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Abstract

Decays of the 125 GeV Higgs boson into a Z boson and a ρ0(770) or φ(1020) meson
are searched for using proton-proton collision data collected by the CMS experiment
at the LHC at

√
s = 13 TeV. The analysed data set corresponds to an integrated lu-

minosity of 137 fb−1. Events are selected in which the Z boson decays into a pair of
electrons or a pair of muons, and the ρ and φ mesons decay into pairs of pions and
kaons, respectively. No significant excess above the background model is observed.
As different polarization states are possible for the decay products of the Z boson
and ρ or φ mesons, affecting the signal acceptance, scenarios in which the decays are
longitudinally or transversely polarized are considered. Upper limits at the 95% con-
fidence level on the Higgs boson branching fractions into Zρ and Zφ are determined
to be 1.04–1.31% and 0.31–0.40%, respectively, where the ranges reflect the considered
polarization scenarios; these values are 740–940 and 730–950 times larger than the re-
spective standard model expectations. These results constitute the first experimental
limits on the two decay channels.
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1 Introduction
In 2012 a boson with a mass near 125 GeV was discovered by the ATLAS and CMS Collabo-
rations at the CERN LHC [1–3]. Soon after it was established that the properties of this parti-
cle are, within uncertainties, in agreement with those of the Higgs boson (H) in the standard
model (SM) [4–9]. Decays of the Higgs boson into γγ, ZZ∗, W±W∓∗, τ+τ−, and bb , as well
as Higgs boson production via gluon-gluon fusion (ggH), via vector boson fusion (VBF), in
association with a vector boson, and in association with a top quark-antiquark pair, have all
been observed [10–23]. While many of the couplings between the Higgs boson and other parti-
cles have already been measured, the required sensitivity for measuring Yukawa couplings to
second- and first-generation fermions has not yet been reached. Yukawa couplings to second-
generation fermions are accessible via searches for the decay of the Higgs boson into µ+µ− or
cc , both of which have been performed at the LHC [24–27]. The upper limit at the 95% confi-
dence level (CL) for the decay into µ+µ− (cc ) is approximately 2 (70) times the SM expectation.
In addition, Yukawa couplings to lighter fermions are also accessible via rare exclusive decays
of the Higgs boson. One class of such processes is the decay of the Higgs boson into a photon
and a vector meson [28–30]. Thus far, the γJ/ψ, γψ(2S), γΥ(nS), γρ, and γφ decays have been
searched for [31–33]. The 95% CL upper limits on the branching fractions of the Higgs boson
into γJ/ψ, γρ, and γφ are 2 orders of magnitude larger than their expected values in the SM.
For the γψ(2S) and γΥ(nS) decays, the corresponding upper limits are, respectively, 3 and 5
orders of magnitude larger than the SM expectation.

A related class of rare decays is that of the Higgs boson into a heavy vector boson and a vector
meson (V) [34, 35]. Up to now only the decays of the Higgs boson into ZJ/ψ and Zηc have been
studied experimentally [36]. As indicated in Fig. 1, several processes contribute to the decay
of the Higgs boson into a vector boson and a meson. The formation of a vector boson and a
meson via H → ZZ∗ or H → Zγ∗ decays (Fig. 1, left and middle) are indirect contributions to
this process. We refer to the decay of the Higgs boson into light quarks that radiate a vector
boson and form a bound meson state (Fig. 1, right) as the direct process. In the SM the indirect
processes contribute the most to the decay of the Higgs boson into a heavy vector boson and a
vector meson.
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Figure 1: Feynman diagrams of processes that contribute to the decay of a Higgs boson into a
heavy vector boson and a vector meson. The grey oval shape represents the meson. The two
indirect processes (left and middle), where the meson originates from an off-shell Z boson or
γ∗, contribute the most to the total branching fraction in the SM.

The direct process is negligible in the SM as it is suppressed by a factor of up to m2
q/m2

H relative
to the indirect contributions [30]. In that expression mq and mH denote the masses of the quark
and of the Higgs boson, respectively. However, in scenarios beyond the SM where the Yukawa
couplings to light fermions are enhanced, this direct process could contribute significantly to
the Higgs boson branching fraction into a vector boson and a meson [34]. An example of a
model beyond the SM with enhanced Yukawa couplings to light fermions is a version of the
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Giudice–Lebedev model of quark masses [37] that is modified to have two Higgs doublets. In
this scenario Yukawa couplings to light quarks could be enhanced by up to a factor of 7 [38].
Enhancements of the Yukawa couplings by factors up to 30, 500, and 2000 for, respectively,
strange, down, and up quarks are possible in a two Higgs doublet model with spontaneous
flavour violation [39]. Other scenarios in which light-quark Yukawa couplings can be larger
than predicted in the SM include a single Higgs doublet model with Froggatt–Nielsen mech-
anism [40] and Randall–Sundrum models of warped extra dimensions [41, 42]. In addition,
studies of the indirect processes are also of interest as these probe a different phase space from
conventional H →WW∗ and H → ZZ∗ measurements, and therefore provide complementary
information.

