG. 1. Linear optics functions in the PS lattice (top) and the
corresponding beam size (center) calculated using transverse
normalized 1 σ emittances εnx = 5.5, εny = 4.5 and an rms
momentum spread of ∆p/p = 0.52×10−3. Harmonic analysis
of the beam size modulation (bottom).

with large transverse emittances in order to identify ex-
cited resonances through the recorded losses, as reported
in the past for the PS [11] and the CERN Proton Syn-
chrotron Booster (PSB) [12]. During the measurements
one of the tunes is kept constant while the other is varied
linearly to cover the available tune space. The procedure
is repeated until the accessible tune space is fully covered,
in all possible directions. Measuring the beam loss rate
as a function of the tune settings allows the identification
of excited resonances as shown in Fig. 2.

Various low order resonances up to 4th order can be
clearly identified. In particular, the strongest resonance
seems to be the sum resonance 2Qx + Qy = 19, most
likely excited by skew sextupole errors in the main mag-
nets [13]. However, since the exact error remains un-
known no skew sextupole-like errors are included in the

FIG. 2. Beam loss map in the transverse tune space colour
coded to the loss rate. Theoretical resonance lines up to 4th

order are plotted, systematic ones in red and non-systematic
ones in blue. The skew resonances are shown with dashed
lines and the normal resonances with solid lines.

nonlinear PS optics model. Other sextupole resonances
such as the 3Qy = 19 skew resonance as well as the
Qx− 2Qy = −6 normal sextupole resonance appear con-
siderably weaker. Furthermore, the excitation of the res-
onances 2Qx + 2Qy = 25 and 4Qx = 25 indicates the
presence of octupolar-like errors. On the other hand, the
main region of interest around the operational working
point Qx = 6.20, Qy = 6.24 seems free of resonances
when considering the results from dynamic tune scans.
Therefore, one could expect that working points above
Qy = 6.25 could be suitable for operating high bright-
ness beams in the PS. However, experimental studies to
explore higher vertical tunes showed slow losses in the low
energy part of the PS cycle as presented in Fig 3. It could
be argued that the identification of resonances through
dynamic tune scans is not sensitive enough to resolve rel-
atively weak resonances. Instead, it was shown that the
nonlinear space charge potential excites a structure res-
onance at Qy = 6.25 due to the high periodicity of the
PS lattice [14, 15]. As shown in the following sections,
a detailed analysis of the space charge driven structure
resonances in the PS reveals that the operational work-
ing point is actually surrounded by several space charge
driven 8th order incoherent structure resonances, as iden-
tified through experimental observations combined with
simulations and analytical studies.

This paper is organized as follows. In Section II, the
initial studies leading to the identification of a space
charge driven structure resonance at Qy = 6.25 are
described. A detailed characterization through simu-
lation studies is presented in Section III, clearly high-
lighting the incoherent nature of this resonance. With
this result, the Hamiltonian resonance driving terms in-
duced by the space charge potential of a Gaussian beam
are calculated analytically in Section IV, revealing ad-
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FIG. 3. Intensity along the PS cycle for different vertical
tunes. The magnetic field along the cycle is plotted on a
second axis.

ditional space charge driven structure resonances. The
resonance excitation is also demonstrated using the Fre-
quency Map Analysis (FMA) technique in Section V. The
expected loss mechanism for bunched beams is discussed
in Section VI. Section VII summarizes detailed experi-
mental and simulation studies performed with low and
high brightness beams, confirming the presence of vari-
ous space charge driven structure resonances in the PS.
Conclusions are given in Section VIII.

II. EXPERIMENTAL IDENTIFICATION OF
STRUCTURE RESONANCES

The resonance at Qy = 6.25 leading to the losses
observed in Fig. 3 could be driven either by random
octupole-like errors of the PS lattice, or by the space
charge potential due to the structure of the lattice. To
experimentally identify the source of the excitation a cou-
ple of experiments were designed in order to correlate the
observations to brightness and the 50th lattice harmonic.

The dependence of the losses on the strength of the
direct space charge force is demonstrated by an exper-
imental study with beams of varying brightness. The
beam parameters are summarized in Table I, the inten-
sity is given in particles per bunch (ppb), the momentum
deviation is noted as ∆p/p and the normalized transverse
emittances as εnx,y. During the experiment, the horizontal
tune was kept at 6.23 and the vertical tune was ramped
from 6.24 to 6.30 and it was kept constant for 300 ms,
before ramping it down again to 6.24. The advantage
of such a tune step is that beam loss starts and ends at
precise times and can be clearly associated to the cross-
ing of the resonance through the increase of the vertical
tune. Figure 4 shows the relative intensity of the four
beams along the cycle and the evolution of the vertical
tune. It can be seen that the beam loss is directly corre-
lated to the space charge force, demonstrated by the fact
that the beam type 1 (blue) with the highest tune shift
experiences the highest losses.

