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Abstract: We address the problem of finding a wombling boundary in point data gen-
erated by a general Poisson point process, a specific example of which is an LHC event
sample distributed in the phase space of a final state signature, with the wombling bound-
ary created by some new physics. We discuss the use of Voronoi and Delaunay tessellations
of the point data for estimating the local gradients and investigate methods for sharpening
the boundaries by reducing the statistical noise. The outcome from traditional wombling
algorithms is a set of boundary cell candidates with relatively large gradients, whose spa-
tial properties must then be scrutinized in order to construct the boundary and evaluate
its significance. Here we propose an alternative approach where we simultaneously form
and evaluate the significance of all possible boundaries in terms of the total gradient flux.
We illustrate our method with several toy examples of both straight and curved boundaries
with varying amounts of signal present in the data.

Dedicated to B. P. Delaunay.
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1 Introduction

Collider data in high energy physics can be viewed, at least at the parton level, as a collection
of points {~x1, ~x2, . . . , ~xN} in the relevant phase space P of the final state signature. The
ultimate goal of a high-energy physics experiment is then to test whether the distribution of
those N points (commonly referred to as “events”) in P follows the probability distribution
predicted in some theory model by the fully differential cross-section

dσ

d~x
≡ f(~x, {α}), (1.1)

where ~x ∈ P is a particular phase space point and {α} is a set of input model parameters
such as particle masses, widths, couplings, etc. More specifically, in searches for new physics
(NP) beyond the standard model (SM), eq. (1.1) can be split into respective SM and NP
contributions

f(~x, {α}) ≡ fSM (~x, {αSM}) + fNP (~x, {αSM} , {αNP }), (1.2)

where {αSM} and {αNP } label respectively the set of SM parameters and the set of addi-
tional NP parameters. Let the corresponding regions of phase space populated by SM and
NP events be PSM and PNP , then the respective total cross-sections are given by

σSM =

∫
PSM

fSM (~x, {αSM}) d~x, (1.3a)

σNP =

∫
PNP

fNP (~x, {αSM} , {αNP }) d~x. (1.3b)

Since the standard model is well known, its distribution fSM , a.k.a. “the background”, is
calculable theoretically (up to some fixed order in perturbation theory). However, once we
account for the experimental realities, the result may suffer from non-negligible systematic
uncertainties, particularly in the case of challenging signatures involving QCD and/or re-
ducible backgrounds. This is the main roadblock in NP searches via counting experiments,
where one focuses on a suitably chosen “signal region” PSR ⊂ PNP and looks for an excess
over the SM expectation

∫
PSR fSM (~x, {αSM}) d~x.1

Instead, in this paper we shall consider methods which could allow us to infer, at
least in principle, the existence of the NP contribution fNP without any prior knowledge
of the SM prediction fSM . Recently there has been hightened interest in such “blind” or
“background-independent” searches for NP, particularly using machine learning techniques
[1–15]. Here, instead of looking for an excess in the signal region PSR, we shall follow up
on the idea of Refs. [16, 17] to target directly the boundary ∂PNP of the NP phase space
region PNP , by using the fact that the combined distribution (1.2) is non-differentiable
anywhere on ∂PNP where fNP is non-vanishing. As it turns out, the latter is a very safe

1In this paper, we have in mind the typical NP scenarios where PNP is a subset of PSM , PNP ⊆ PSM .
This is certainly the case for signatures where PSM consists of the full phase space, PSM = P. If by any
chance the signature happens to be such that PSM ⊂ PNP , the selection of the signal region is trivial:
PSR = PNP − (PNP ∩ PSM ), and a counting experiment should already be good enough.
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assumption — if anything, fNP is not only non-vanishing, but often enhanced and even
singular on the boundary ∂PNP [18–27]. Since the background distribution fSM is a smooth
function across ∂PNP , the presence of fNP creates a discontinuous “jump” in the combined
event density (1.2), precisely at the location of the boundary ∂PNP [16, 17]. We can thus
reformulate the original problem of finding evidence of NP in the collider data as follows:

Given a collection of N points {~x1, ~x2, . . . , ~xN} in the phase space P, iden-
tify (the locations of) any candidate wombling boundaries and estimate their
statistical significance.

The detection of such difference boundaries (or wombling boundaries, named after a pioneer
in the field, W. H. Womble [28]) is a well-known problem in spatial statistics, see, e.g., [29].
Broadly speaking, wombling is any of a number of techniques used for identifying zones of
rapid change, typically in some quantity as it varies across some geographical or Euclidean
space. Wombling techniques are being applied in a wide variety of disciplines, including
computational ecology, anthropology, linguistics, geography and many others.2 In our case
here, we shall be interested in identifying the phase space region in the vicinity of ∂PNP
where the density of points is changing significantly.

Before going through the typical steps of a wombling analysis, several comments are
in order. First, the discontinuous jump of the combined distribution (1.2) across ∂PNP in
practice will be smoothed out to some extent by the detector resolution and finite width
effects, leading to a well-defined, finite, density gradient everywhere in P. This precludes
us from using methods specifically designed to detect image discontinuities such as ridges
and cliffs but do not admit gradients [40]. Second, a good wombling method should also be
able to pick up any boundaries created within PSM by interesting SM subprocesses, e.g.,
top, Higgs or heavy gauge boson production. This would guarantee an opportunity for
the LHC experiments to start testing and validating the method with existing real data,
before any NP discovery. Third, while most applications of wombling in the literature have
been limited to two-dimensional data, the method shoud be readily generalizable to higher
dimensions, if it is to be of any interest to the high-energy physics community where the
dimensionality of the relevant phase space P is typically much higher (although in some
special cases it can be reduced to 2 or even 1 through suitable projections preserving the
boundary). Along those lines, it is also important to choose a good parametrization of P, so
that the dimensionality can be reduced by projecting out uninteresting degrees of freedom
without washing out the wombling boundary.

The main steps of a typical wombling analysis are the following [41].

• Data preparation and preprocessing. The starting point in wombling is a spatially
referenced dataset

(~xi, fi), i = 1, 2, . . . , N, (1.4)
2For example, wombling has been used to identify genetic boundaries in Eurasian human populations

[30, 31], language boundaries in Europe [32], transition zones in genetic, morphometric and physiological
characteristics [33], boundaries of different types of vegetation [34, 35], hospital admission rates for respira-
tory conditions [36], cancer rates [37], metal concentrations in the Swiss Jura [38] and other environmental
data [39].
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where a set of values {fi} for the function of interest f(~x) are obtained at some finite
number N of point locations {~xi}. In some applications, e.g., for aerial and remotely
sensed images, the locations {~xi} can be chosen by the experimenter — then it may
be convenient to arrange them in some kind of a regular lattice, as required by some
wombling algorithms, including the original proposal in [28]. Alternatively, when
the data are gathered by an irregular or random design, eq. (1.4) is known as point-
referenced or geostatistical data. While in many other fields of science the functional
values {fi} for geostatistical data are obtained directly from field observations, for
the Monte Carlo simulations used in high-energy physics the situation is more subtle
— each fi is supposed to be a measure of the local point density at ~xi and needs
to be evaluated as a preprocessing step. For this purpose, Refs. [16, 17] proposed to
consider the Voronoi tessellation in P of the dataset (1.4), since the geometric volume
vi of the Voronoi cell containing ~xi provides a natural local estimator of the point
density at ~xi [42]:

fi ∼
1

vi
. (1.5)

While Voronoi tessellations have been widely used in many other fields of science,
they seem to be underutilized in high energy physics where their application has been
limited to jet clustering [43] and the partitioning of the signature phase space into
search regions, as implemented in the SLEUTH algorithm [44–46] which was used to
perform model-independent new physics searches at D0 [47–49], HERA [50] and CDF
[51–53]. Yet, the Voronoi approach3 is ideally suited for finding interesting (e.g.,
singular) features in f(~x), since it preserves the maximum spatial resolution in the
data [54]. For example, the standard approach of binning the data in order to obtain a
local density estimate necessarily throws away a certain amount of useful information,
and is associated with some arbitrariness in the exact choice of binning [16].

• Gradient estimation. Once we have the point-referenced dataset (1.4), the next step is
usually to estimate the magnitude of the local gradient ~∇f of the function f(~x), since
any zone of rapid change is necessarily associated with large values for |~∇f |. In cal-
culating the gradient, one has to overcome the fact that the data is a) discrete and b)
irregularly sampled. One possible approach is to obtain a continuous approximation
for f(~x) via some spatial interpolation method [42, 55]. Unfortunately, interpolation
techniques tend to smooth out not only the noise but also small local discontinuities,
which can result in masking some true boundaries [34]. For this reason, Refs. [16, 17]
explored several boundary detection techniques (further developed and illustrated in
[22, 23, 56]) which continued to use the Voronoi tessellation of the data and the funda-
mental relation (1.5). Among the different options studied in [16, 56], the normalized
standard deviation (sometimes also called the coefficient of variance) of the volumes of
the neighboring cells emerged as a viable measure of the magnitude of the local gradi-

3In the context of treating high energy collider data as a point dataset (1.4), it is worth mentioning
the recent idea of Ref. [14] to consider {~xi} as a graph network of weighted nodes, which is somewhat
orthogonal, but similar in spirit to the Voronoi approach.
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ent within a given Voronoi cell. In this paper, we shall pursue a somewhat orthogonal
and more traditional approach, known in the literature as “triangulation wombling”
[34, 39], which makes use of the dual Delaunay tessellation of the data (1.4). Even
though the two types of tessellations are dual to each other4, the Delaunay version
seems more natural for the specific problem at hand of calculating gradients — this
will be further discussed and illustrated in Section 2 below.

• Tagging selection. Having constructed the Delaunay or Voronoi tessellation and ob-
tained estimates for the local gradients, the next task is to identify elements of the
tessellation (edges or vertices) which are likely to be located on or near a wombling
boundary. This is typically accomplished with a cut on the ranked values of |~∇f |
for all elements in the tessellation, e.g., selecting elements whose calculated gradients
are in a certain upper percentile5. However, using such a simple threshold for tag-
ging boundary elements has been viewed as somewhat arbitrary and rather subjective
[41] — in the absence of any robust guidelines, typical values used in the literature
range in the 5th to 10th percentile [30, 31, 36, 39]. Furthermore, for any given value
of the threshold, there will always be a certain number of elements passing the cut,
including elements “in the bulk”, i.e., away from any wombling boundaries, and one
has to design a prescription on how to deal with such false positives. Obviously, a
value for the cut which is too stringent will miss many true boundary elements, while
a value which is too generous will bring about a lot of false positives. Finally, given
that the dimensionalities of PNP and ∂PNP necessarily differ by one, the concept of a
“boundary element” can be open to interpretation — how close to the boundary does
an element have to be in order to be considered a “boundary element”?

• Agglomeration. The previous step results in a collection of tagged boundary ele-
ments scattered throughout P, so now the question is how to use that information
to reconstruct the complete boundary. As a first step, one can start forming sub-
boundaries by linking adjacent tagged boundary elements, possibly subject to some
additional criteria, e.g., that the directions6 of their gradients are within 30◦ of each
other [31]. This agglomeration procedure will result in a graph whose nodes are the
tagged boundary elements [57]. The properties of this graph can then be studied to
determine its statistical significance [32, 34] (see the next item) and to get some idea
about the shape of the boundary.