This paper describes a search for decays of the 125 GeV Higgs boson into a Z boson and a
ρ(770)0 meson (H → Zρ) or into a Z boson and a φ(1020) meson (H → Zφ). The branch-
ing fractions of these processes in the SM are small: B(H → Zρ) = (1.4 ± 0.1) × 10−5 and
B(H → Zφ) = (4.2± 0.3) × 10−6 [34]. The search uses a sample of proton-proton (pp) col-
lisions collected by the CMS experiment at

√
s = 13 TeV from 2016 to 2018. The data set cor-

responds to an integrated luminosity of 137 fb−1, or 35.9, 41.5, and 59.7 fb−1 collected in 2016,
2017, and 2018, respectively. In this search we select the dimuon and dielectron final states of
the Z boson. For the ρ and φ mesons, we select decays containing exactly two charged hadrons,
corresponding to the π+π− final state for the ρ meson and the K+K− final state for the φ me-
son. In the event reconstruction π± and K± are not explicitly distinguished. The main source
of background events in this analysis is from Drell–Yan production of a Z boson in association
with a genuine or misidentified meson candidate. For brevity we do not distinguish between
particles and antiparticles in our notations of decay processes in the remainder of this paper.

2 The CMS detector
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator
hadron calorimeter, each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons
are detected in gas-ionization chambers embedded in the steel flux-return yoke outside the
solenoid.

The silicon tracker measures charged particles within the pseudorapidity range |η| < 2.5. It
consists of 1856 silicon pixel and 15 148 silicon strip detector modules. The silicon pixel de-
tector modules are arranged in four layers. In 2016, data were taken with a different detector
configuration; at that time there were 1440 silicon pixel detector modules arranged in three
layers. For nonisolated particles with transverse momentum in the range 1 < pT < 10 GeV and
|η| < 1.4, the track resolution is typically 1.5% in pT [43].

Muons are measured in the pseudorapidity range |η| < 2.4, with detection planes made us-
ing three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The
single-muon trigger efficiency exceeds 90% over the full η range, and the efficiency to recon-
struct and identify muons is greater than 96%. Matching muons to tracks measured in the
silicon tracker results in a relative pT resolution, for muons with pT up to 100 GeV, of 1% in the
barrel and 3% in the endcaps [44].

The electron momentum is estimated by combining the energy measurement in the ECAL with
the momentum measurement in the tracker. The momentum resolution for electrons with
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pT ≈ 45 GeV from Z → ee decays ranges from 1.7 to 4.5%. It is generally better in the bar-
rel region than in the endcaps, and also depends on the bremsstrahlung energy emitted by the
electron as it traverses the material in front of the ECAL [45].

Events of interest are selected using a two-tiered trigger system [46]. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors to
select events at a rate of around 100 kHz within a time interval of less than 4 µs. The second
level, known as the high-level trigger, consists of a farm of processors running a version of the
full event reconstruction software optimized for fast processing, and reduces the event rate to
around 1 kHz before data storage.

A more detailed description of the CMS detector, together with a definition of the coordinate
system used and the relevant kinematic variables, can be found in Ref. [47].

3 Event reconstruction
The products of pp collisions are reconstructed based on a particle-flow algorithm [48], which
combines information from all subdetectors to reconstruct individual particle candidates. These
particle candidates are classified as muons, electrons, photons, and charged and neutral hadrons.

The candidate vertex with the largest value of summed physics-object p2
T is taken to be the

primary pp interaction vertex (PV). The physics objects are the jets, clustered using the jet
finding algorithm [49, 50] with the tracks assigned to candidate vertices as inputs, and the
associated missing transverse momentum, taken as the negative vector sum of the pT of those
jets. Other collision vertices in the event are considered to have originated from additional
inelastic pp collisions in each bunch crossing, referred to as pileup (PU). The average number
of PU interactions during the 2016 data-taking period was 23, rising to 32 during the 2017 and
2018 data-taking periods. The muons, electrons, and charged hadron tracks used in the search
presented in this paper are all required to originate from the PV.