TABLE I. Beam parameters for the experimental results
shown in Fig. 4

Beam ID 1 2 3 4

Intensity [1010 ppb] 115 80 35 115
Ekin[GeV] 1.4 1.4 1.4 1.4
Bunch length (4σ) [ns] 100 100 100 coasting
∆p/p (rms) [10−3] 1.8 1.8 1.8 1.8
εnx (1σ) [µm] 1.3 0.77 0.95 1.3
εny (1σ) [µm] 1.6 1.1 0.6 1.6
∆Qx (maximum) -0.22 -0.18 -0.08 -0.01
∆Qy (maximum) -0.40 -0.37 -0.24 -0.01

To verify that the resonance is only excited at the 50th

harmonic, an experiment at different integer tunes was
performed to probe the excitation at other resonance har-
monics. The change of the vertical tune by one integer
was achieved using an extra circuit installed in the main
magnets referred to as Figure-of-8-Loop (F8L), which has
the advantage of changing the quadrupolar field compo-
nent of the combined function magnets without signifi-
cantly exciting higher order field components [16]. The
main limitation of this circuit is that it acts on both
transverse tunes in opposite directions, as it increase the
field in one half unit while decreasing it in the other.
Hence, the experiment was conducted with the horizon-
tal tune decreased by one integer unit and the vertical
tune increased by one unit, which is referred to as (5, 7)
optics according to the integer parts of (Qx, Qy). It was
verified that the integer part of the tune was indeed 5 in
the horizontal and 7 in the vertical plane. The measured
optics agreed with the model within 10% beta-beating
and dispersion-beating [15].

The main measurement consisted of a tune-step in
which the horizontal tune was kept constant while the
fractional vertical tune was changed from 0.24 to a

FIG. 4. Normalized intensity of four beams with different
space charge tune shifts when the Qy = 6.25 resonance is
crossed (solid colour lines). The dashed line shows the vertical
tune step on a second axis.
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FIG. 5. Vertical tune steps programmed in the experiments
(top). Normalized intensity along the cycle for the (6,6) nom-
inal optics (center) and the (5,7) split-tunes optics (bottom).

plateau value, where it was kept constant for 500 ms and
then changed back to 0.24. The plateau value was var-
ied between 0.24 and 0.3 in order to see the effect at the
different working points, as shown in Fig. 5 (top). This
measurement was performed in the (6,6) nominal optics
and the (5,7) split-tunes optics. In the case of the nomi-
nal optics shown in Fig. 5 (center), the beam loss clearly
increases for higher working points (since more particles
cross the resonance due to the space charge induced tune
shift). On the contrary, no beam loss was observed for
the same range of fractional tunes in the case of the split-

tunes (5,7) optics, as shown in Fig. 5 (bottom). The
change of integer was found to be effective in mitigat-
ing against harmful effects of the resonance, confirming
that the resonance at Qy = 6.25 is a space charge driven
structure resonance. Unfortunately, the split-tunes op-
tics (5,7) cannot be used in routine operation, as the
available strength of the F8L is not sufficient to maintain
this working point up to extraction energy. In addition,
the impact on the gamma transition jump scheme [17]
due to the change of phase advance between the special
fast quadrupoles would require further studies.

III. RESONANCE CHARACTERIZATION

The presence of the strong 50th harmonic in the lattice
and the excitation of the resonance at Qy = 6.25 through
space charge was experimentally confirmed. However,
the resonance could be excited either in 8th order as an
incoherent structure resonance 8Qy = 50, or in 4th order,
as a coherent parametric resonance 4Qy = 50/2 [18]. The
order of the excitation and hence the nature of the res-
onance at Qy = 6.25 can be verified in simulation stud-
ies. For this purpose, the resonance was dynamically
crossed [19, 20] using a coasting beam. In particular,
the simulations are performed with two different space
charge models: 1) self-consistent space charge solvers,
which take into account both the coherent and incoher-
ent response of the beam, 2) frozen model without up-
date using analytical solvers for Gaussian distributions
based on the Bassetti-Erskine formula [21], which take
into account incoherent effects only. Comparing the re-
sults obtained with these two simulation models allows to
identify the nature of the resonance. Furthermore, long
term tracking simulations are used to study the agree-
ment of these two models for bunched beams and long
storage times.

A. Simple FODO lattice (coasting beam)

Initially a simplified FODO lattice is used in order
to study space charge driven resonances, like the one
observed at Qy = 6.25 in the PS, without taking into
account the full complexity of the PS lattice yet. The
FODO lattice used here consists of 50 identical cells,
which is similar to the PS lattice, but without the 20
slightly longer straight sections. It has the same period-
icity, energy and circumference, and therefore it can be
matched to the same working points and excite the same
structural resonances. The optics functions, the beam
size evolution and the lattice harmonics of the FODO
lattice are shown in Fig. 6. The resonance at Qy = 6.25
is dynamically crossed by varying the tune in the verti-
cal plane, while the horizontal tune is kept constant at
Qx = 7.2. Note that the horizontal tune is moved to a
different integer in order to avoid the crossing of the extra
space charge driven resonances that will be discussed in
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Section IV. The lattice is matched in MAD-X [22] and the
tracking simulation is performed with PTC [23] in PyOr-
bit [24]. A coasting beam is used in this study in order to
avoid the complexity coming from the longitudinal mo-
tion, and to enhance any possible coherent response of
the beam. The beam is generated with Gaussian trans-
verse distributions. The space charge force is included
in the simulations using either the fully self-consistent
2.5 D Particle-In-Cell (PIC) solver, in which the force is
calculated using a Poisson solver on a grid and weighted
using the longitudinal line density, or an analytic solver
in which the space charge force is evaluated based on
a frozen potential calculated from the lattice functions
and the macroscopic parameters of the beam using the
Bassetti-Erskine formula [21]. The beam parameters are
chosen to obtain maximum tune shifts in the order of
∆Qx ≈ −0.24 and ∆Qy ≈ −0.34.

Figure 7 summarizes the simulation results. Hardly
any response of the beam is observed when crossing the
resonance from below (top graphs) for both the self con-
sistent PIC simulation (left) and the frozen model (right).
The core of the beam is unaffected while only some minor
tails in the vertical plane are formed, probably caused by
the scattering of individual particles on the incoherent
resonance, which result in a vertical emittance growth
of a few percent. In fact, the phase space does not show
any structure that would indicate the crossing of a strong
resonance.