4In graph theory, the dual graph of a plane graph G is a graph that has a vertex for each face of G.
Correspondingly, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices
corresponding to the faces on either side of e. Some care must be exercised for the Delaunay edges along
the convex hull of the point set — their Voronoi duals are infinite rays which can be turned into finite line
segments by adding an artificial point at infinity which serves as a common endpoint for all the rays. In
our analysis, this complication will not arise since we will perform our analysis in the interior of P.

5In NP scenarios where the signal density is additionally enhanced on the boundary ∂PNP , Ref. [22]
proposed a two-dimensional cut, simultaneously targeting both large gradients and large values of the
function.

6The two requirements — that the gradients are large and that their directions are correlated — can be
conveniently encoded in the scalar (dot) product of the gradient vectors of neighboring elements [16].
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At this point it is worth mentioning that in collider physics applications there can
be situations where the shape of the boundary is parametrically known. This is
precisely the case with “simplified model” NP searches at the LHC [58] — once the
event topology is assumed, the geometry of the NP final state phase space PNP is
also fixed. As an example, consider a sequence of three two-body decays, which is
the classic squark signature in supersymmetry (SUSY) [59]. The relevant phase space
PNP is three-dimensional and can be parametrized by the invariant masses of the
three pairs of visible decay products. The equation for the boundary ∂PNP is known
analytically [21, 60, 61] in terms of just four parameters — the masses of the SUSY
particles participating in the decay chain. In that situation, Ref. [23] proposed to
bypass both of the last two steps (the tagging and the agglomeration) altogether and
instead fit the equation for the surface ∂PNP to the full tessellation. Operationally
this was done by computing a quantity inspired by Bayesian wombling (see next
bullet), namely, a two-dimensional surface integral of the gradient magnitude over
the boundary surface, normalized to the total area of the surface:∫

∂PNP da |
~∇f |∫

∂PNP da
. (1.6)

In Ref. [23], it was demonstrated that this quantity is maximized for the true values
of the SUSY masses, resulting in a novel method for SUSY mass measurements.

• Significance estimation. Any wombling algorithm as described so far will produce nu-
merical results regardless of whether a true pattern exists or not. The crucial question
now is to assess the likelihood that the observed pattern could have been produced
from random fluctuations instead of a true boundary. One possible approach, known
as sub-boundary statistics [32, 34], is to analyze the properties of the graph mentioned
in the previous step, formed out of the tagged boundary elements. Strictly speak-
ing, sub-boundary statistics tests whether the different components of the graph are
sufficiently contiguous (and not whether the rates of change are sufficiently large)
[29, 41]. To this end, one looks at (distributions of) quantities which would charac-
terize coherent boundaries formed from connected boundary elements, such as: the
total number of subgraphs, the number of single-node subgraphs, the maximum and
the mean of the length and/or the diameter of the subgraphs, the superfluity, etc. An
alternative approach, named Bayesian wombling, starts with an ansatz for the shape
of the wombling line (in two spatial dimensions) and then computes the average flux
of the two-dimensional gradient field through all possible such lines [40, 62, 63]. The
idea is that the average flux will be maximized when the ansatz matches the true
wombling boundary. As already mentioned in relation to eq. (1.6), the advantage of
this approach is that it avoids the subjectiveness associated with the steps of tagging
and agglomeration. With either approach, one has to specify a null hypothesis, in
order to quantify the confidence level. Unlike other fields of science, where the null
hypothesis may not be immediately obvious and one typically has to rely on a ran-
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domization scheme [29], in high-energy physics the null hypothesis is well defined —
it is the SM.

In this paper we further develop and refine the Voronoi boundary detection methods
from Refs. [16, 22, 23, 56]. As before, the main goal will be to outline a method for discov-
ering new physics in LHC collider data by identifying wombling boundaries in phase space.
The paper is structured around the five typical steps of algorithmic wombling described
above. The novel elements in the analysis presented here are the following:

• In addition to the Voronoi tessellations utilized in [16, 22, 23, 56], here we also con-
sider Delaunay tessellations. In Section 2 we shall briefly review the two types of
tessellations and outline the range of new possibilities offered by the use of a Delau-
nay tessellation for our purposes. In particular, in Section 2.3 we shall illustrate the
four possible types of boundary elements, discuss their relations to each other, and
how each can be potentially targeted in the tagging step of the wombling algorithm.

• Unlike previous work in high-energy physics, here our main tool for calculating the
local gradients will be the Delaunay tessellation (often referred to as “triangulation”
since in two dimensions the Delaunay polygons are triangles). Section 3 is devoted to
the topic of gradient estimation — after a brief review in Section 3.1 of previous work
on estimating gradients from a Voronoi tessellation, in Section 3.2 we shall describe
the gradient calculation from the Delaunay triangulation. In the process, we shall pay
special attention to techniques for reducing the random fluctuations in the obtained
gradient values — three such procedures and their interplay and optimization are
discussed in Section 3.3.

• Different techniques for tagging boundary elements will be discussed in Section 4. In
addition to tagging Voronoi cells [16, 22], here we shall also be interested in tagging
Voronoi edges, Delaunay cells and Delaunay edges as well. Although this is not our
main focus here, in Section 5 we shall illustrate how these tagging methods can be
used for agglomeration.

• The main results of the paper are presented in Sections 6-8. We follow the approach
of Bayesian wombling [40, 62, 63], which lets us avoid the intricacies and uncertainties
of the tagging and agglomeration steps. To gain some intuition, in Section 6 we first
go over a toy example where the function f(~x) can be sampled continuously from
a distribution which resembles real data including finite width effects and detector
resolution. Then in Section 7 we study point-referenced data of the type (1.4) with a
straight (Section 7.1) or circular (Section 7.2) boundary. The corresponding estimates
of the statistical significance of the obtained wombling boundaries are performed in
Section 8. For simplicity, the illustrative examples in the main body of the paper
use data generated from uniform background distributions. For completeness, in Ap-
pendix A we also present results for two additional examples in which the background
distribution is not uniform, but varies according to a power law (Section A.1) or an
exponential (Section A.2).
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2 Voronoi and Delaunay tessellations of point data

2.1 Simulation Details

Virtually all wombling studies in the literature have been concerned with two-dimensional
point data generated, e.g., from field samples taken within a certain geographical area, from
remotely sensed images, etc. In this paper, we shall continue to work in two-dimensions,
but this will be done only for clarity of the presentation, since it is difficult to visualize
Voronoi and Delaunay tessellations in more than two dimensions; the methods which we
shall describe will be applicable to higher dimensional data as well. To be specific, we
shall consider the Cartesian plane where the data points are specified by their coordinates
(xi, yi), so that the dataset (1.4) reduces to

(xi, yi, fi), i = 1, 2, . . . , N. (2.1)

For concreteness, we shall choose our field of view to be the unit square, 0 ≤ x ≤ 1,
0 ≤ y ≤ 1, although data will be generated beyond the boundaries of the unit square — this
will eliminate any spurious boundary effects like clipping which would modify the statistical
properties of the Voronoi cells near the boundaries [64]. Following Refs. [16, 17, 22], the
datasets will be generated according to (1.2) with the following assumptions for fSM and
fNP :

• Background. As in previous work [16, 17, 22], our proxy for the SM background
distribution fSM will be the uniform distribution7

fSM = constant. (2.2)

The exact value of the constant will depend on the normalization: for pure-background
samples within the unit square the constant is 1, while for background plus signal
samples, it will depend on the relative strength of the signal. Strictly speaking, the
assumption (2.2) is unrealistic from the point of view of a high energy physicist, since
fSM is in general a function of the kinematic variables parametrizing the phase space
P. Nevertheless, it is good enough for our purposes here — the important point is
that any realistic SM distribution is very weakly varying across the boundary ∂PNP ,
which justifies the use of (2.2) for our model-independent toy examples below. A
typical background distribution of N = 500 points within the unit square is shown in
the left panels of Figs. 1 and 2. It is evident that such a distribution does not have
any obvious features and any wombling boundary would have to be created purely by
chance.

• Signal with a flat boundary. As our first example of a hypothesized NP signal we shall
consider a distribution fNP populating a region PNP with a flat boundary. Again
following Refs. [16, 17, 22], we shall take the boundary to be the vertical line at

7Other choices for the background distribution will be considered in Appendix A.
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Figure 1. Typical simulated point data sets used in our studies of straight-line boundaries. Here
we show N = 500 points within the unit square, distributed according to: background only (left
panel); background with an additionally injected signal (2.3) in the left half-plane with ρ = 1.5

(middle panel) or ρ = 5 (right panel).

x = 0.5 and the corresponding signal distribution fline to be flat and non-zero only
to the left of the boundary:

fline = 2H(0.5− x), (2.3)

where H is the Heavyside step function. When adding this signal to the background
distribution, it is important to specify the mixing ratio. For this purpose, Refs. [16,
17, 22] introduced a parameter ρ which measures the ratio of the event densities dn

da

on the two sides of the boundary8:

ρ ≡
lim

x→0.5−

(
dn

da

)
lim

x→0.5+

(
dn

da

) . (2.4)

Combining (2.2) and (2.3), the unit-normalized total distribution (1.2) on the unit
square9 for a signal with a flat boundary reads [16]

f =
2

ρ+ 1

[
ρH(0.5− x) +H(x− 0.5)

]
. (2.5)

In the middle and right panel of Fig. 1 we show distributions of N = 500 points
according to (2.5) with ρ = 1.5 and ρ = 5, respectively. In the latter case, the value
of ρ is sufficiently large that the boundary is clearly visible with the naked eye. As in
Refs. [16, 17, 22] (which considered an even more extreme value of ρ = 6), the case of
relatively large ρ is meant mostly for illustration — it makes it easier to visualize the
benefits from the various wombling and denoising techniques introduced below. Our
real target will be the case of relatively low values of ρ as shown in the middle panel
of Fig. 1, where it is rather difficult to discern any apparent wombling boundary.

8Since we are interested in detecting a wombling boundary, the parameter ρ as defined here is more
suitable than the more familiar ratio S/B of signal to background inside the signal region PSR. Note that
with our setup, the two are related as S/B = ρ− 1.

9In order to declutter the notation, in what follows we shall omit the prefactor ofH(x)H(1−x)H(y)H(1−
y) which confines us to the unit square.
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Figure 2. The same as Fig. 1, but for the circular signal (2.6) with R = 0.25.

• Signal with a circular boundary. For completeness, we shall also consider an example
of a signal in a domain bounded by a curvilinear boundary. Following [22], we shall
take the signal distribution fcircle to be confined to a circular region of radius R < 0.5

centered at (x, y) = (0.5, 0.5):

fcircle =
1

πR2
H
(
R−

√
(x− 0.5)2 + (y − 0.5)2

)
, (2.6)

so that the combined total distribution (1.2) becomes

f =
1

(ρ− 1)πR2 + 1

[
ρH

(
R−

√
(x− 0.5)2 + (y − 0.5)2

)
+H

(√
(x− 0.5)2 + (y − 0.5)2 −R

)]
, (2.7)

with the ρ parameter suitably defined in analogy to (2.4) as the ratio of point densities
across the circular boundary. The middle and right plots in Fig. 2 depict typical
distributions ofN = 500 points according to (2.5) with ρ = 1.5 and ρ = 5, respectively.
As before, the boundary for ρ = 5 is clearly visible, but the case of ρ = 1.5 appears
much more challenging.