Muons are reconstructed through a simultaneous track fit to hits in the tracker and in the muon
chambers [44]. To suppress particles misidentified as muons, additional requirements are ap-
plied on the track fit quality and compatibility of individual track segments with the fitted
track. Contamination from muons produced within jets is reduced further by requiring the
muon to be isolated from hadronic activity in the detector. A relative isolation variable is de-
fined as

Iµ
rel =

∑charged pT + max
(

0, ∑neutral pT − 0.5 ∑charged pPU
T

)
pµ

T
, (1)

where ∑charged pT refers to the scalar sum of the transverse momenta of all charged parti-
cles and ∑neutral pT is the sum of the pT of neutral hadrons and photons. These two sums
are calculated within a cone of radius ∆R = 0.4 around the direction of the muon, where
∆R =

√
(∆η)2 + (∆φ)2 and ∆η and ∆φ are differences in pseudorapidity and azimuthal angle,

respectively. The pT of the muon is excluded from these sums. To reduce the effects from PU,
charged particles are only considered in the isolation sum if they are associated with the PV.
The term 0.5 ∑charged pPU

T estimates the contributions from neutral particles in PU by summing
the pT of charged particles that are within the isolation cone but are not associated with the PV.
The factor 0.5 accounts for the ratio of neutral to charged particle production. Muons selected
in the analysis must satisfy Iµ

rel < 0.15. After these identification and isolation requirements
are imposed, prompt muons are identified with an efficiency of over 90%. A looser selection,
where the isolation requirement is removed, is also used in the analysis to reject events with
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additional muons.

Electrons are reconstructed by combining clusters of energy deposits in the ECAL with hits
in the tracker [45]. To reduce contamination from particles incorrectly identified as electrons,
reconstructed electrons are required to pass a multivariate electron identification discriminant.
This discriminant, based on the one described in Ref. [45], combines information about the
quality of the tracks, the shower shape, kinematic quantities, and hadronic activity in the vicin-
ity of the reconstructed electron. Isolation sums similar to those in Eq. (1) are also included
among the discriminant inputs. Therefore no additional isolation requirements are applied.
Using the requirements placed on the discriminant in this analysis, the electron identification
efficiency is 80%. The rate at which other particles are misidentified as electrons is≈1%. Looser
requirements are used to reject events with additional electrons. Using this looser selection on
the multivariate identification discriminant, the electron identification efficiency is 90% and
other particles are misidentified as electrons at a rate of 2–5%.

The ρ and φ meson decay products are reconstructed using charged particle tracks measured
in the tracker. The tracks are required to originate from the PV and to pass “high purity” re-
construction requirements. These requirements are based on the number of tracker layers with
hits, the track fit quality, and the values of the impact parameters relative to their uncertainties.
The algorithm is described in more detail in Ref. [43]. In the event selection, described in Sec-
tion 5, we exploit the known masses of pions and kaons to calculate and restrict the invariant
mass of the ρ and φ candidates.

4 Simulated samples
Samples of simulated Higgs boson events, produced via the ggH, VBF, W-associated (WH),
and Z-associated (ZH) modes, are generated at next-to-leading order (NLO) in quantum chro-
modynamics (QCD) using POWHEG 2.0 [51–56]. In some of the figures in this paper, and for the
evaluation of corrections that account for differences between data and simulation, samples
of simulated Drell–Yan Z → `` events are used. Here, ` refers to e or µ. These samples are
generated at leading order using MADGRAPH5 aMC@NLO 2.2.2 (2.4.2) [57] for the 2016 (2017
and 2018) data-taking periods. All generated samples are interfaced with PYTHIA 8.212 [58]
to model parton showering and hadronization. In the signal samples the decays H → Zρ or
H → Zφ are also modelled using PYTHIA. These samples are used to build the signal model,
which consists of binned templates. The NNPDF3.0 parton distribution functions (PDFs) [59]
are used for the 2016 data-taking period. For the samples of signal events NLO PDFs are used,
while for the Drell–Yan events leading order PDFs are used. For the 2017 and 2018 data-taking
periods the NNPDF3.1 PDFs [60] at next-to-next-to-leading order are used for all samples. The
description of the underlying event is provided by the CUETP8M1 tune [61] for the 2016 data-
taking period and by the CP5 tune [62] for the 2017 and 2018 data-taking periods. Additional
PU interactions, generated with PYTHIA, are added to all simulated events in accordance with
the expected PU distribution. All generated events are passed through a GEANT4-based [63]
simulation of the CMS detector before being reconstructed with the same version of the CMS
event reconstruction software as used for data.

5 Event selection
The final states considered in the selection are the µµππ and eeππ decays of the Zρ system,
and the µµKK and eeKK decays of the Zφ system. The selection of the µµ and ee pairs, re-
ferred to as the dilepton system in what follows, is independent of the meson candidate under
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consideration. The trigger selection for the µµ final states is based on the presence of at least
one isolated muon with pT > 24 GeV in the 2016 and 2018 data-taking periods, and at least one
isolated muon with pT > 27 GeV in the 2017 data-taking period. For the ee final states the trig-
ger selection requires the presence of at least one isolated electron with pT > 27 GeV in the 2016
data-taking period. In the 2017 (2018) data-taking period this threshold is pT > 35 (32)GeV.