The situation is quite different when crossing the res-
onance from above (bottom graphs). A large increase of
the vertical emittance is observed and the phase space
shows the clear formation of 8 islands indicating the ex-
citation of the resonance in 8th order. This explains
the formation of large tails, since particles trapped in
the 8Qy = 50 resonance separate from the beam core
as the resonance islands move outwards when the verti-
cal tune is further decreased. It is worth pointing out
that the qualitative beam behaviour between the fully
self-consistent PIC simulation (left) and the frozen space
charge solver (right) agrees very well. In fact, the main
dynamics of the two models is equivalent, which confirms
the incoherent nature of the resonance since the frozen
space charge solver cannot reproduce coherent effects.
However, the emittance blow-up in the frozen model is
slightly more pronounced compared to the self consistent
solver. This quantitative difference is due to the fact
that the beam parameters used for the frozen potential
are kept constant throughout the simulation while the
change of the particle distribution is taken into account
in the self-consistent PIC simulations.

B. The PS lattice (coasting beam)

A similar study as shown above for the FODO lat-
tice was repeated using the actual lattice of the PS. The
main difference between the simple FODO lattice and the
PS is that the latter consists of combined function mag-

FIG. 6. Linear optics functions in the simple FODO lattice
(top) and the corresponding beam size (center) calculated us-
ing transverse normalized 1 σ emittances εnx = 5.5, εny = 4.5
and an rms momentum spread of ∆p/p = 0.52 × 10−3. Har-
monic analysis of the beam size modulation (bottom).

nets, and therefore the modulation of the lattice func-
tions along the machine is less pronounced. In addition,
the symmetry of the PS lattice is slightly modified by
the 20 long straight sections as described in Sec II. Al-
though extra quadrupole magnets are installed in the PS,
in these simulations the tune matching was done using
only the quadrupolar components of the PFW to pre-
serve the periodicity as much as possible. The nonlinear
field components introduced by the PFW in the real ma-
chine were omitted, in order not to excite any additional
resonances. Hence, only the linear PS model is consid-
ered with space charge as the only nonlinearity in the
lattice. The results for both crossing directions and the
two solvers are shown in Fig. 8.

Similar to the observations for the simple FODO lat-
tice, the response of the beam as the tune increases from
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FIG. 7. Dynamic crossing of the Qy = 6.25 resonance using the simple FODO lattice. The tracking is done using the self-
consistent PIC 2.5 D space charge solver (left) and the frozen model (right). The resonance is crossed as the tune increases
from Qy = 6.24 to Qy = 6.45 (top) and vice-versa (bottom). For each solver and crossing direction, the vertical beam profiles
are shown as function of turns and tune, using a second axis, color coded to the particle density (top). Likewise, the transverse
emittances are given as a function of turns (and tunes on the second axis), while the vertical phase space is shown color-coded
to the particle density for the turn and tune corresponding to the vertical line, at 900 and 2000 turns for the two crossings
(bottom).
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FIG. 8. Dynamic crossing of the Qy = 6.25 resonance using the PS lattice. The tracking is done using the self-consistent PIC
2.5 D space charge solver (left) and the frozen model (right). The resonance is crossed as the tune increases from Qy = 6.24
to Qy = 6.45 (top) and vice-versa (bottom). For each solver and crossing direction, the vertical beam profiles are shown as
function of turns and tune, using a second axis, color coded to the particle density (top). Likewise, the transverse emittances
are given as a function of turns (and tunes on the second axis), while the vertical phase space is shown color-coded to the
particle density for the turn and tune corresponding to the vertical line, at 900 and 2000 turns for the two crossings (bottom).
Note the different scale of both profiles and emittance plots between the top and bottom graphs.
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Qy = 6.24 to Qy = 6.45 is minimal and no significant
vertical emittance increase is observed (top graphs). On
the contrary, crossing the resonance in the opposite direc-
tion results in significant vertical emittance growth (bot-
tom graphs). With both space charge models the vertical
phase space shows particles in the tails of the beam dis-
tribution trapped in 8 islands that detach from the core,
spread out and eventually collapse at high amplitudes.
The profile evolution shows this trapping and collapse as
the tails expand to very large amplitudes. The fact that
both solvers demonstrate the same behaviour confirms
again the incoherent nature of this resonance.

C. Long term behaviour (bunched beam, simple
FODO lattice )

The simulations of the dynamic crossing have shown
that in both lattices the incoherent response of the beam
is by far dominating, even in the absence of longitudi-
nal motion. In order to study the long term behaviour
in the presence of synchrotron motion, a bunched beam
was tracked in the FODO lattice for 105 turns (corre-
sponding to about 0.2 s and more than 140 synchrotron
oscillations in the PS). The FODO lattice is chosen, since
the PS lattice has significantly more elements and track-
ing with the PIC solver is unfeasible for so many turns
due to the excessive simulation time required. The beam
behaviour at tunes in the vicinity of the working point
regime of interest is explored, namely Qx = 6.2 and
Qy = 6.24 − 6.31. The scan is static, i.e. the tunes are
kept constant throughout the simulations and the initial
beam distributions are Gaussian in the transverse planes
while the longitudinal profile was parabolic, similar to the
operational beams in the PS. For the simulations with the
PIC solver, 4 × 105 macro-particles were used, while in
the simulations with the analytic solver already 3 × 103

macro-particles were enough to resolve the beam profiles.
To ensure that the analytic space charge solver is not
overestimating the resonance excitation when the beam
is degrading, the beam parameters used for calculating
the space charge kick (intensity, transverse emittances,
longitudinal line density profile and momentum spread)
were updated every 100 turns.