2.2 Voronoi and Delaunay tessellations

The Voronoi and Delaunay tessellations of the point data sample in the right panel of Fig. 1
are illustrated in Fig. 3. In the left panels, which show the Voronoi tessellation, the data
points appear as dots, while in the right panels, which illustrate the Delaunay tessellation,
the data points are located at the vertices of the Delaunay triangles and are not explicitly
shown.

As illustrated in the left panels of Fig. 3, a Voronoi tessellation of N points (often
referred to as generators) in the plane is constructed as follows (see, e.g., [42]). Every
location in the plane is assigned to the closest member of the point set. If a location
happens to be equally close to two (or more) generator points, it is assigned to all of
those points; all such eqidistant locations form the edges of the Voronoi graph. The set of
locations assigned to a given member of the point set forms the Voronoi cell corresponding
to that generator point; as seen in Fig. 3, the Voronoi cells in the plane are polygons, with
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Figure 3. The Voronoi and Delaunay tessellations of a typical point data distributed according to
eq. (2.5) with N = 500 and ρ = 4. The left (right) panels show the Voronoi (Delaunay) tessellation.
The vertical blue dashed line marks the theoretical boundary line at x = 0.5. The yellow-shaded
cells in the top panels illustrate the boundary cells defined in Sec. 2.3 for the Voronoi and Delaunay
case, respectively. In the bottom panels, the tessellations are outlined with dotted lines while the
solid lines represent the boundary Voronoi edges (red lines) and their dual Delaunay edges (green
lines) as defined in Sec. 2.3.

the corresponding generator point located somewhere in the polygon’s interior, but not
necessarily at its geometric center. Note that Voronoi polygons have different shapes and
sizes; in particular, the number of edges of a polygon varies greatly, the average number
being no more than six [42]. An endpoint of a Voronoi edge is called a Voronoi vertex;
alternatively, a vertex may be defined as a point shared by three (or more) Voronoi edges.
When each vertex belongs to three and only three edges, the Voronoi tessellation is non-
degenerate; as seen in Fig. 3 this will be our case as well, since the probability of generating
a degenerate vertex in Monte Carlo sampled data is vanishingly small.

The right panels in Fig. 3 depict the corresponding Delaunay tessellation of the same
data. Since the Voronoi and Delaunay tessellations are dual to each other, one way to
construct the Delaunay tessellation is to start from the Voronoi diagram and join all pairs
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of generator points whose Voronoi polygons share a common Voronoi edge. If the Voronoi
tessellation is non-degenerate, each Voronoi vertex belongs to exactly three Voronoi edges,
which in turn define a triangular polygon in the Delaunay tessellation (see Fig. 3); for
this reason the Delaunay tessellation is often referred to as a triangulation. The described
procedure10 also manifestly pairs up all Voronoi edges with their corresponding dual edges
in the Delaunay tessellation; if each such pair of dual edges from the two tessellations has
a common point, i.e., the dual edges cross each other, the Delaunay triangulation is known
as Pitteway triangulation [65, 66]. As we shall see explicitly below in Fig. 4, our datasets
will generally not lead to Pitteway triangulations; so it will be important to keep in mind
that some dual pairs of edges may be slightly offset and not intersect each other.

In what follows, our discussion will often switch back and forth between the two types of
tessellations, so at this point it may be useful to build some intuition by recapping some of
the relationships between the constituent objects of the Voronoi and Delaunay tessellations
for a dataset consisting of N points:

• Each data point defines both a Voronoi polygon and a corresponding Delaunay vertex;
the total number of Voronoi polygons or Delaunay vertices is thus N . The number
of sides of a Voronoi polygon is equal to the number of Delaunay edges joining at the
corresponding Delaunay vertex.

• Each Voronoi edge has a dual Delaunay edge; the total number of Voronoi edges is
therefore equal to the total number of Delaunay edges and is on the order of, but
slightly less than, 3N [42].

• Each Voronoi vertex defines a corresponding Delaunay triangle; the total number of
such objects is on the order of, but slightly less than, 2N [42].

In summary, we have the following duality relations between the elements of the Voronoi
and Delaunay tessellations:

Voronoi cell ←→ Delaunay vertex, (2.8a)

Voronoi edge ←→ Delaunay edge, (2.8b)

Voronoi vertex ←→ Delaunay triangle. (2.8c)

We can formalize these relations by introducing some notation. Let us use Latin indices
to label elements from the Voronoi tessellation and Greek indices to label elements from
the Delaunay triangulation. Then let {Pi} be the set of generator points, {Vi} be the set
of Voronoi cells, {Vij} be the set of Voronoi edges and {Vijk} be the set of Voronoi vertices.
Note that each Voronoi edge can be uniquely identified by the labels i and j of the pair of
Voronoi cells which it separates, and similarly, for non-degenerate tessellations, a Voronoi
vertex Vijk is labelled by exactly three indices since it is the meeting point of the edges Vij ,

10There are alternative methods to construct the Delaunay triangulation, e.g., using the property that
the interiors of the circumcircles of Delaunay triangles are empty circles, i.e., contain no points from the
dataset.
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Vjk and Vki. Also let Ni be the number of edges (or equivalently, neighboring polygons)
of the ith Voronoi cell Vi. With regards to the Delaunay triangulation, let {Dα} be the
set of Delaunay triangles, {Dαβ} be the set of Delaunay edges and {Dα1α2α3...αNi

} be the
set of Delaunay vertices. As before, each edge Dαβ can be identified by the labels α and
β of the Delaunay triangles which it separates, and each vertex can be identified by the
labels {α1, α2, ..., αNi} of the Ni Delaunay triangles which are sharing it. Then the duality
relations (2.8) can be written as

Pi ←→ Vi ←→ Dα1α2α3...αNi
, (2.9a)

Vij ←→ Dαβ, (2.9b)

Vijk ←→ Dα, (2.9c)

Ni ←→ Nα = 3. (2.9d)

Note the trade-off in complexity — in the Voronoi case, vertices are labelled with exactly 3
indices, but the number of polygon edges Ni varies, while in the Delaunay case, the number
of polygon edges is always 3, but vertices are labelled with a varying number of indices.

2.3 Candidate boundary objects

Having described the Voronoi and Delaunay tessellations of the data, before proceeding to
the next two stages of gradient computation and tagging, it is worth pausing for a moment
to discuss which elements of the tessellation are best suited for describing a wombling
boundary. In Fig. 3 the theoretical boundary at x = 0.5 was marked with a vertical blue
dashed line, but this was done only to guide the eye, since in reality both the existence
and location of the boundary will be a priori unknown. In practice, we need to identify
individual elements of the tessellations located at (or close to) the boundary which could
be targeted by the wombling analysis.

By including the Delaunay tessellation into our discussion, we obtain three new pos-
sibilities in addition to the approach of Refs. [16, 17]. The four panels in Fig. 3 illustrate
these four options:

• Boundary Voronoi Cells (BVCs), shown in the upper left panel in Fig. 3. When
working with the Voronoi tessellation, this is the most natural and perhaps only
option. A Boundary Voronoi Cell was defined as any Voronoi cell which is crossed
by the theoretical boundary [16, 17]. In the upper left panel of Fig. 3 and in the left
panel of Fig. 4, the BVCs are shaded in yellow.

• Boundary Delaunay Triangles (BDTs), shown in the upper right panel in Fig. 3. When
working with the Delaunay triangulation, in analogy we can now define a Boundary
Delaunay Triangle to be any Delaunay triangle which is crossed by the theoretical
boundary. In the upper right panel of Fig. 3 and in the right panel of Fig. 4, the
BDTs are shaded in yellow.

• Boundary Delaunay Edges (BDEs), shown in the lower right panel in Fig. 3. Similarly,
we can define a Boundary Delaunay Edge to be any Delaunay edge which is crossed
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Figure 4. Left: The Voronoi tessellation of the data shown in Fig. 3 illustrating the relationships
between Boundary Voronoi Cells (yellow-shaded), Boundary Voronoi Edges (red solid lines) and
Boundary Delaunay Edges (green dashed lines). Right: Delaunay tessellation of the data shown in
Fig. 3 illustrating the relationships between Boundary Delaunay Triangles (yellow-shaded), Bound-
ary Voronoi Edges (red solid lines) and Boundary Delaunay Edges (green solid lines).

by the theoretical boundary. In the lower right panel of Fig. 3 and in the two panels
of Fig. 4, the BDEs are indicated with green lines.

• Boundary Voronoi Edges (BVEs), shown in the lower left panel in Fig. 3. Finally,
using the duality relation (2.8b) we can define a Boundary Voronoi Edge to be any
Voronoi edge which is dual to a Boundary Delaunay Edge. In the lower left panel of
Fig. 3 and in the two panels of Fig. 4, the BVEs are indicated with red lines.

Note that the last three options all rely on the Delaunay triangulation and would not have
been possible if we were only considering the Voronoi tessellation of the data.

Given the duality relations (2.8) between the Voronoi and Delaunay tessellations, the
different categories of boundary objects defined above are related to each other. These
relationships are exhibited in Fig. 4, where we simply superimpose some of the results from
Fig. 3 in order to better see the existing correlations. Figs. 3 and 4 demonstrate that all
four definitions lead to a contiguous set of boundary objects strung along the theoretical
boundary. Now the question becomes how to tag these boundary objects with a suitable
algorithm using their geometric properties.

3 Estimation of local gradients from the tessellation

3.1 Gradient estimation from a Voronoi tessellation

As discussed in the Introduction, the Voronoi tessellation provides a natural estimate (1.5)
for the values of the function f at the location of each generator point. In our case, since
we are dealing with a two-dimensional dataset (2.1), eq. (1.5) reduces to

fi ∼
1

ai
, (3.1)
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Figure 5. Pictorial illustration of the identification (3.1) for the case of the three point datasets
shown in Fig. 1. The Voronoi cells are color-coded by their inverse areas with warm (cold) colors
indicating large (small) values of f .

where ai is the area of the ith Voronoi cell Vi. The identification (3.1) is pictorially illustrated
in Fig. 5 for the point data examples from Fig. 1. Unfortunately, the area ai by itself does
not tell us anything about the gradient of the function f(x, y) — for this purpose, we need
to compare ai to the areas of the surrounding Voronoi cells. Let Ni = {j1, j2, . . . , jNi} be
the set of indices labelling the neighboring Voronoi cells, i.e., the Voronoi cells sharing an
edge with Vi. By taking the neighboring cells one at a time, j ∈ Ni, one can compute
directional derivatives (∇n̂ijf)i in the direction of the jth neighboring cell, i.e., along the
unit vector

n̂ij =
1√

(xj − xi)2 + (yj − yi)2
(xj − xi, yj − yi),

as [16]

(∇n̂ijf)i = (aiaj)
3
4

fj − fi√
(xj − xi)2 + (yj − yi)2

, (3.2)

where the prefactor of (aiaj)
3
4 was included to make the directional derivative dimensionless.