After imposing the trigger requirements, events in the µµ channel are selected by requiring
the presence of two oppositely charged muons passing the identification and isolation crite-
ria described in Section 3. At least one of these muons must pass the trigger selection. Both
muons must have pT > 20 GeV and |η| < 2.4, while the pT of the muon that satisfies the trig-
ger requirements must be at least 3 GeV above the pT threshold at the trigger level. The ee
channel selects events containing two oppositely charged electrons passing the identification
criteria described in Section 3. At least one of the electrons must pass the trigger selection. Both
electrons must have pT > 20 GeV and |η| < 2.1. The pT of the electron satisfying the trigger
requirement must be at least 3 GeV above the trigger-level threshold. The requirement that the
pT of the lepton passing the trigger selection is at least 3 GeV above the threshold in the trigger
ensures we avoid the part of the phase space where the trigger efficiency increases rapidly. In
both the µµ and ee channels, events that contain additional leptons with pT > 5 GeV that pass
the loose identification criteria described in Section 3 are rejected. The invariant mass of the
dilepton system is required to be in the range 60 < m`` < 120 GeV.

The ρ (φ) candidate is reconstructed from its decay into π+π− (K+K−). As the ρ and φ mesons
are both light compared to the energy released in the decay, the two charged particles produced
in the decay are emitted with small angular separation ∆R, as illustrated in Fig. 2. The events
shown in this figure are required to pass the selection criteria described so far. The small sepa-
ration between the two tracks is exploited in the selection of the ρ and φ candidates. The meson
candidate is selected as a pair of oppositely charged particle tracks, both with pT > 1 GeV and
separated by ∆R < 0.1. In what follows a pair of oppositely charged particle tracks is also re-
ferred to as a ditrack system. The charged particle tracks are required to be separated from each
of the Z boson decay products by ∆R > 0.3. In addition, at least one of the tracks must have
pT > 10 GeV. Figure 3 shows the pT distribution for the track that has the larger transverse
momentum out of the two tracks selected as the meson candidate. This distribution is shown
in the H → Zρ and H → Zφ signal events and in the background from Drell–Yan events, illus-
trating how this requirement helps to reduce the background. If multiple track pairs pass these
requirements, we calculate the four-momentum of each ditrack system and select the pair of
tracks with the highest pT. This choice maximizes the proportion of signal events in which the
correct meson candidate is selected. In all channels, the meson candidate is correctly identified
in 98–99% of the signal events.

Furthermore, we require the ditrack system to be isolated. An isolation sum Itrk is calculated
as

Itrk = ∑ ptrk
T , (2)

in a cone of radius ∆R = 0.3 around the direction of the ditrack system. Only tracks with
pT > 0.5 GeV that are associated with the PV are considered, and the tracks forming the ρ or φ
candidate are excluded from the sum. Events are selected if Itrk < 0.5 GeV, thus with no track
around the direction of the ditrack system. Figure 4 shows the distributions of the isolation
sum for the data and for the simulated signal, after applying all selection criteria except for
the ditrack isolation requirement. The ditrack invariant mass requirement discussed below is
also applied. This figure illustrates the reduction in background events due to the isolation
requirements. Only events in which the dilepton and ditrack four-body mass is in the range
120–130 GeV are shown. This range is expected to contain 95% of the simulated signal.
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Figure 2: The angular distance ∆R between the two tracks from the meson decay in H → Zρ
events (dashed red) and in H → Zφ events (dotted blue). The separation is calculated between
reconstructed tracks that are matched to the generator-level pions (kaons) to ensure that the
tracks originate from the ρ (φ) decay. Both contributions are normalized to the same area.
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Figure 3: The transverse momentum distribution for the track that has the larger pT out of the
two tracks selected as the ρ or φ candidate. The distribution is shown for events that pass the
meson candidate selection described in the text, but not the requirement that one of the tracks
must have pT > 10 GeV. This distribution is shown for the H → Zρ decay (dashed red), for the
H → Zφ decay (dotted blue), and for the background from Drell–Yan events (solid black). All
contributions are normalized to the same area.