A comparison of the transverse emittance and intensity
ratios (ratio final over initial) between the two solvers is
shown in Fig. 9. The intensity and horizontal emittance
values seem to agree very well between the two models
for all tested working points. However, a disagreement
of a few percent (up to ≈ 9%) is observed in the ver-
tical emittances, especially for Qy > 6.29. The larger
blow-up observed in the PIC simulations could be par-
tially coming from the noise on the grid [25], and partially
from the fact that the Bassetti-Erskine formula used in
the analytic solver is describing exact Gaussian distri-
butions. Overall, the agreement between the solvers is
very good. The analytic solver with parameters updated
every 100 turns, which is referred to as adaptive frozen

FIG. 9. Static tune scan of the simple FODO lattice for 105

turns of a bunched beam with space charge. Transverse emit-
tances and intensity (I) ratios are plotted as a function of the
vertical tune for the self-consistent PIC 2.5 D and the adap-
tive frozen space charge solvers with dashed and solid lines,
respectively. The vertical lines correspond to 8th order sys-
tematic resonances crossed.

model in what follows, is therefore the simulation model
of choice as it provides good enough agreement with the
PIC model and allows tracking of less particles and con-
sequently leads to much shorter simulation times.

It should be noted that, besides the agreement between
the solvers, the results of this simulation study hint at the
excitation of additional space charge driven resonances,
indicated by the vertical lines in the graph, which will be
discussed in more detail in the following section.

IV. RESONANCE DRIVING TERMS

Since the nature of the resonance at Qy = 6.25 is
purely incoherent, as revealed by the simulations dis-
cussed above, its strength can be studied by applying
classical perturbation theory on the nonlinear Hamilto-
nian of a stationary beam [26]. In fact, the leading order
Resonance Driving Terms (RDTs) of incoherent space
charge driven resonances can be calculated [5, 7] for the
perturbation coming from the space charge potential Vsc
of a Gaussian (bunched) beam, which is given by [27]

Vsc(x, y) =
r0Nb

β2γ3
√

2πσs

∫ ∞
0

−1 + exp− x2

2σ2
x+t

y2

2σ2
y+t√

(2σ2
x + t)(2σ2

y + t)
dt,

(1)
where r0 is the classical particle radius, Nb the bunch in-
tensity, β, γ, the relativistic factors and σs,x,y the longi-
tudinal, horizontal and vertical beam sizes, respectively.
The evaluation of the above method was implemented in
a Python module [28] to calculate the RDTs and the non-
linear detuning terms for the potential of Eq. (1). This
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FIG. 10. RDTs computed from the space charge potential of a transverse Gaussian beam for the PS lattice for the 8Qy (top-left),
2Qx + 6Qy (top-right), 4Qx + 4Qy (middle-left), 6Qx + 2Qy (middle-right), 8Qx (bottom-left) and 4Qx − 4Qy (bottom-right)
resonances for various working points. The color code corresponds to the amplitude of the respective driving term.Resonance
lines of 8th order are plotted. Skew in dashed and normal in solid lines, systematic in red and non-systematic in blue.

code was used to study the 8th order structure resonances
in the PS in the vicinity of the operational working point,
as discussed below. The optics functions of the PS lattice,
required for the calculation of the RDTs, were obtained
from MAD-X. A detailed explanation of the driving term

calculation can be found in Appendix B.

The RDTs for the 8th order resonances in the full
tune space around the nominal working point of the PS,
namely 8Qy = 50, 2Qx + 6Qy = 50, 4Qx + 4Qy = 50,
6Qx + 2Qy = 50, 8Qx = 50 and 4Qx − 4Qy = 0,
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TABLE II. Beam parameters used in tune scans, the evalua-
tion of the space charge RDTs and the FMAs.

Beam Type high-brightness
medium-

brightness
Intensity [1010 ppb] 96 48
Ekin[GeV] 1.4 1.4
Bunch length (4σ) [ns] 80 80
∆p/p (rms) [10−3] 0.52 0.52
εnx (1σ) [µm] 5.5 5.5
εny (1σ) [µm] 4.5 4.5
∆Qx (maximum) -0.15 -0.07
∆Qy (maximum) -0.16 -0.08

were evaluated for a high brightness beam with the pa-
rameters given in the first column of Table II and the
results are shown in Fig. 10. The coupling resonance
4Qx − 4Qy = 0 is driven in 8th order through the 0th

harmonic and is the strongest resonance of the ones dis-
cussed here. Note that this resonance is also excited in
4th order, (i.e. Montague resonance [29]), but for the pur-
poses of this study only the 8th order resonance driving
term is shown. The 8th order driving terms for the re-
maining resonances, increase significantly when the tune
values are set on the 50th harmonic. This harmonic co-
incides with the periodicity of the PS optics modulation
and consequently, the corresponding resonances are ex-
cited. On the other hand, the resonances at harmon-
ics not present in the variation of the optics functions
of the lattice are not excited and the respective RDT
goes to 0. It should be emphasized that the strength of
the excitation, indicated by the amplitude of the RDT,
is not the same for all resonances. The 8Qy = 50,
2Qx + 6Qy = 50 and 6Qx + 2Qy = 50 resonances appear
to be the strongest ones, while the 8Qx = 50 and espe-
cially the 4Qx + 4Qy = 50 resonances are much weaker.
The difference comes from the different beam sizes in the
horizontal and vertical planes due to the emittances and
the presence of dispersion, and from the different parts
of the space charge potential driving them.