Since each Voronoi cell Vi has a varying number of edges Ni ≡ |Ni|, there will be a different
number of directional derivatives available at each point i, but they can all be fitted to the
expected distribution from the true gradient, thus producing an estimate ~Gi of the gradient
vector at the ith generator point Pi [16]. Another variable explored in Ref. [16] was the
relative standard deviation σ̄i of the areas of the neighboring cells,

σ̄i ≡
σi
āi
≡ 1

āi

√√√√∑
j∈Ni

(aj − āi)2

Ni − 1
, (3.3)

where
āi ≡

1

Ni

∑
j∈Ni

aj

is the mean area of the neighbors of the ith Voronoi cell. As demonstrated in Refs. [16,
22, 56], among the different possibilities, the relative standard deviation (3.3) performed
rather well in tagging the BVCs. Of course, those studies were utilizing only the Voronoi
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tessellation, which is not ideal for computing gradients. The Delaunay triangulation, on
the other hand, provides a more natural framework for the gradient estimation11, as will
be discussed in the following subsection.

3.2 Triangulation wombling from a Delaunay tessellation

The Delaunay triangulation leads to a natural method for computing the gradient known
as “triangulation wombling” [34, 39]. The starting point is the observation that for each
Delaunay triangle Dα, the functional values at its three vertices are known from (3.1).
Three points are enough to fit a plane, whose slope will provide an estimate of the gradient
vector ~Gα to be associated with the Delaunay triangle Dα. Recall the duality relation
(2.9c) which maps the triangle Dα to its three vertices which carry indices i, j and k in the
Voronoi tessellation. We can then parametrize the plane defined by Dα as

f = Gαx x+Gαy y + C, (3.4)

where C is some constant. Applying this relation at each vertex, we obtain three indepen-
dent equations

fi = Gαx xi +Gαy yi + C, (3.5a)

fj = Gαx xj +Gαy yj + C, (3.5b)

fk = Gαx xk +Gαy yk + C, (3.5c)

which can be solved for the gradient ~Gα and the constant C as [34, 39]Gαx
Gαy
C

 =

 xi yi 1

xj yj 1

xk yk 1


−1 fi

fj
fk

 . (3.6)

From here, a wombling analysis would typically focus on the magnitude of the gradient

Gα =
√
G2
αx +G2

αy (3.7)

and proceed to select Delaunay triangles Dα with relatively large values of Gα, typically in
the top 10th percentile of all cells, as candidates for boundary elements.

However, the straightforward application of this procedure leads to a problem which
is illustrated in Fig. 6 for the case of ρ = 5. In the left panel we show the distributions of
gradient magnitudes Gα as calculated by the triangulation wombling method just described.
We see that the distribution is a very steeply falling function with a long tail — most
Delaunay cells have relatively small gradients and only a small fraction populates the large
Gα tail. Now, if the cells on the tail were predominantly BDTs, the method would have

11A purist might say that, since the two tessellations are dual to each other, strictly speaking there is
nothing more to be gained from the Delaunay tessellation that could not have already be obtained from
the Voronoi tessellation. While this may be technically correct, we found the Delaunay tessellation useful
in hinting at some new techniques and ideas as discussed below.
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Figure 6. Left panel: Distribution of the magnitudes Gα of the gradient vectors ~Gα computed
in the process of triangulation wombling. Middle panel: A scatter plot of Gα versus the horizontal
position of the centroid of the corresponding Delaunay triangle Dα. Right panel: the Delaunay
triangles (red-shaded) within the top 10th percentile as ranked by gradient magnitudes.

succeeded and there would be no problem, but unfortunately, that is not the case. In the
middle panel of Fig. 6 we show a scatter plot of the calculated gradient magnitudes Gα
versus the horizontal position of the corresponding Delaunay triangle Dα as given by its
centroid. We notice that the gradients computed for cells in the dense region (x < 0.5) tend
to be much larger than the gradients in the sparse region (x > 0.5) (this is to be expected,
since statistical fluctuations scale as

√
f). As a result, the cells with large gradients will

tend to be more or less uniformly distributed in the dense region, with no relation to the
boundary at x = 0.5. This is confirmed in the right panel of Fig. 6, where we identify
with red shading the Delaunay triangles whose gradients are in the top 10th percentile of
gradient magnitudes. As anticipated from the result in the middle panel, the red-shaded
Delaunay triangles are located almost entirely in the dense region and there is no apparent
clustering near the boundary. This means that in order to properly tag the BDTs, we must
first pre-process the computed gradients ~Gα in order to mitigate the effect of the statistical
noise.

3.3 Denoising

In this subsection we outline three different procedures for denoising the computed gradient
vectors ~Gα. As we shall demonstrate, each of them has the desired effect, and the optimal
approach will be some combination of the three, although finding out the exact proportions
is beyond the scope of this paper.

3.3.1 Rescaling of the naive gradients

The first approach is to rescale each calculated gradient magnitude Gα as

Gα → G̃α ≡ Gα
√
aiajak, (3.8)

where ai, aj and ak are the areas of the Voronoi cells centered on the three vertices of the
Delaunay triangle Dα (recall the duality relation (2.9c)). The idea behind the rescaling
(3.8) is to render the rescaled gradient G̃α “dimensionless” with respect to the cell areas
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Figure 7. The same as Fig. 6, but after rescaling the calculated gradients as in eq. (3.8).

ai, and therefore insensitive to the overall density of points. Fig. 7 demonstrates that the
rescaling (3.8) does have the desired effect. In the left panel, the distribution of rescaled
gradient magnitudes G̃α still follows the same trend as in Fig. 6, but the numerical values
have been reduced by several orders of magnitude. More importantly, the middle panel of
Fig. 7 confirms that the rescaled gradient magnitudes are now uniformly consistent across
the two regions, with a cluster of points with relatively large G̃α beginning to emerge near
the theoretical boundary. The right panel of Fig. 7 shows the updated plot of the Delaunay
triangles falling in the top 10th percentile of G̃α. We observe that, while the Delaunay cells
tagged as BDTs are still scattered throughout the field of view, a significant fraction of them
appears at the location of the boundary, which further validates the rescaling procedure
(3.8). That is why from now on, unless specified otherwise, we shall always work with
gradient vectors which have been rescaled as in (3.8).

3.3.2 Lloyd steps uniformization (LSU)

Another method for removing unwanted noise fluctuations in the data was explored in [16]
and involved the so called Voronoi relaxation of the data by means of Lloyd’s algorithm [67].
A closer inspection of the Voronoi tessellations depicted in Figs. 3 and 4 reveals that after
the tessellation is constructed, the generator points can be found pretty much anywhere
within the Voronoi polygon — near the center of the cell, close to an edge, or somewhere
in between. The idea of the Voronoi relaxation is to make the whole Voronoi structure
more uniform by performing several steps (or iterations) of Lloyd’s algorithm, where at
each iteration, the generator point is moved to the centroid of the corresponding Voronoi
cell and the tessellation is redone.

The effect of performing such Lloyd step uniformization (LSU) on our data is shown in
Figs. 8 and 9. Each figure has 8 panels, depicting the Delaunay tessellation12 of the data
after a certain number of Lloyd iterations, starting with 0 (no Lloyd steps) in the upper
left panels and going up to 20 Lloyd steps in the lower right panels. In addition, in Fig. 8
each Delaunay triangle Dα is color-coded by the rescaled magnitude G̃α of the respective
gradient (the gradients are recalculated after each step). Note that the color bar extends

12For similar plots illustrating the effect of LSU on the Voronoi tessellation, see [16].
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Figure 8. Delaunay triangulations with individual cells color-coded by their rescaled gradient
magnitudes G̃α, after a certain number of Lloyd steps (from top left to bottom right): 0, 1, 2, 3, 5,
7, 10, 20. The color bar extends up to 60% of the largest G̃α value found in the data; any cell with
a gradient magnitude above that threshold is colored yellow, essentially creating an overflow color
bin. This was done in order to minimize the effect of outliers and better visualize the bulk of the
cells with typical values.

only up to 60% of the largest gradient magnitude found in the data13; any cell with a
gradient magnitude above that threshold is colored yellow, essentially creating an overflow
color bin. This was done in order to minimize the effect of outliers and better visualize
the bulk of the cells with the more typical values. Fig. 9, on the other hand, marks the
Delaunay triangles falling in the top 10th percentile of G̃α values, just like the plot in the
right panel of Fig. 7.

There are several lessons that can be drawn from Figs. 8 and 9. First, as expected,
the Lloyd relaxation causes the Delaunay triangles to become more regularly shaped. For
example, notice that a large fraction of the triangles in the original Delaunay tessellation are
obtuse (see the right panels in Figs. 3-7). However, within a few Lloyd steps, the fraction
of obtuse triangles drops significantly and obtuse triangles are rather rare14 in the plots in
the lower rows of Figs. 8 and 9. More importantly, as shown in Figs. 8, the LSU procedure
also tends to wash out the noisy fluctuations in the calculated rescaled gradient magnitudes
G̃α within the bulk regions away from the boundary (note the decreasing range of G̃α on
the color bars). This further sharpens the contrast between the Delaunay triangles situated
near the boundary versus those in the bulk. In particular, notice the gradual emergence
of the boundary, which becomes quite pronounced and unmistakable after 5-7 Lloyd steps.
However, the figures also show that the number of Lloyd steps should be chosen with care
— applying too few may not optimally showcase the boundary, while applying too many
may cause the boundary to start disintegrating, as evidenced in the lower right panels after

13For example, the left panel in Fig. 7 reveals that the largest G̃α value found in the data is around 75,
while the color bar in the upper left panel of Fig. 8 only goes up to 75× 60% = 45.

14Furthermore, the largest angle of any remaining obtuse triangle is typically not too far above 90◦.
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Figure 9. The same as the right panel in Fig. 7, but showing the effect of applying the Lloyd
algorithm with varying number of steps as in Fig. 8.

Figure 10. Left panel: Rescaled gradient vectors ~̃Gα computed via triangulation wombling, after
applying one Lloyd iteration to the original data. Middle panel: the result 〈~G〉i from averaging the
gradient vectors ~̃Gα shown in the left panel at each data point Pi according to eq. (3.9). Right
panel: the result 〈~G〉α from further averaging the Voronoi-averaged gradient vectors 〈~G〉i shown in
the middle panel at each Delaunay triangle according to eq. (3.10).

20 iterations.

3.3.3 Local averaging of gradient vectors

A third approach for smoothing out the local statistical fluctuations in the data is to perform
some type of averaging procedure over a region extending beyond the individual Voronoi or
Delaunay cells and their immediate neighbors. For example, Ref. [16] considered extending
the calculation of σ̄i in (3.3) over several tiers of Voronoi neighbors (up to 5) and showed
that this indeed produces the desired effect of reducing the fluctuations and sharpening the
boundary identified by means of σ̄i.