The invariant mass of the ditrack system is also used to reduce the contamination from back-
ground events. Events with a ρ candidate are selected if the invariant mass of the ditrack
system is within 0.6 < mππ < 1 GeV, calculated assuming the mass of each particle equals
mπ± = 139.6 MeV [64]. The full width at half the maximum of the mππ distribution is approx-
imately 120 MeV in the simulated signal. Figure 5 (left) shows this invariant mass distribution
in simulated H → Zρ events. The φ meson has a smaller natural width than the ρ meson,
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Figure 4: The ditrack isolation sum in the ``ππ (left) and ``KK (right) channels, combining
the µµ and ee channels for all the data-taking years. The distribution in data, as well as in the
simulated H → Zρ and H → Zφ signals is shown. A branching fraction of 10 (5)% for the
H → Zρ (H → Zφ) signal is assumed. The isolation sum is shown after applying all selection
criteria apart from the ditrack isolation requirement. The ditrack invariant mass requirement
is also applied. Only events in which the dilepton plus ditrack invariant mass is in the range
120–130 GeV are considered. The dashed line indicates the boundary of the region used in the
analysis, for which the isolation sum is required to be smaller than 0.5 GeV.

therefore it is possible to use a narrower mass window. The full width at half the maximum
of the mKK distribution in simulated signal samples is approximately 5 MeV. To select events
with a φ candidate, the mass of each particle is taken as mK± = 493.7 MeV [64] and we require
1.005 < mKK < 1.035 GeV. Figure 5 (right) shows this invariant mass distribution in simulated
H → Zφ events.

After these requirements, including those on the ditrack invariant mass, the contribution from
H → Zφ events in the ``ππ channel is smaller than 1% of the number of expected signal events
in this channel when the SM branching fractions for H → Zρ and H → Zφ are considered. The
same is true for contributions from H → Zρ events in the ``KK channel. After all selection
criteria are applied, there is no overlap in the events selected by the ``ππ and ``KK channels.

The product of signal selection efficiency and acceptance (εA) corresponds to the fraction of
simulated signal events that pass the selection. To calculate these values we use the nominal
simulated sample, in which the decays of the H and Z bosons are modelled isotropically. On
average over the three data-taking years, εA in the µµππ (µµKK) channel is 15 (18)%. For the
eeππ (eeKK) channel the average εA is 8 (10)%.

6 Corrections applied to simulated samples
A correction is applied to the simulated events such that the PU distribution in simulation re-
produces this distribution in data [65]. Corrections are also applied to the simulation to account
for differences in the efficiencies of the trigger selection; of the ditrack isolation requirement;
and of the lepton reconstruction, identification, and isolation between simulated events and
data. These corrections, deviating from unity by a few percent, are measured using the “tag-
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Figure 5: Distribution of the ditrack invariant mass in simulated H → Zρ events passing the
``ππ selection criteria (left) and in simulated H → Zφ events passing the ``KK selection
criteria (right). These masses are calculated assuming the charged particle mass equals the
pion mass in the ``ππ selection and assuming the charged particle mass equals the kaon mass
in the ``KK selection. The events pass all selection criteria described in the text, apart from
the requirements on the ditrack invariant mass window. The dashed lines indicate the region
selected in the analysis.

and-probe” method [66]. The ditrack isolation efficiency correction is determined in Z → µµ
events using the tag-and-probe method. Here, the efficiency of the requirement on Itrk is mea-
sured for the probe muon. A systematic uncertainty, described in Section 8, is applied to ac-
count for the difference between the phase space where the correction is measured and where
it is applied. Energy scale corrections, which are smaller than 1%, are applied to the muons and
electrons [44, 45].

The event simulations model the decays of the H and Z bosons isotropically, and so do not
take into account the impact of particle helicities. However, as there are only a few possibilities
for polarizations in the final decay products, we calculate the angular distributions for extreme
polarizations and reweight the signal events accordingly following the method described in
Ref. [67]. The Z boson and the ρ or φ meson can either both be transversely polarized or both
be longitudinally polarized. The two leptons always have opposite helicity in the rest frame
of the Z boson. For each possibility the distribution of the polar angle between one of the
pions or kaons and the meson, and between one of the leptons and the Z boson, is evaluated
analytically. The signal templates are weighted to both of these distributions simultaneously.
We ensure that the total normalization of the signal, before event selection, is preserved by the
reweighting. However, the reweighting modifies the distribution of the kinematic variables, in
particular by changing the lepton pT. Therefore the reweighting reduces (increases) the fraction
of signal events that pass the selection criteria in the transversely (longitudinally) polarized
case, and so this affects the final results. The change of the signal yield in the two extreme
polarizations, relative to the scenario with isotropic decays, is given in Table 1.
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Table 1: The effect on the signal yields of reweighting to the extreme polarization scenarios,
described in more detail in the text, relative to the scenario with isotropic decays. The change
in the fraction of signal events that pass the selection criteria affects the final results of the
analysis.