V. FREQUENCY MAP ANALYSIS

The excitation of the space charge driven resonances
can also be studied using the Frequency Map Analysis
(FMA) technique [30] for tracking data including space
charge. The PS lattice is matched using MAD-X and
the tracking is done with PTC in PyORBIT. The space
charge is included using the PyORBIT frozen model
without update. The parameters of the high brightness
beam in the first column of Table II are used for the
calculation of the space charge kicks in the simulations.
For each FMA, test particles with the same longitudinal
action are tracked for two consecutive synchrotron peri-
ods. The tunes of each particle are calculated applying
the Python implementation of the Numerical Analysis of

Fundamental Frequencies (NAFF) [31, 32] to the turn
by turn data. The indicator for the resonance excitation
is the tune diffusion coefficient [33], which is defined as

d = log10

√
(Qx,2 −Qx,1)

2
+ (Qy,2 −Qy,1)

2
, where the

indices (1), (2) refer to the first and second synchrotron
period, respectively. For on-momentum particles, the
resulting FMA is shown in Fig. 11 (top). The excita-
tion of the structural resonances is shown in the tune
and configuration spaces. The same technique is applied
to off-momentum particles, initialized longitudinally at
≈ 1.2σ, and the resulting FMA is shown in Fig. 11 (bot-
tom). In this case the tunes are modulated through the
synchrotron motion due to the varying space charge po-
tential along the longitudinal line density profile of the
beam and the chromaticity, which is kept at the natural
values. Therefore, the resonances appear broader com-
pared to the on-momentum case, since they are crossed
by a larger number of particles through synchrotron mo-
tion. Additionally, the calculated tune diffusion for all
particles crossing resonances appears larger.

VI. LOSS MECHANISM

The excitation of the space charge driven resonances
due to the 50th harmonic of the lattice functions
(cf. Fig. 1) has been confirmed in the simulations shown
in Fig. 8, the analytical calculation of the driving terms
shown in Fig. 10 and the FMAs of Fig. 11 as discussed
above. To identify the underlying mechanism that leads
to the beam loss observed in the measurements presented
in Figs. 3 and 5, test particles were simulated using the
frozen space charge solver without update. The test par-
ticles were initialized with relatively small horizontal ini-
tial amplitudes, x < 10 mm, and varying vertical initial
amplitudes from y = 6 mm to y = 20 mm, i.e. up to 5σ of
the beam size. Longitudinally, all particles were initial-
ized with the same action and in-phase, at ≈ 1.2σrms

s and
dE = 0. The simulations were performed for a working
point above the 8Qy = 50 resonance, namely Qx = 6.18,
Qy = 6.28, and particles were tracked for 2000 turns cor-
responding to ≈ 2.5 synchrotron periods.

The turn-by-turn data of the simulations were used to
calculate the tunes of each particle as described in Sec-
tion V. The tunes were evaluated using a sliding window
of 50 turns and their evolution versus the number of turns
and synchrotron period is shown in Fig. 12 (top). The
tune modulation is characteristic of the dependence of
the transverse space charge force on the longitudinal line
density. An additional contribution to the tune mod-
ulation comes from chromaticity, which is kept at the
natural values of Q′x ≈ −5.7 and Q′y ≈ −7.6 in the sim-
ulations. Under these conditions the tune modulation is
∆Q = ∆Qsc + ∆Qchroma, where the ∆Qchroma varies
from −0.01 to 0.01 depending on the synchrotron mo-
tion. Hence, in the first half of the synchrotron period
the chromaticity gives a positive tune shift while in the
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FIG. 11. FMA for on-momentum (top) and off-momentum (bottom) particles. Tune diagrams with resonances of 3rd and 8th

order. Systematic resonances are plotted in red and non-systematic ones in blue. The skew resonances are shown with dashed
lines and the normal resonances with solid lines (left). The initial position of the particles tracked in the configuration space
(right). The color coding represents the diffusion coefficient.

second half a negative one, similar to space charge, which
results in a different tune modulation depth during the
two halfs of each synchrotron period. Figure 12 (bot-
tom) shows the evolution of the vertical betatron action
for the same test particles using the same color code.
As expected, particles with smaller amplitude have lower
tunes due to the incoherent space charge tune shift. More
interestingly, it turns out that the “space charge induced
periodic resonance crossing”, which was extensively stud-
ied in the context of magnet driven resonances in pres-
ence of space charge [1–4], is also the mechanism result-
ing in losses here: for the chosen vertical machine tune,
the test particles with high amplitude periodically cross
the 8Qy = 50 resonance. In some cases the crossing
of the resonance leads to a rapid diffusion also referred
to as ”scattering” of the particle trajectory on the reso-
nance [3], as can be observed by a change of the particle’s
action. In other cases, the resonance crossing leads to a
trapping of the particle on the resonance islands so that
the particle actions are transported to large amplitudes.

The trapping can be nicely observed in Fig. 13, which

shows the vertical phase space portrait for the same test
particles using the same color code as before. The phase
space clearly shows the formation of 8 islands, similar
to Fig. 8. Trapped particles follow a spiraling trajec-
tory with increasing action in phase space, since the po-
sition of the resonance islands is moving to higher ampli-
tudes due to the increasing space charge detuning when
the particle is approaching the longitudinal center of the
bunch during its synchrotron oscillation. Note that the
trapped particles leap into every second resonance island
due to the fractional tune of 0.25. This simulation was
performed without mechanical aperture limitations in or-
der to illustrate the particle dynamics. However, in the
real machine the particles trapped on the resonances is-
lands would be lost when reaching the vertical machine
aperture limitation, which is indicated by the vertical
lines in the phase space plots.