In our case here, we are dealing with the Delaunay tessellation instead, where the
procedures of triangulation wombling (3.6) and rescaling (3.8) allow us to directly compute
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the rescaled gradient vector ~̃Gα associated with each Delaunay triangle Dα. The result
(after one Lloyd iteration) is shown in the left panel of Fig. 10, where we plot each vector
~̃Gα at the centroid of the corresponding Delaunay triangle. This plot is the vector field
analogue of the color map shown in the second panel of the upper row of Fig. 8, which
for ease of comparison we reproduce again in the left panel of Fig. 11. The difference is
that the color map plots in Figs. 8 and 11 identify cells only by the magnitude G̃α of the
gradient, while the vector field plots of Fig. 10 include the directional information as well,
which is useful in visualizing the spatial patterns and correlations of the gradient vectors.

Now, given the rescaled gradient vectors ~̃Gα shown in the left panel of Fig. 10, there
are two ways to perform local averaging of these vectors, depending on whether we want
to associate the result from the averaging with a Voronoi cell (i.e., a Delaunay vertex) or
with a Delaunay triangle:

• Voronoi cell averaging. Recall that according to the duality relation (2.9a), each
Voronoi cell Vi corresponds to a Delaunay vertex Dα1α2α3...αNi

, which is the common
vertex of Ni Delaunay triangles Dα1 , Dα2 , Dα3 , . . . , DαNi

. Thus we can simply define
the average gradient 〈~G〉i at any Voronoi cell Vi to be15

〈~G〉i =
1

Ni

Ni∑
k=1

~̃Gαk . (3.9)

• Delaunay cell averaging. Once we have the averaged vectors (3.9) at our disposal,
we can go back to each Delaunay triangle and further average the three vectors (3.9)
associated with its three vertices.

〈~G〉α =
1

3

(
〈~G〉i + 〈~G〉j + 〈~G〉k

)
, (3.10)

where the indices i, j and k label the data points at the vertices of Dα (recall the
duality relation (2.9c)).

The vector fields resulting from the averaging prescriptions in eqs. (3.9) and (3.10) are
shown in the middle and right panels of Fig. 10, respectively. One can see that the statistical
fluctuations are indeed getting suppressed as a result of the averaging, and furthermore, the
directions of the gradient vectors near the boundary are becoming better correlated with
each successive iteration. This directional correlation will become important in the next
two sections where we shall compare the properties of neighboring cells in the tessellation.
For now, in order to demonstrate the benefits from the averaging procedures (3.9) and
(3.10) for the purposes of boundary detection, it is sufficient to update the color maps from
Fig. 8 using the magnitudes of the averaged gradients instead. This is done in the middle
and right panels of Fig. 11, where the individual cells in the tessellation have been color-
coded by the magnitudes of the Voronoi-averaged gradient (3.9) and the Delaunay-averaged

15As an alternative to a simple sum as in (3.9), one could assign a weight for each vector ~̃Gαk , for example,
the angular size of the Dαk triangle as seen from the point Pi.
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Figure 11. Delaunay (left and right panels) or Voronoi (middle panel) triangulations of the data
after applying one Lloyd iteration, with individual cells color-coded by the magnitudes of their
respective rescaled gradient vectors computed from triangulation wombling (left panel), Voronoi-
averaged according to eq. (3.9) (middle panel), or Delaunay-averaged according to eq. (3.10) (right
panel).

gradient (3.10), respectively. By comparing Fig. 11 to Fig. 8, we see that the local averaging
procedures produce comparable benefits to Voronoi relaxation, so that we can view the two
procedures as alternatives to the other. More specifically, local averaging seems to be at
least equivalent to (if not better than) running on the order of 5-7 Lloyd iterations, which
seemed to be the optimal choice in Figs. 8 and 9. Of course, the two methods can also be
applied simultaneously, so that their benefits can be optimally exploited. In our analysis
of Sections 7 and 8, unless specified otherwise, we shall choose to employ the Delaunay-
averaged gradient vectors (3.10).

4 Tagging elements of the tessellation as boundary candidates

Armed with the various estimates of the local gradient vectors discussed in the previous
section, we are now ready for the next step of the wombling algorithm, namely, the tagging
of Voronoi or Delaunay cells as boundary candidates. The standard approach is to place
a lower cut on the relevant variable (typically the magnitude) which measures the size of
the gradient. This selection singles out a certain set of candidate boundary cells as shown
in Fig. 9. The purpose of this section is to study how effective16 this selection is and
to suggest a potential improvement of the standard approach by utilizing the correlations
between gradient vectors computed in neighboring cells. The idea will be to place a premium
not just on cells whose own gradient ~̃Gα has a large magnitude, but on cells where the
neighboring gradients ~̃Gβ have both a) large magnitudes and b) correlated directions with
~̃Gα. A convenient variable which captures the desired correlations between two vectors ~̃Gα
and ~̃Gβ is their dot product, ~̃Gα · ~̃Gβ [16].

16Selection efficiency is typically illustrated with ROC curves, where one varies the cut on the selection
variable and plots the fraction of signal versus the fraction of background surviving the cut. This was also
the procedure used in Refs. [16, 22]. Here, however, we prefer to simply show scatter plots of the tagging
variable versus the distance to the boundary. In this way, we avoid the need to define what exactly is meant
by a “boundary” object versus a “bulk” object.
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Figure 12. Scatter plots of different tagging variables discussed in the text versus the horizontal
position of the corresponding element in the tessellation. The upper left panel shows the relative
standard deviation σ̄i defined in (3.3) versus the horizontal position xi of the generator point Pi.
The other three panels show dot products of different versions of neighboring gradient vectors
versus the horizontal position (xi+xj)/2 of the midpoint of the respective Delaunay edge Dαβ : the

rescaled gradients ~̃Gα · ~̃Gβ (upper right panel), the Voronoi-averaged gradients 〈~G〉i · 〈~G〉j (lower
left panel) and the Delaunay-averaged gradients 〈~G〉α · 〈~G〉β (lower right panel).

Fig. 12 shows scatter plots of such dot products of neighboring vectors for the three
types of gradients introduced in the previous section: ~̃Gα · ~̃Gβ (upper right panel), 〈~G〉i ·〈~G〉j
(lower left panel) and 〈~G〉α · 〈~G〉β (lower right panel). In each case, the result is plotted
versus the horizontal position (xi+xj)/2 of the midpoint of the respective17 Delaunay edge
Dαβ . For comparison, in the upper left panel we show a scatter plot of the relative standard

17In the case of ~̃Gα · ~̃Gβ and 〈~G〉α ·〈 ~G〉β , the relevant Delaunay edge is simply Dαβ , i.e., the edge separating
the Delaunay triangles Dα and Dβ , while in the case of 〈~G〉i · 〈 ~G〉j the relevant Delaunay edge is the one
dual to the Voronoi edge Vij , see eq. (2.9b).
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Figure 13. Scatter plot showcasing the correlation between two of the tagging variables from
Fig. 12 — the relative standard deviation (x-axis) and the dot product 〈~G〉α · 〈~G〉β of Delaunay-
averaged gradients (y-axis). The orange stars correspond to Delaunay edges Dαβ whose midpoint
is located close to the boundary (0.47 < x < 0.57), while blue circles represent the remaining edges
further away. Since each Delaunay edge Dαβ is dual to two Voronoi points Pi and Pj , the quantity
shown on the x-axis is the average (σ̄i + σ̄i)/2 of the respective relative standard deviations σ̄i and
σ̄j .

deviation σ̄i defined in (3.3) versus the horizontal position xi of the corresponding generator
point Pi. As explained in Sec. 3.1, the relative standard deviation σ̄i is constructed from the
Voronoi tessellation and was found to perform best among several other Voronoi-constructed
alternatives [16]. The upper left panel in Fig. 12 confirms that the highest values of σ̄i are
indeed found for cells near the boundary; in fact, the top 16 highest σ̄i values belong to
such cells. At the same time, we also observe a significant variation in the σ̄i values for cells
in the bulk; for σ̄i < 0.7 this starts introducing a certain number of false positives.

The remaining three panels of Fig. 12 demonstrate that the corresponding dot prod-
ucts of gradients computed from the Delaunay tessellation are also efficient in identifying
boundary objects (in this case, Delaunay edges). Among the three options illustrated in
the plot, the dot product of the Delaunay-averaged gradients seems to perform the best
— the top 47 highest dot products of neighboring 〈~G〉α vectors belong to Delaunay edges
near the boundary; and there is a well defined cluster of points with large y values in the
boundary region 0.45 < x < 0.6. Note the different y-axis range on these three plots — the
variation of dot product values is largest for ~̃Gα · ~̃Gβ and smallest for 〈~G〉α · 〈~G〉β , further
demonstrating the beneficial effects from the averaging procedures discussed in Sec. 3.3.3.
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Comparing the top left panel in Fig. 12 to the other three panels, we conclude that
the gradient dot products, which take advantage of the correlations between neighboring
gradient vectors in terms of both direction and magnitude, are able to identify the boundary
better than σ̄i and similar variables (Fig. 13 shows a direct comparison between the relative
standard deviation and the dot product 〈~G〉α · 〈~G〉β of Delaunay-averaged gradients). As
a byproduct of this new method of tagging, we have also automatically built up a network
of associations among the Delaunay cells in the triangulation, which is readily available for
use in the next step (agglomeration), where one attempts to construct the actual boundary.
This is the subject of the next section.

5 Agglomeration of tagged boundary elements

The previous step (the tagging of boundary elements) typically fails to result in a continuous
boundary, especially in case of weak signals. Instead, the algorithm produces a collection
of scattered “islands” of tagged cells, as seen in the right panels of Figs. 6 and 7 and in
the top panels of Fig. 9. This necessitates the next step of agglomerating the individual
tagged cells into subgraphs and evaluating whether the resulting pattern is consistent with
a linear boundary [29]. The downside of this approach is that it does not take into further
consideration the cells which have failed the tagging cut — those cells are simply ignored
from this point on. Another potential drawback is that the tagging and agglomeration steps
are done independently from each other, so that the existence of any spatial correlations
among neighboring cells is not being used during the tagging. As already mentioned in
the previous section, both of these problems are avoided when we use the dot products of
neighboring gradients as tagging variables. As illustrated in the last three panels of Fig. 12,
each dot product of gradients can be uniquely associated with a Delaunay edge Dαβ or
with its dual Voronoi edge Vij , see eq. (2.9b). We can then treat the original Voronoi and
Delaunay tessellations as weighted networks, where each edge is assigned a weight equal to
the dot products of the corresponding two gradients. This weighted network representation
is illustrated in Fig. 14, where we superimpose the Voronoi tessellation (red lines) and the
Delaunay triangulation (blue lines). The weight of an edge is indicated by the line thickness
— thicker lines imply higher weights and vice versa. The three panels show three different
ways to compute the weights from the gradient dot products, depending on which set of
gradient vectors from Fig. 10 we choose to use: ~̃Gα · ~̃Gβ (left panel), 〈~G〉i · 〈~G〉j (middle
panel) or 〈~G〉α · 〈~G〉β (right panel). As seen in Fig. 12, a certain fraction of dot products
are negative; if that is the case, the corresponding edge is not plotted.