Polarization state Effect on yield
µµππ µµKK eeππ eeKK

Longitudinally polarized +16% +17% +23% +21%
Transversely polarized −8% −9% −11% −11%

7 Signal and background modelling
The dilepton and ditrack four-body mass distribution, corresponding to the reconstructed Higgs
boson mass and denoted m``hh, where h refers to π or K, is used in the statistical inference. The
signal and background are therefore modelled as a function of this observable in the range
118 < m``hh < 168 GeV. More than 95% of the expected signal is contained in the range
120 < m``hh < 130 GeV; the large tail used at higher masses helps to improve the stability of
the background parameterization. As a result of the kinematic selection on the leptons and the
meson candidates, the four-body mass distribution for the background changes from rising to
falling between 115 < m``hh < 118 GeV. For this reason the lower bound of the range is taken
as m``hh = 118 GeV. The full width at half the maximum of the m``hh distribution in samples of
simulated signal events amounts to 2–3 GeV, depending on the channel considered. The signal
is described through a binned template, built from simulated events. Each bin has a width of
1 GeV in the four-body mass, which matches the binning used for the data.

The background to this search, consisting mainly of Drell–Yan events, is modelled using ana-
lytic functions. The values of the parameters of these analytic functions are obtained directly
in the final signal extraction fit. Prior to the signal extraction fit we need to determine a set
of functional forms that can parameterize the background in the different channels and data-
taking years. Two sidebands, 118 < m``hh < 120 GeV and 130 < m``hh < 168 GeV, are used for
this. Because the sideband with m``hh < 120 GeV is short, we verify that the chosen functional
forms also describe the background in a control region where we require 1 < Itrk < 2 GeV.
The fitted values of the function parameters in the control region are not required to be the
same as those in the analysis phase space. In the control region the full four-body mass range
118 < m``hh < 168 GeV is considered.

Chebyshev polynomials are used to describe the backgrounds. The order used depends on the
channel and data-taking period, and ranges from 2 to 5. These orders are determined in the
sidebands and the control regions described above using an F-test [68]. With this method we
test whether a polynomial of order n + 1 fits the data significantly better than a polynomial of
order n. If this is not the case, the polynomial of order n is selected. The results of the fit are
shown in Section 9.

Alternative functions can be used to estimate the bias from the choice of a particular back-
ground parameterization. As alternatives we choose exponential functions, as well as a func-
tion of the form

f (x) = (1− x)p1 x−p2−p3 ln x, (3)

where x = m/
√

s, and pi are parameters of the fit. Here, m represents the four-body mass and√
s = 13 TeV. Such a function has also been used in searches for dijet resonances [69]. These

alternative functional forms have a different shape from the nominal background model, but
still fit the data in the sidebands well.
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The possible bias from the choice of background parameterization is estimated by fitting the al-
ternative function to the four-body mass sidebands. Pseudo-experiments are then drawn from
this parameterization, and a signal expectation is added to each pseudo-data set. A maximum
likelihood fit of the signal and background models to each pseudo-data set is performed using
the nominal background model. This test is performed three times with branching fractions of
0, 2.5, and 5% for H → Zρ or H → Zφ. The test is also performed with both alternative func-
tions described in the previous paragraph. The difference between the extracted and injected
branching fraction is, within uncertainties, compatible between the tests with different injected
branching fractions. This difference, for the alternative function for which it is largest, is taken
as the uncertainty due to a possible bias in the choice of background parameterization. The
bias is found to be small and is included in the analysis as a systematic uncertainty.

8 Signal extraction and systematic uncertainties
The results of this analysis are presented as upper limits on B(H → Zρ) and on B(H → Zφ).
All limits quoted in what follows are set at the 95% CL. Limits are set using the modified
frequentist CLs criterion [70, 71], in which the profile likelihood ratio modified for upper lim-
its [72] is used as the test statistic. In the limit setting procedure we make use of the asymptotic
approximation [73].

Several systematic uncertainties are incorporated in the likelihood as nuisance parameters.
They are described in this section and summarized in Table 2.