The betatron phase of the particle at the moment of
the resonance crossing determines in which set of islands
a particle is trapped in. Furthermore, beam loss in the
machine will occur continuously, as the particles have
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FIG. 12. Evolution of the Vertical tune (top) and the ver-
tical betatron action (bottom) of test particles in tracking
simulations. The second axis on top indicates the number of
synchrotron periods.

FIG. 13. Vertical phase space of the test particles shown with
the same color code as in Fig. 12.

different longitudinal phases, in agreement with the ex-
perimental observations shown in Fig. 3. It should also
be emphasized that, in the absence of any positive de-
tuning sources such as chromaticity, the losses due to
the 8Qy = 50 resonance occur only for machine work-
ing points with Qy > 6.25, since only then the particle
tunes are shifted towards the resonance and thus can get

trapped and scattered at the resonance islands due to the
space charge induced periodic resonance crossing.

VII. DETAILED MACHINE STUDIES

Detailed machine experiments were performed in or-
der to study the interplay between space charge and the
resonances excited either by space charge itself or other
lattice nonlinearities. The measurements consist of static
tune scans, during which the beam was injected directly
on the matched tunes and stored for 1.2 s at injection
energy. The intensity along the cycle was recorded and
compared to macro-particle simulations using the adap-
tive frozen space charge solver.

The tune scan shown in Fig. 4 had already suggested
the correlation of the beam brightness to measured losses,
while other measurements [34, 35] suggested the presence
of multiple 8th order structure resonances around the op-
erational working point of the PS. The present study aims
to clearly show the presence of these resonances [36] and
establish the source of excitation by correlating the beam
loss and the beam brightness not only to the space charge
driven resonances but additional controlled lattice driven
ones.

In this respect, two different types of beams were
used for the measurements, namely a high-brightness and
a medium-brightness beam. The parameters for both
beams are summarized in Table II. It should be em-
phasized that the longitudinal parameters as well as the
transverse emittances and consequently the beam sizes
were kept the same for both beams. The change of
the bunch intensity results in a proportional change of
the beam brightness and the space charge force. This
choice ensures that the RDTs, indicating the resonance
strength, are only scaled with the intensity while the rel-
ative strength of the excitation between the resonances
remains unaffected. Hence, the different response of the
beams on the space charge driven resonances can be di-
rectly associated to the change in the space charge force,
providing a clear correlation between resonance strength
and brightness. To explore the dependence of the beam
losses on the beam brightness on a magnet error driven
resonance, the 3Qy = 19 was excited in a controlled man-
ner. In fact, a different behaviour of the losses along the
controlled resonance compared to the losses from space
charge driven resonances can further help to classify the
various resonances. As the 3Qy = 19 is naturally ex-
cited in the PS as shown in Fig. 2, this resonance had to
be compensated before it could be used as a controlled
resonance. The compensation procedure is described in
Appendix A.

The incoherent space charge tune spreads for both
beams were calculated analytically from the potential [28]
and are illustrated in Fig. 14, together with the tune
space covered in the measurements and the resonances
of interest. The tested working points range from 6.24 to
6.37 in steps of 2× 10−2 in Qx, and 6.11 to 6.21 in steps
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FIG. 14. Analytically calculated tune footprints at the nomi-
nal working point for the high-brightness (top) and medium-
brightness (bottom) beams. The normal 8th order resonances
are shown in red, the 3rd order skew resonance is indicated
by the dashed blue line and the solid blue lines correspond to
the integer resonances. The green markers correspond to the
working points studied in the experiment.

of 5× 10−3 in Qy for the high-brightness beam, while for
the medium-brightness the scan is extended to even lower
tune values in Qx, i.e. 6.09 to 6.21. The reason for this is
that the medium-brightness beam with its smaller tune
shift could be injected at lower horizontal tunes, while
remaining unaffected by resonances at the integer tune
of Qx = 6.0. The beam loss was determined using the
intensity values measured with the beam current trans-
former at 15 ms and at 1115 ms after injection. To keep
the PS lattice as linear as possible, the chromaticity was

kept at the natural values, Q′x ≈ −5.7 and Q′y ≈ −7.6,
the linear coupling was corrected using the closest tune
approach method and the transverse damper was used to
stabilize the beam [37] from the head-tail instability on
the injection plateau [38].

A. Tune Scans with 3Qy Resonance Compensated

Figure 15 shows the results of the static tune scans with
the high-brightness and medium-brightness beams when
the 3Qy = 19 resonance was compensated. The mea-
sured total losses over the 1.2 s long injection plateau are
extracted for each measurement and the results are inter-
polated on a grid to identify the resonances, as shown in
Fig 15 (left). Likewise, each experimentally tested work-
ing point was simulated for 5× 105 turns, corresponding
to the full PS injection plateau, using 3000 macroparti-
cles with the adaptive frozen space charge solver in Py-
Orbit. Figure 15 (right) shows the resulting losses in-
terpolated on the same grid as before. The PS model
used in the simulations include systematic normal higher
order field components obtained by matching the mea-
sured nonlinear chromaticity [11]. Since the excitation
of the resonance 3Qy = 19 was compensated in the mea-
surement, no extra skew sextupole-like components are
needed in the PS model.