The three panels in Fig. 14 can be contrasted with the corresponding results in Fig. 11,
where we used just the magnitudes of the individual gradient vectors, without any reference
to their neighbors. The boundary seems to be better outlined in Fig. 14, particularly when
we make use of the averaging procedures from Sec. 3.3.3. We also note the benefit of plotting
the Voronoi and Delaunay tessellations simultaneously — the orientation of the edges with
respect to the boundary is random, so whenever a given edge happens to be orthogonal
to the boundary, its dual tends to be parallel to it, so taken together, they trace out the
correct shape of the boundary.
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Figure 14. Weighted network representations of the Voronoi tessellation (red lines) and the
Delaunay triangulation (blue lines). The line thickness is proportional to the weight, which is given
by ~̃Gα · ~̃Gβ (left panel), 〈~G〉i ·〈 ~G〉j (middle panel) and 〈~G〉α ·〈 ~G〉β (right panel). Edges with negative
weights are not shown.

Fig. 14 also elucidates the results from Fig. 12, where we observed that while many
edges situated close to the boundary enjoyed relatively large values of their gradient dot
products, there was also a non-negligible fraction of edges near the boundary with rather
low values of the gradient dot products. Fig. 14 now reveals that these two populations are
spatially correlated — note how the edges with large values of the gradient dot products
are linked together, as are their counterparts. This confirms that using the gradient dot
products as tagging variables automatically also takes care of the agglomeration.

Until now we have been following the standard steps of a wombling analysis. As already
mentioned, the last remaining step is to evaluate the statistical significance of the observed
pattern of tagged boundary candidates. Note that the last three figures illustrate tagging
procedures for each of the four types of boundary candidate objects defined in Sec. 2.3:
Voronoi cells (middle panel in Fig. 11 and upper left panel in Fig. 12), Delaunay cells (left
and right panels in Fig. 11), Delaunay edges (upper right and lower panels in Fig. 12 and
all three panels in Fig. 14) and Voronoi edges (Fig. 14). Of course, since the Voronoi and
Delaunay edges are dual to each other, any procedure which can tag one edge type can also
be applied to tag the other.

In the next three sections we shall outline an alternative approach originally proposed
in [40], which allows us to perform the tagging, agglomeration and statistical evaluation
steps in one go. In order to introduce and illustrate the method, in the next section Sec. 6
we shall start with the case of a continuously defined function f(x, y) and then proceed to
analyze the case of point data in Secs. 7 and 8.

6 Finding wombling boundaries: analytical examples

In order to bypass the tagging and agglomeration steps, Ref. [40] proposed to directly
consider various curves C in the (x, y) plane, and to associate a “wombling measure” Γ with
each one, so that true wombling boundaries can be identified by their large values of Γ.
Since a wombling boundary is supposed to represent a zone of rapid change in the function
f , it is natural to define the wombling measure in terms of the local gradient ~∇f suitably
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integrated along C. In particular, Ref. [40] defined Γ to be the total gradient flux through
C

Γ[C] ≡
∫
C

(
~∇f · n̂C

)
d`, (6.1)

where n̂C is a unit vector normal to the curve C and d` is the infinitesimal length along C.
Additionally, Ref. [40] also considered the average gradient flux

Γ̄[C] ≡

∫
C

(
~∇f · n̂C

)
d`∫

C d`
, (6.2)

where using the total length of the curve as a normalization factor eliminates the unfair
advantage of curves which happen to be too long. For this reason, in what follows we shall
make use of (6.2) and not (6.1).18

Without any further constraints on the type of curves C that we are allowed to con-
sider, this method would be rather impractical. To make further progress, two approaches
are possible. The first one is the model-dependent route — if we specify exactly what kind
of new physics model generates the wombling boundary, then C can be specified by only
a handful of parameters (typically the masses of the new particles). Then the problem of
maximizing the functional (6.2) over all possible curves C reduces to a simple global maxi-
mization problem in the parameter space describing C [23]. Here, however, we would like to
stay as model-independent as possible, so we shall not assume any specific parametrization
of the boundary. At the same time, we do not want to consider arbitrarily general curves
C either.

An intermediate compromise approach is the following. Note that any curve C can
locally be approximated by a straight line segment. Therefore, we can perform a scan of
the (x, y) plane where at each point P we try a line segment (centered on P ) of fixed length L
and arbitrary angular orientation ϕ. Each point in the so-defined 4-dimensional parameter
space (x, y, L, ϕ) corresponds to a well-defined line segment, for which the wombling measure
(6.2) can be calculated. The regions in (x, y, L, ϕ) parameter space with large values for Γ̄[C]

would then identify (segments of) the wombling boundary. Since this procedure involves
optimization in a 4-dimensional parameter space, it will be difficult to illustrate here. This
is why from now on we choose to focus on the (L,ϕ) subspace — one can think of this as
first zooming in on an interesting region of the (x, y) plane and then testing for the presence
of a linear wombling line segment.

Our reparametrization of the remaining two degrees of freedom describing the line
segment is illustrated in Fig. 15. As before, we retain the unit square as our field of view.
We then consider all possible straight lines crossing the unit square — each such line can be

18An additional variation mentioned in [40] was to consider integrating the flux in absolute value, e.g.,

Γ[C] ≡
∫
C

∣∣∣~∇f · n̂C∣∣∣ d`,
in order to avoid cases where a large positive flux over one section of the curve C is cancelled by a large
negative flux over another section. However, in our case such cancellations are welcome since the noise
fluctuations are random and we would like to allow them to cancel out each other as much as possible. We
have confirmed numerically in our examples that the absolute value alternative leads to lower sensitivity.
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Figure 15. Our parametrization of all possible straight lines intersecting the unit square in terms
of the coordinate pin of the entry point and the coordinate pout of the exit point, where pin (pout)
is measured counterclockwise (clockwise) along the perimeter. The right panel shows the complete
(pin, pout) parameter space, which is a square of side length 4. The blue dot represents the blue
example line shown in the left panel and its partner (when the line is traversed in reverse).

identified by the point where it enters the square and the point where it exits the square.
We shall identify the locations of those two points by their respective coordinates pin and
pout measured along the perimeteter, as shown in the left panel of Fig. 15. Since the
perimeter of a unit square is equal to 4, the parameter space (pin, pout) spans the 4 × 4

square shown in the right panel of Fig. 15 — any point within that 4 × 4 square can be
uniquely associated with a straight line crossing the field of view in one of the two possible
directions. For example, (pin, pout) = (0, 2) describes a diagonal line traversed from the
lower left corner to the upper right corner, while (pin, pout) = (2, 0) describes the same
diagonal line covered in reverse. In our previous examples, the true boundary was located
at x = 0.5, and corresponds to either19 (pin, pout) = (0.5, 1.5) or (pin, pout) = (2.5, 3.5).

In the remainder of this section and in the next Sec. 7, our main goal will be to
compute the wombling measure Γ̄[C] in the (pin, pout) parameter space and identify the
relevant wombling boundary segment(s). First we shall illustrate this procedure with the
example of a continuous function f(x, y) before tackling the case of point datasets in the
next section.

6.1 A straight line boundary

In this subsection we shall revisit the vertical straight line boundary example from the
previous sections. However, we shall not use the original distribution (2.5), for two reasons:
first, the discontinuity at x = 0.5 would generate an infinite gradient when computed ana-
lytically, and second, the distribution (2.5) corresponds to an idealized situation where the
effects of particle widths and detector smearing are ignored. In any realistic experimental
analysis the sharp step at x = 0.5 will be smeared and the boundary will be characterized
by a large but finite gradient.

19In our conventions, reversing the direction of a given line (pin, pout) implies (pin, pout)→ (4− pout, 4−
pin).
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Figure 16. The black dotted line shows the original distribution (2.5) for ρ = 5 (left panel) and
ρ = 1.5 (right panel) before any smearing. The red solid histogram is the result from applying
Gaussian smearing with σ = 0.2. The blue dashed line is the result from fitting to the ansatz (6.4).

This is illustrated in Fig. 16, where the black dotted lines show (the x-dependence of)
the original distribution (2.5) before any smearing, for ρ = 5 (left panel) and ρ = 1.5 (right
panel). We then apply Gaussian smearing with σ = 0.2, resulting in the red histograms,
which have the typical shapes expected in a realistic experimental analysis. In particular,
notice how the gradient at the boundary is significantly reduced as a result of the smearing,
making the task of finding the wombling boundary quite challenging. At this point we fit
an analytical function to the so obtained smeared distributions. For the fit, we choose to
utilize the (unit-normalized) ArcTan sigmoid function

gres(x; a, ξ, k) = 1− 2

π

ξ − 1

ξ + 1
arctan

(
k(x− a)

)
, (6.3)

whose derivative is maximal (in absolute value) at x = a, the sharpness of the transition
being controlled by the parameter k. The remaining parameter ξ is analogous to ρ in the
sense that (compare to (2.4))

ξ =
g(x = −∞)

g(x =∞)
.

Since our field of view is limited to x ∈ [0, 1] and the boundary is at x = 0.5, for the actual
fit we choose the parametrization

f(x, y) = gres(x; a = 0.5, ξ, k) (6.4)

and then adjust ξ and k to match the smeared distributions shown by the red histograms.
As seen in Fig. 16, the fit reproduces the effects of smearing rather well, so in the rest of
this subsection we shall use (6.4) as our analytically defined distribution.

Using the respective fit (6.4) as our proxy, we can now compute the wombling measure
Γ̄[C] in the (pin, pout) space of all lines intersecting our unit square. The result for ρ = 5

(ρ = 1.5) is shown in the left (right) panel of Fig. 17. We choose to plot the absolute value
of Γ̄[C], since the sign of Γ̄[C] is determined by the direction in which we traverse the line,
and does not have any bearing on whether the line is a wombling boundary or not. Fig. 17
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Figure 17. The result from the linear wombling procedure described in the text on a data set
with ρ = 5 (left) and ρ = 1.5 (right). The heat map is color coded according to the value of |Γ̄[C]|
and exhibits two degenerate maxima since each line is traversed twice (once in each direction).

reveals that, as expected, there are two locations with maximal wombling measures: at
(pin, pout) = (0.5, 1.5) and at (pin, pout) = (2.5, 3.5). Both of those correspond to the same
vertical line at x = 0.5 which was the true boundary. This demonstrates that the method
is indeed able to find the correct boundary. The significance of these findings, however, is
sensitive to the amount of signal present — in the left panel, where ρ = 5, the two winning
answers are very clearly identified, while in the right panel (using the same color scale) they
appear to be less noticeable, which is a hint that the effect might be in danger of being
washed out once we include the statistical fluctuations present in the point data — this
issue will be investigated in detail in Sec. 7 below.