Most of the systematic uncertainties affect only the normalization of the simulated signal tem-
plates:

i. The uncertainties in the integrated luminosity measurements are, respectively, 2.5, 2.3,
and 2.5% for the 2016, 2017, and 2018 data-taking periods [74–76].

ii. Uncertainties in the muon identification, isolation, and trigger efficiency measurements
arise from the method used to measure the efficiency, from the difference between the
kinematic phase space in which the measurement is performed and where it is applied,
and from the limited size of the simulated samples used for the measurement in simula-
tion [44]. These uncertainties affect the normalisation of the simulated processes by ≈1%
for all the data-taking periods.

iii. Uncertainties in the electron reconstruction, identification, and trigger efficiency mea-
surements range from 2 to 3%, depending on the data-taking period. These uncertainties
mainly arise from the method used for the efficiency measurement [45].

iv. The uncertainty in the tracking efficiency amounts to 4.6–4.8% (corresponding to 2.3–2.4%
per track), depending on the data-taking period. This uncertainty is determined by com-
paring ratios of D∗ meson decay chains in data and simulation. The dominant compo-
nents of the uncertainty come from limited sample sizes and the uncertainties in the SM
predictions of these ratios.

v. The uncertainty in the ditrack isolation efficiency measurement is 2% for all three data-
taking periods. This uncertainty mainly arises from the method used to measure the
efficiency.

vi. Theoretical uncertainties in the ggH production cross section amount to 3.9%, with un-
certainties in the VBF, WH, and ZH production cross sections being, respectively, 0.4, 0.7,
and 3.8% [34].
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vii. Uncertainties from the choice of PDF and the value of the strong force coupling constant
(αS) depend on the Higgs boson production mode and range from 1.6 to 3.2% [34].

Four systematic uncertainties affect both the shape and normalization of the simulated signal
templates:

i. Uncertainties in the lepton energy scales are typically less than 0.3% for both muons and
electrons [44, 45].

ii. An additional uncertainty in the ditrack isolation efficiency measurement is applied. This
uncertainty is taken as the difference between the ditrack isolation efficiency in the phase
space where the correction is measured, and the efficiency as evaluated in the simulated
signal. This uncertainty is in the range 1–6%, depending on the data-taking period.

iii. The uncertainty in the total inelastic cross section, used for correcting the PU profile in
simulation to the profile in data, is 4.6% [65]. The overall effect on the normalisation of
the simulated signal templates ranges from 0.5 to 1.5%, depending on the data-taking
period and the channel considered.

iv. Uncertainties due to the limited number of simulated events are taken into account by
allowing each bin of the signal template to vary within its statistical uncertainty, inde-
pendently from the other bins.

Table 2: Effect of systematic uncertainties on the simulated signal. The ranges reflect differences
between channels and data-taking periods.

Uncertainty source Type Effect on simulated signal yield
Integrated luminosity Normalization 2.3–2.5%
Muon efficiency Normalization 1%
Muon energy scale Shape <0.3%
Electron efficiency Normalization 2–3%
Electron energy scale Shape <0.3%
Tracking efficiency Normalization 4.6–4.8%
Ditrack isolation efficiency Normalization 2%
Ditrack isolation efficiency extrapolation Shape 1–6%
Production cross sections Normalization 0.4–3.9%
Choice of PDF and αS Normalization 1.6–3.2%
Inelastic cross section Shape 0.5–1.5%
Limited size of simulated samples Shape Bin-dependent

The largest possible bias from the choice of the function modelling the background is included
in the likelihood as a modification of the number of expected events. The number of expected
events in a given bin i is obtained as (B + ∆bias)si + bi, where si is the number of signal events
and bi is the number of background events. The parameter B is the branching fraction of the
Higgs boson and the parameter on which we set limits. The parameter for the bias from the
choice of background function is ∆bias. It is subject to a Gaussian constraint with a mean of 0
and a width equal to the largest possible bias due to the choice of background function, which
ranges from 0.01 to 0.20%. These values are obtained using the method described in Section 7.

Theoretical uncertainties in the production cross sections, and the uncertainties due to the
choice of PDF and the value of αS are treated as correlated between the different data-taking



12

periods. The uncertainty in the integrated luminosity measurement is treated as partially cor-
related between the different data-taking periods. The other experimental uncertainties are
treated as uncorrelated between the different data-taking periods.

9 Results
To present results in terms ofB(H → Zρ) andB(H → Zφ), the signal templates are normalized
by taking into account the ggH, VBF, WH, and ZH production cross sections. The ggH cross
section is calculated at next-to-next-to-next-to-leading order in QCD and NLO in electroweak
accuracy as 48.58 pb [34]. The cross sections for the other production modes are calculated at
next-to-next-to-leading order in QCD and NLO in electroweak accuracy, and amount, respec-
tively, to 3.78, 1.37, and 0.88 pb [34]. In addition, SM branching fractions of 3.37% are assumed
for each of the Z → `` decays [64].

In the limit setting procedure we do not take into account potential contributions of Higgs
boson decays into a Z boson and other vector mesons.