The measurements with the high-brightness beam
show losses of about 7% along tune values parallel to the
8th order resonance at 6.25. Losses of similar magnitude
are also observed along a line parallel to the coupled 8th

order resonance at 2Qx + 6Qy = 50. Note that the offset
between the resonance lines and the machine tunes at
which losses are observed is a typical feature of the space
charge induced periodic resonance crossing mechanism,
as also discussed in Sec. VI. The maximum losses are ob-
served for large horizontal tunes Qx > 6.18 because the
two resonances overlap and the bunch is affected by both
of them at the same time. In addition, losses of simi-
lar magnitude are observed in the vicinity of the anti-
diagonal line. Since along this line losses are observed
also with the low brightness beam during the dynamic
tune scans discussed in Fig. 2, and in addition the ex-
pected space charge induced RDT for the 4Qx+4Qy = 50
shown in Fig. 10 is weak, these losses are most likely
caused by the 4th order resonance 2Qx + 2Qy = 25 ex-
cited by octupole errors present in the ring.

The measurements with the medium-brightness beam
show losses along parallel lines to the space charge driven
resonances 8Qy = 50 and 2Qx + 6Qy = 50, but in
this case the observed losses of about 3 − 4% are about
half compared to the high-brightness beam, suggesting
that the resonances are weaker due to the reduced space
charge force. On the other hand, losses on the resonance
4Qx+4Qy = 50 or rather 2Qx+2Qy = 25 appear instead
enhanced. This further supports the excitation of the
resonance in 4th order, since lower brightness beams are
more sensitive to magnet error driven resonances. Note
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FIG. 15. Tune scan with the 3Qy = 19 resonance compensated. Results of the high-brightness (top) and medium-brightness
(bottom) beams in measurements (left) and simulations (right). The color code represents losses after 1.1 s of beam storage.
Resonances of 3rd and 4th order are plotted, systematic in red and non-systematic in blue. The skew resonances are shown
with dashed lines and the normal ones with solid lines. The resonances of interest are denoted as (m,n) corresponding to the
resonance condition mQx + nQy = l.

also that the losses appear much closer to the respective
resonances, since the incoherent space charge tune shift
is smaller for the medium-brightness beam.

Comparing the experimental data with the correspond-
ing simulations shows good agreement concerning the
tune offset between the observed losses and the res-
onances causing them. Concerning the magnitude of
losses, the space charge driven 2Qx + 6Qy = 50 reso-
nance seems to be very well reproduced both qualita-
tively and quantitatively. The quantitative agreement is
not as good for the 8Qy = 50 resonance, which results in
slightly higher losses in the simulations compared to the
measurements. No losses are observed in the simulations
along the 4Qx + 4Qy = 50 resonance. This is expected,
since the analytic RDT calculation showed that the exci-
tation of the 4Qx+4Qy = 50 resonance from space charge
is weak, and no octupolar components are included in
the model that could excite the 2Qx + 2Qy = 25 res-

onance. The fact that the modeling of the octupolar
components appears to be incomplete could also affect
the resonance at Qy = 6.25, contributing to the higher
losses observed in the simulations compared to the mea-
surements. Presently, there are not enough independent
octupole correctors available in the PS to compensate
octupole-like resonances. It should be noted that the res-
onance 2Qx+6Qy = 50 would remain unaffected by such
components as in 4th order it would be Qx + 3Qy = 25
and thus a skew and not a normal resonance.

B. Tune Scans with 3Qy Resonance Excited

The results of the static tune scans with the high-
brightness and medium-brightness beams in the presence
of controlled skew sextupolar components are presented
in Fig 16. The controlled excitation of the 3Qy reso-
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FIG. 16. Tune scan with the resonance 3Qy = 19 actively excited. Results of the high-brightness (top) and medium-brightness
(bottom) beams in measurements (left) and simulations (right). The color code represents losses after 1.1 s of beam storage.
Resonances of 3rd and 4th order are plotted, systematic in red and non-systematic in blue. The resonances of interest are
denoted as (m,n) corresponding to the resonance condition mQx + nQy = l.

nance is achieved using a skew sextupole, the “XSK52”,
powered at 2 A corresponding to an integrated normal-
ized skew sextupole strength of k2Sl = 0.0125 m−2. Two
more sextupoles, “XSK10” and “XSK14”, were always
set to the compensation configuration described in Ap-
pendix A. The data analysis and presentation is identical
to the one described in the previous section and is given
in Fig 16 (left). The simulations shown in Fig 16 (right)
are performed as discussed in the previous section, but
in this case the sextupole “XSK52” was excited with the
same strength as in the measurements.

The experimental data as well as the simulation re-
sults of both beams show the same behaviour as before
for working points close to the space charge driven reso-
nances, note the different scale of the color-code between
Figs. 15 and 16, since their excitation is not affected by
the addition of skew sextupolar components. Further-
more, the losses related to the 4th order 2Qx + 2Qy = 25

observed in the experiment are also not affected by the
nonlinearities introduced by the skew sextupole and as
expected the simulations also show no response on this
resonance. In addition, the offset between the resonances
and the tunes at which the losses are observed remain un-
affected as no extra tune shifts are introduced.

The chosen excitation of the 3Qy = 19 resonance re-
sults in much higher losses compared to the space charge
driven structure resonances. It is worth pointing out
that the relative losses from the 3Qy = 19 resonance are
higher for the medium-brightness beam compared to the
high-brightness beam, while the space charge driven res-
onances 8Qy = 50 and 2Qx+6Qy = 50 resulted in higher
losses for the high-brightness beam. This is another con-
firmation for the fact that the strength of the structure
resonances depends directly on the space charge potential
and is therefore proportional to the beam brightness.
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VIII. CONCLUSION