6.2 A circular boundary line

The example in the previous Sec. 6.1 might appear somewhat contrived since the true
boundary was a straight line and at the same time, we also used straight lines in computing
the wombling measure Γ̄[C]. Since the shapes of the lines match, it was inevitable to find
a unique best match, as shown in Fig. 17. To be fair, we shall now consider a less trivial
example where the true boundary has a different shape from the line segments which we
use to test for the presence of a wombling boundary. In particular, we shall revisit the case
of a circular boundary introduced in Sec. 2.1, where the probability distribution was given
by (2.7). Once again, we shall not rely directly on (2.7), but in order to account for the
detector resolution, we shall sample the events according to

f(r, ϕ) ∼ rgres(r; a = 0.25, ξ = 2, k = 30), (6.5)

where r and ϕ are the polar coordinates in the plane, measured from an origin at the center
of the circle, and the smearing function gres was already defined in (6.3). The resulting
probability distribution is plotted in the left panel of Fig. 18. Note that the densities on
the two sides of the circular boundary differ by no more than a factor of 2, so in this sense
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Figure 18. Color maps of the probability distribution (6.5) used for the circular boundary example
(left panel) and of the corresponding |Γ̄[C]| in the (pin, pout) parameter space (right panel).

this example is analogous to ρ ∼ 2 in our usual notation. The corresponding heat map of
|Γ̄[C]| in the (pin, pout) parameter space is shown in the right panel of Fig. 18. The most
striking difference from the previous results in Fig. 17 is that now we find not just a single
wombling boundary candidate, but a whole class of wombling boundaries, identified by the
two20 bright yellow stripes running diagonally across the plot. A careful inspection of the
right panel in Fig. 18 reveals that each of the identified wombling boundary candidates is
tangential to the circular boundary, which suggests that the dominant contribution to the
integral comes from the region in the vicinity of the circular boundary, where the gradient
is largest. The slight difference in the brightness along the stripes can then be attributed to
the different orientation of the lines, which leads to differences in the (sub-dominant) flux
contributions in the regions away from the true boundary.

7 Finding wombling boundaries: point data examples

Having illustrated the basic idea of Refs. [40, 63] with the continuous examples from the
previous section, we shall now apply it to point data. Following the outline of Sec. 6, we
shall first consider the case of a straight line boundary in Sec. 7.1 and then the case of a
circular boundary in Sec. 7.2.

7.1 A straight line boundary

7.1.1 An example with ρ = 5

Our first straight-line boundary example will be the same point data example which we have
been using so far throughout the paper to illustrate the various methods and techniques of
a wombling analysis, see Figs. 3, 4, 6, 7, 8, 9, 10, 11, 12 and 14. (As a reminder, we used

20We obtain two stripes because of the double counting (pin, pout) ←→ (4 − pout, 4 − pin) due to the
possibility to traverse a line segment in each of the two opposite directions, as shown in the right panel of
Fig. 15.
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N = 500 points generated according to the distribution (2.5) with ρ = 5.) In particular,
we shall repeat the procedure from Sec. 6 and compute a wombling measure Γ̄[C] for each
possible straight line C crossing the field of view. However, since we are now dealing with
discretely sampled point data instead of a continuous function f(x, y), we need to adapt
the definition (6.2) as follows

Γ̄[C] ≡

∑
α

(
〈~G〉α · n̂C

)
∆`α∑

α ∆`α
, (7.1)

where each sum runs over all Delaunay triangles Dα which are crossed by the straight line
C and, as before, 〈~G〉α is the Delaunay-averaged21 gradient vector (3.10) associated with
Dα. Since the Delaunay tessellation gives complete coverage of the field of view, the line
C necessarily gets fragmented into individual line segments of length ∆`α, defined so that
each segment is contained within a single Delaunay cell Dα. Finally, n̂C is a unit vector
orthogonal to the straight line C and therefore, to each individual line segment ∆`α as well,
so that an index α on it is unnecessary.

Fig. 19 shows a heat map of the wombling measure Γ̄[C] computed from eq. (7.1)
throughout the parameter space (pin, pout) of all possible straight lines passing through our
data. As a pre-processing step, we applied one Lloyd iteration and then used the Delaunay-
averaged gradient vectors illustrated in the right panel of Fig. 10. The heat map in Fig. 19
contains four dark squares situated along the diagonal from the upper left corner to the
lower right corner. All points within those four squares define line segments C which do
not enter the field of view at all, and instead run along one of the edges of the field of view.
Clearly, such line segments are irrelevant for our wombling boundary analysis, so they have
been assigned Γ̄[C] = 0 by default and are excluded from further consideration.

Fig. 19 reveals that there is a unique line with the largest possible wombling measure
— let us denote this winning line with Cw:

Cw ≡ arg max
C

(
Γ̄[C]

)
. (7.2)

By construction, the winning line Cw is the best wombling boundary candidate among the
set of all straight-line boundary candidates. Is it the correct wombling boundary though?
According to the result from Fig. 19, the answer in this example is yes: Cw is found at
the exact location (0.5, 1.5) (or equivalently, (2.5, 3.5)) of the true theoretical boundary
x = 0.5. This can be verified explicitly in Fig. 20, where we plot Cw overlaid on top of the
Delaunay-averaged gradient vectors 〈~G〉α from the right panel of Fig. 10. Fig. 20 not only
confirms that Cw is the correct wombling boundary, but also helps us understand why Cw
was chosen by the algorithm. Note that for any given line C, the calculation of its wombling
measure Γ̄[C] depends only on the Delaunay cells Dα which happen to be crossed by the
line C — in Fig. 20 those cells are shaded in red. A careful inspection of Fig. 20 reveals

21In principle, we can define the wombling measure (7.1) in terms of the original gradient vectors ~̃Gα or
in terms of the Voronoi-averaged gradient vectors 〈 ~G〉i defined in (3.10). However, as argued in Secs. 4 and
5, the Delaunay-averaged vectors offer the best option for our purposes.
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Figure 19. Results from applying the wombling procedure of Sec. 6 to the illustrative point
data example used in the previous sections (N = 500 points generated from (2.5) with ρ = 5).
For concreteness, at the pre-processing stage we applied one Lloyd iteration and then used the
Delaunay-averaged gradient vectors which were defined in (3.10). In constructing the heat map, we
sampled the (pin, pout) parameter space on a 200 by 200 grid with step size 0.02 and then computed
Γ̄[C] from eq. (7.1). The four dark squares in the plot correspond to line segments which overlap
with one of the edges of the unit square which is our field of view - those segments were assigned
Γ̄[C] = 0 by default and excluded from further consideration. For reference, the true boundary is
located at (pin, pout) = (0.5, 1.5), or equivalently, at (pin, pout) = (2.5, 3.5).

that in the large majority of red-shaded Delaunay cells the gradient vectors are both large
and (roughly) orthogonal to the line Cw, thus maximizing the average flux (7.1) through
it. To better visualize this, we have color-coded the individual line segments ∆`α of Cw
according to their individual contributions 〈~G〉α · n̂C to the total flux, with warm (cold)
colors corresponding to large (small) values. We see that Cw is predominantly colored with
warm colors, indicating large fluxes all the way throughout. On the other hand, it is not
difficult to convince oneself that this will not be true for any other randomly chosen line
C crossing the field of view — the gradient vectors may happen to be relatively large and
perhaps even roughly orthogonal to it purely by chance in some restricted region, but this
will not occur consistently along the full length of the line as was the case with Cw. In
short, the wombling procedure applied here automatically takes into account the spatial
correlations of the gradient vectors along a wombling boundary.
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Figure 20. The line Cw with the largest wombling measure Γ̄[C] in Fig. 19, plotted over the
Delaunay-averaged gradient vector field from the right panel of Fig. 10. The individual line segments
∆`α have been color-coded by their respective individual contributions 〈~G〉α · n̂C to the total flux.
The red-shaded Delaunay cells are those which are crossed by the line Cw and are therefore included
in the two summations in (7.1).

Figure 21. The point data for the straight line boundary example considered in Sec. 7.1.2. The
left panel shows the original N = 1000 points distributed according to (2.5) with ρ = 1.5. The right
panel shows the same data after applying 5 Lloyd iterations.

7.1.2 An example with ρ = 1.5

We are now ready to tackle a more difficult case, with a smaller signal to background ratio.
In this subsection we consider N = 1000 data points, still distributed according to (2.5),
but with the much smaller value of ρ = 1.5. This data is shown in the left panel of Fig. 21.
Unlike the previous example, this time the wombling boundary is not as easy to identify
visually in the data. As already discussed in Ref. [16], the weaker the signal, the more Lloyd
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Figure 22. The same as Fig. 19 but for the dataset with ρ = 1.5 shown in the right panel of
Fig. 21. Here we exclude from the analysis not only lines along the perimeter of the field of view
but also any line of length less than 0.5; in the heatmap such lines are assigned Γ̄[C] = 0 by default.

steps are needed for optimal results. Correspondingly, here we apply 5 Lloyd iterations at
the preprocessing stage and obtain the data shown in the right panel of Fig. 21, on which
the subsequent wombling analysis is done.

Figure 23. The same as Fig. 20 but for the dataset with ρ = 1.5 shown in the right panel in
Fig. 21. In addition to the line Cw with the largest value of the wombling measure Γ̄, for comparison
we also show a generic line with a more typical value of Γ̄[C]; for concreteness, we chose the line at
(pin, pout) = (0.7, 0.8) which happens to have Γ̄[C] = 0.08.
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The end result from our wombling procedure is shown in Fig. 22, which is the analogue
of Fig. 19. We notice that the typical values obtained for Γ̄[C] are now much lower than what
we saw in Fig. 19. This is to be expected due to the smaller value of ρ — the boundary
is less pronounced, and the magnitudes of the gradient vectors are generally reduced as
well. Despite these difficulties, the boundary is still correctly identified — notice the two
bright spots in the heatmap located near (0.5, 1.5) and (2.5, 3.5), which is the right answer.
The corresponding winning line Cw has Γ̄[Cw] = 0.19 and is plotted in Fig. 23, where for
illustration we also show a second, rather generic, line C at (pin, pout) = (0.7, 0.8) which
has a more typical value of the wombling parameter, Γ̄[C] = 0.08. The individual line
segments of each of the two lines are color-coded similar to Fig. 20, i.e., proportional22 to
their individual contributions to the total flux. We see that the winner Cw is again colored
with mostly warm colors, indicating large flux contributions everywhere (except for just
a few spots where the gradient vectors happen to be either too small or oriented along
the line), while the generic line C is colored with mostly cold colors, confirming that its
wombling measure Γ̄ is indeed rather small.

By comparing Figs. 19 and 22, one can notice that in Fig. 22 we have excluded from
consideration not only lines which run purely along the perimeter of the field of view but
also any line of length less than 0.5; this additional constraint results in the elimination
of several quadrant sectors on the plot — one at the lower left corner, one at the upper
right corner, and six along the diagonal running from the upper left corner to the lower
right corner. Since our wombling measure is the average flux, short lines which literally “cut
a corner” of the square field of view, can potentially pick up large gradients due to local
fluctuations in the bulk, without an opportunity to cancel those fluctuations elsewhere. In
other words, if we encounter two candidate lines with the same value of Γ̄, and one is much
longer than the other, then we would treat the longer line as the more likely wombling
boundary. Thus eliminating very short lines from consideration early on would go a long
way in simplifying the significance estimation procedure, see Sec. 8 below.

7.2 A circular boundary

7.2.1 The results from a wombling analysis with straight line segments

We now proceed with the discrete version of the circular boundary example considered in
Sec. 6.2. The point dataset is shown in the left panel of Fig. 24 and consists of N = 1000

points distributed according to the probability distribution with a circular boundary (2.7)
with ρ = 5. As a preprocessing step, we then apply a single Lloyd iteration, obtaining the
data shown in the right panel of Fig. 24, on which the subsequent wombling analysis is
performed.