The four-body mass distributions in data and the background model are shown in Fig. 6. The
expected H → Zρ (H → Zφ) signal, in the isotropic-decay scenario, at a branching fraction of
3.0 (0.7)% is also shown. In this figure the µµ and ee channels, as well as all three data-taking
periods, are combined for illustration. In the statistical inference these channels are considered
separately in a simultaneous fit. No significant excess above the background expectation is
observed in either of the two searches.
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Figure 6: Distributions of m``ππ (left) and m``KK (right). For illustration the µµ and ee channels,
as well as all three data-taking periods, are combined. Also shown are the H → Zρ and H →
Zφ signals, in the isotropic-decay scenario and assuming branching fractions of 3.0 and 0.7%,
respectively. The ratio between the data and the background model is shown in the lower
panels.

The observed upper limits on B(H → Zρ) and B(H → Zφ) are 1.04–1.31% and 0.31–0.40%,
respectively, depending on the polarization scenario considered. These values correspond to
740–940 times the SM expectation for the H → Zρ decay and 730–950 times the SM expectation
for the H → Zφ decay. These limits can be compared with the expected upper limits, which
are 0.63–0.80% or 450–570 times the SM expectation for B(H → Zρ) and 0.27–0.36% or 650–850
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times the SM expectation for B(H → Zφ). These ranges reflect the considered polarization
scenarios. The observed and expected upper limits are shown in Table 3 for B(H → Zρ) and
in Table 4 for B(H → Zφ). While these limits are set on the total B(H → Zρ) and B(H → Zφ),
the results mainly probe the indirect process via the H → ZZ∗ decay as the direct decay process
(Fig. 1, right) is greatly suppressed in the SM.

Table 3: Observed and expected 95% CL upper limits on B(H → Zρ), for different polariza-
tions.

Observed Median expected ±68% expected ±95% expected
Isotropic decay 1.21% 0.73% 0.52–1.04% 0.38–1.41%

Z and ρ longitudinally polarized 1.04% 0.63% 0.44–0.89% 0.32–1.20%
Z and ρ transversely polarized 1.31% 0.80% 0.57–1.14% 0.41–1.54%

Table 4: Observed and expected 95% CL upper limits on B(H → Zφ), for different polariza-
tions.

Observed Median expected ±68% expected ±95% expected
Isotropic decay 0.36% 0.33% 0.23–0.46% 0.18–0.61%

Z and φ longitudinally polarized 0.31% 0.27% 0.20–0.39% 0.15–0.52%
Z and φ transversely polarized 0.40% 0.36% 0.26–0.50% 0.19–0.68%

10 Summary
A search has been presented for the rare decay of the Higgs boson (H) into a Z boson and a
ρ or a φ meson in the dilepton-π+π− final states of the H → Zρ decay, and in the dilepton-
K+K− final states of the H → Zφ decay. The search used a sample of proton-proton collisions,
collected by the CMS experiment at a centre-of-mass energy of 13 TeV from 2016 to 2018 and
corresponding to an integrated luminosity of 137 fb−1. Upper limits on the branching fractions
B(H → Zρ) and B(H → Zφ) have been set at the 95% confidence level for various polarization
scenarios. The upper limits on B(H → Zρ) are in the range 1.04–1.31%, or 740–940 times the
standard model expectation. The upper limits on B(H → Zφ) range from 0.31 to 0.40%, or
730–950 times the standard model expectation. These results constitute the first experimental
limits on the two decay channels.
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mentum”) Programme and the János Bolyai Research Scholarship of the Hungarian Academy
of Sciences, the New National Excellence Program ÚNKP, the NKFIA research grants 123842,
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A. Braghieria, S. Calzaferria,b, D. Fiorinaa ,b, P. Montagnaa,b, S.P. Rattia ,b, V. Rea, M. Ressegottia ,b,
C. Riccardia ,b, P. Salvinia, I. Vaia, P. Vituloa ,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
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Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT),
Madrid, Spain
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C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, G. Negro,
N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
A. Baty, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, A. Kumar, W. Li,
B.P. Padley, R. Redjimi, J. Roberts†, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-
Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl,
E. Hughes, S. Kaplan, O. Karacheban24, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson,
S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S.A. Thayil, S. Thomas

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali89, M. Dalchenko, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon90, H. Kim,
S. Luo, S. Malhotra, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov
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73: Also at Marmara University, Istanbul, Turkey
74: Also at Milli Savunma University, Istanbul, Turkey
75: Also at Kafkas University, Kars, Turkey
76: Also at Istanbul Bilgi University, Istanbul, Turkey
77: Also at Hacettepe University, Ankara, Turkey



38

78: Also at Vrije Universiteit Brussel, Brussel, Belgium
79: Also at School of Physics and Astronomy, University of Southampton, Southampton,
United Kingdom
80: Also at IPPP Durham University, Durham, United Kingdom
81: Also at Monash University, Faculty of Science, Clayton, Australia
82: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
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