Structure resonances driven by the space charge po-
tential and the periodicity of the lattice were identified
in the CERN PS. By means of measurements at differ-
ent integer tunes the dependency on the resonance har-
monic and thus the lattice periodicity was verified. Sim-
ulation studies of a simple FODO structure and the PS
lattice itself demonstrated the incoherent nature of the
high order space charge driven resonances and the peri-
odic resonance crossing as the dominant loss mechanism.
Furthermore, the resonance driving terms of the space
charge potential, calculated for resonances in the vicin-
ity of the operational working point of the PS, showed the
excitation of multiple 8th order resonances. The presence
of the 8Qy = 50 and 2Qx + 6Qy = 50 resonances was
confirmed in a detailed experimental campaign, where
it was demonstrated that their strength depends on the
strength of the space charge potential and thus on the
beam brightness. Moreover, the difference in the be-
haviour of the losses from the space charge compared to
the lattice driven resonances further confirms the identi-
fication of the 8th order incoherent space charge driven
structure resonances in the PS. The experiment could
be reproduced using the simulation model of the PS.
There are some slight differences between the measure-
ments and the simulations, in particular concerning the
beam loss in the vicinity of the anti-diagonal line not
reproduced in the simulation, and the less good quanti-
tative agreement for the 8Qy = 50 resonance. This is,
however, most likely attributed to the incomplete model
of octupole-like errors in the PS lattice as the beam loss
at those resonances could not be reproduced with the
medium-brightness beam either. The fact that the res-
onances in the vicinity of the nominal working point of
the PS are space charge driven, justifies the higher injec-
tion energy in the scope of the LIU project as a means
to accommodate higher brightness beams.
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Appendix A: Resonance compensation

The 3rd order skew resonance at Qy = 6.33, which
was used with controlled excitation for the experiment,
is naturally excited in the PS as shown in Fig. 2. How-
ever, this resonance can be compensated using the avail-

able skew sextupole correctors. Figure 17 (top) shows
the strength and phase of the corresponding RDTs for
the four available skew sextupole magnets when pow-
ered individually with the same current. The “XSK14”

FIG. 17. Comparison of the orientation and relative am-
plitude of the 3Qy = 19 RDT generated by the skew sex-
tupole correctors of the PS at same excitation (top). Scan of
the currents of the “XSK14” and “XSK10” sextupoles with
losses indicated by the color bar (centre), where 1 A corre-
sponds to an integrated normalized skew sextupole strength
of k2Sl = 6.25 × 10−3 m−2. Normalized intensity along the
injection plateau for the natural excitation and the correct-
ing configuration of the sextupoles with the tune evolution
indicated on a second axis (bottom).
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and “XSK10” sextupoles were selected for compensating
the resonance, since their RDT vectors are almost or-
thogonal. Therefore, the full RDT space is accessible by
powering them at different strengths in order to deter-
mine the best setting to compensate the unknown skew
sextupole component in the lattice. The described tech-
nique was applied using the medium-brightness beam so
that any effects connected to space charge would be neg-
ligible. The beam was injected at Qy = 6.38 and the
(0,3) resonance was dynamically crossed from 400 ms to
650 ms, as the tune was changed to Qy = 6.31, while
the currents of the selected skew sextupoles were varied
shot after shot. The losses as a function of the current
configuration of the two sextupoles are shown in Fig. 17
(centre). The sextupole XSK10 seems to be more effec-
tive, however, the magnets are identical so this difference
is only correlated to the unknown phase and amplitude
of the excitation and the locations of the sextupoles and
the errors. The configuration giving the least amount of
losses was used for the correction, i.e. powering XSK10
with 1 A and XSK14 with −3 A. The effectiveness of
the the compensation with the configuration chosen is
demonstrated by the change of the slope in the intensity
from 400 ms to 650 ms for the natural excitation and after
the correction, as shown in Fig. 17 (bottom).

Appendix B: Calculation of resonance driving terms
from space charge potential

The RDTs are derived using the description and code
in [28]. This work is a generalization of the Hamiltonian
description used in [5, 7, 26] for any ring and any space
charge RDT or detuning term. In [26] the Hamiltonian
description is used for the derivation of RDTs of any
resonance, while the works in [5] and [7] study 4th order
space charge driven resonances. Reference [5] refers to

the calculation of the resonance width of the 4Qx space
charge driven resonance in the KEK Proton Synchrotron,
and in [7] the RDTs of all 4th order space charge driven
resonances in a FODO lattice with a periodicity of 24 are
calculated. A short description of the derivation follows.

The integrand of Eq. (1) can be expanded, in both x
and y, using Taylor series under the paraxial approxima-
tion and the integral can be evaluated analytically. The
analysis of this paper focuses only on the 8th order of the
potential, which yields:

V(8)
sc = Ksc(Ṽ

(0,8)
sc + Ṽ (2,6)

sc + Ṽ (4,4)
sc + Ṽ (6,2)

sc + Ṽ (8,0)
sc ),

where Ksc = r0Nb

β2γ3
√
2πσs

, r0 is the classical particle radius,

Nb the bunch intensity, β, γ, the relativistic factors, σs
the longitudinal beam size and Ṽ

(m,n)
sc the part of the

potential of the order (m,n) in (x, y), which reads:
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where σx and σy are the horizontal and vertical beam
sizes, respectively.

Each of the above components of the field is Floquet
transformed using x(, y) =

√
2βx(,y)Jx(,y) cosψx(,y) and

gives resonance and nonlinear detuning terms [39]. For

instance the potential Ṽ
(0,8)
sc yields the terms:
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where ψy = Φy + φy − Qy
2pi
C , (Jy,Φy) are the action

angle conjugate coordinates, φy the phase advance, C
the circumference of the ring and βy the vertical beta
function.

The angle independent term of the potential yields

the nonlinear detuning, while the angle dependent terms
drive resonances. These terms can be included as per-
turbations in the nonlinear Hamiltonian and the RDTs
of 8th order resonances conjugate to the action are given
as:
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