The results from the wombling procedure are displayed in Figs. 25 and 26. Fig. 25 is
the analogue of Figs. 19 and 22, but for the circular boundary example considered in this
subsection. Comparing to those previous figures, we notice that the largest absolute values
for Γ̄ obtained here are lower than those in Fig. 19 but higher than those in Fig. 22. The

22In order to highlight the differences between the lines segments of the two lines, we additionally apply
the scaling (7.3) motivated below in Sec. 7.2.2.
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Figure 24. The point data for the circular boundary example considered in Sec. 7.2.1. The left
panel shows the original N = 1000 points distributed according to (2.7) with ρ = 5. The right
panel shows the same data after 1 Lloyd iteration.

Figure 25. The same as Fig. 22 but for the dataset with a circular boundary shown in the right
panel of Fig. 24.

former is due to the fact that we are using straight line segments to test for a curvilinear
wombling boundary, and no single line segment can capture the full extent of a circular
boundary, while the latter is due to the fact that the value of ρ is higher for the dataset
used to produce Fig. 25.

Fig. 25 exhibits the typical pattern observed in the continuous version of this example
(the right panel of Fig. 18). The locations with the largest values of |Γ̄| trace out the two
stripes seen in Fig. 18, which indicates that in the discrete version of the example it is still
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Figure 26. The line Cw with the largest wombling measure in the circular boundary example of
Sec. 7.2, overlaid on the Delaunay-averaged gradient vectors 〈~G〉α (left panel) or on the heatmap
of their magnitudes (right panel).

the line segments tangential to the circular boundary which tend to have large values of |Γ̄|.
The line Cw with the largest wombling measure happens to be at (pin, pout) = (0.55, 1.9) and
is plotted in Fig. 26, together with the set of Delaunay-averaged gradient vectors 〈~G〉α (left
panel) or the heatmap of their magnitudes (right panel). As anticipated, Cw is tangential
to the circular boundary, and the largest contributions to its wombling measure indeed
come from the (warm-colored) segments in the vicinity of the boundary. One should keep
in mind that the particular line Cw shown in Fig. 26 is a very close winner among several
other worthy challengers with similar values for the wombling measure — as Fig. 25 showed,
there are several locations along the two bright stripes with similarly large values of |Γ̄|.

7.2.2 Identifying the true shape of the boundary

The analysis from the previous subsection 7.2.1 demonstrated that even in the case of a
curvilinear boundary, our wombling procedure produces reasonable results — it is able
to identify a class of line segments, each of which already contains a portion of the true
boundary. Unfortunately, none of the identified line segments is able to reproduce the full
boundary all by itself. In this subsection, we shall therefore address the question of being
able to globally reconstruct the wombling boundary, regardless of its shape, from the results
presented so far.

In principle, there can be several different approaches to this problem.

• Algorithmic wombling. The standard approach is the algorithmic wombling proce-
dure outlined in the introduction [29]. One applies a lower cut (tagging) on the
magnitudes of the locally estimated gradient vectors and then suitably connects them
(agglomeration). Although this approach has been subject to criticism [40], its mod-
ern implementation can perhaps benefit from some of the improvements which we
have introduced here, in particular gradient rescaling (Sec. 3.3.1), Voronoi relaxation
(Sec. 3.3.2), local averaging of gradient vectors (Sec. 3.3.3), utilizing improved tag-
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ging variables which account for the spatial correlations among neighboring gradient
vectors (Sec. 4), etc.

• Use the correct ansatz for the shape of the boundary. At the cost of giving up model-
independence, one could focus on a particular theory model, derive the parametric
form of the expected boundary shape, and then use that parametrization to test for
the presence of such boundaries in the data. This approach was proved successful in
specific event topologies motivated by supersymmetry [22, 23, 56], but relies on the
experimenter being able to make the correct theory model assumption.

• Construct the envelope of the line segments with the largest wombling measures. As
shown by the results in Figs. 18 and 25, when probing a curvilinear boundary with
straight line segments, we obtain a whole family of wombling boundary candidates
which can be tagged with their relatively large values of Γ̄[C]. We saw that each of
these candidates is tangential to the true boundary, therefore, the task of constructing
the true boundary reduces to the task of finding a planar curve which is tangential
to each of the tagged straight line candidate segments at some point. The answer to
this problem is precisely the envelope curve [68].

• Identify and agglomerate “the best” line segments ∆`α. A specific realization of an
approximate piece-wise reconstruction of the envelope curve mentioned above is of-
fered by the following procedure. Note that our analysis not only tags straight lines
C with large values of the wombling measure, but it also identifies which individual
portions ∆`α of those lines are most likely to be tangential to a true boundary, as
indicated by the rainbow-color coding of the line Cw in Figs. 20, 23 and 26. This
suggests that instead of working with the full line C tagged by the algorithm, we can
instead focus our attention on the individual elements ∆`α from it with the largest
contributions to the average flux through C. The straightforward application of this
method, however, will reintroduce sensitivity to local gradient fluctuations. In order
to avoid this, we propose to rank the individual elements ∆`α not by their average
flux 〈~G〉α · n̂C , as was done in Figs. 20, 23 and 26, but by the rescaled average flux(

〈~G〉α · n̂C
)
×
∣∣Γ̄[C]

∣∣γ , (7.3)

where the power γ is a suitably chosen positive parameter, which interpolates smoothly
between “complete locality” (γ = 0) and “complete globality” (γ → ∞). The scaling
by a power of Γ̄[C] in eq. (7.3) ensures that a given element ∆`α is judged not only by
the local flux going through it, but also by its association with a suitable wombling
boundary candidate line C. By increasing the power γ, we can suppress the effects
of local statistical fluctuations, and in the limit of γ → ∞ we eventually recover our
previous results where one would select all the segments ∆`α belonging to the best
wombling candidate line Cw. However, using finite values of γ allows us to 1) let in
“the best” individual segments ∆`α from other candidate lines C which are not Cw,
but have comparably large values of Γ̄[C], and 2) eliminate from consideration those
individual segments ∆`α from the winning line Cw whose local flux values are too
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Figure 27. The individual segment selection procedure described in Sec. 7.2.2. After scanning
the (pin, pout) parameter space on an 80× 80 grid and computing the wombling measures Γ̄[C], the
average flux for each individual line segment ∆`α has been rescaled according to (7.3) with γ = 4

and the plot shows (in red) the segments with rescaled flux values in the top 1 percentile.

low — presumably such elements belong to Cw only because we have used the wrong
ansatz for the shape of the boundary. This approach strikes the right balance between
the “locality” of the flux through an individual element ∆`α and the “globality” (in the
method of calculation) of the wombling measure Γ̄[C]. The procedure is illustrated in
Fig. 27, where we show the individual line segments ∆`α whose rescaled flux values
(7.3) are in the top 1 percentile, after scanning the (pin, pout) parameter space on an
80×80 grid. We see that, despite using the wrong ansatz (straight lines), the circular
boundary is reconstructed quite well, with only a few stragglers showing up in the
bulk.

8 Significance estimation

In the previous sections we discussed different techniques for identifying wombling bound-
aries in point datasets. In applications to collider event data in high-energy physics, the
presence of a wombling boundary could be indicative of new physics, if its location is in a
region of phase space which is unremarkable from the point of view of the SM background.
However, before claiming a discovery, one must be confident that such wombling boundaries
cannot be accidentally generated by SM data alone. For this purpose, it is necessary to sup-
plement any proposed wombling technique with a corresponding prescription for assessing
the significance of any reconstructed wombling boundary. Since previous work [16, 22, 23]
did not address this issue, we shall now do so using a frequentist approach.
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Figure 28. A heat map of wombling measures |Γ̄[C]| analogous to Figs. 19, 22 and 25, but for a
typical background pseudo-experiment where the point data is generated from the pure-background
distribution (2.2) and then a single Lloyd iteration is applied.

The end result of the wombling method described in Sec. 7 was the selection of the best
possible wombling line candidate Cw, together with its corresponding wombling measure

Γ̄w ≡ Γ̄[Cw]. (8.1)

In order to use |Γ̄w| as our test statistic, we need to know its distribution under the pure-
background hypothesis. For this purpose, we generate a number of pseudo-experiments
where the point data is generated from the pure-background distribution (2.2), and for
each pseudo-experiment, we repeat the wombling analysis from the previous section. A
typical result from one such pseudo-experiment is shown in Fig. 28, where, in analogy to
Figs. 19, 22 and 25, we show a heat map of |Γ̄[C]| in the (pin, pout) parameter space. We see
that, as expected, in the absence of a real signal the typical values for the wombling measure
are relatively low almost everywhere in the (pin, pout) parameter space, except at one very
special location near (1, 3). It is not difficult to realize that this location corresponds to very
short candidate lines C which “cut” the lower right corner of our field of view. We already
alluded to this problem at the very end of Sec. 7.1.2, and our proposed solution was simply
to exclude such very short lines from consideration23. Therefore, when we derive the |Γ̄w|
distributions below, we shall apply a minimum cut on the allowed length of any candidate
line C. In order to make sure this problem does not reappear, we shall conservatively
increase our previous minimum length cut from 0.5 to

√
2/2, which is the length of the line

connecting the midpoints of any two neighboring edges of our field of view.
23Another possibility could be to use the unnormalized wombling measure (6.1). We shall leave this
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Figure 29. Distributions of |Γ̄w| for two populations of 100 pseudo-experiments each, and with
N = 1000 points per pseudo-experiment. The blue histogram corresponds to data generated from
the pure-background distribution (2.2) as in the left panel of Fig. 1. The orange histogram represents
pseudo-experiments with added signal with a straight-line boundary as in the middle panel of Fig. 1,
with the points sampled from (2.5) with ρ = 1.5. In either case, the wombling measure Γ̄[C] was
computed throughout the (pin, pout) parameter space on an 80×80 grid and the best wombling line
Cw of minimum length

√
2/2 was identified following the procedure of Sec. 7.

With those preliminaries, we are ready to compare the distributions of our test statistic
|Γ̄w| for signal and background. The blue histogram in Fig. 29 shows the |Γ̄w| distribution
for 100 pure-background pseudo-experiments with N = 1000 points each, where the data
was generated from the pure-background distribution (2.2) as in the left panel of Fig. 1. At
the preprocessing stage, we increased the number of Lloyd iterations to 10, since we shall
be interested in the case of relatively weak signals (see the related discussion in Sec. 7.1.2
and Ref. [16]). Following the procedure of Sec. 7, we then computed the wombling measure
Γ̄[C] on an 80×80 grid in the (pin, pout) parameter space and the best wombling line Cw (of
minimum length

√
2/2) was identified and its wombling measure (8.1) was entered in the

histogram. The resulting distribution is relatively concentrated around a mean of 0.08, and
extends up to 0.11, which sets the lower limit on the target range for signal detection. For
illustration, in Fig. 30 we show results for one typical pure-background pseudo-experiment
whose value for Γ̄w is equal to the mean of the distribution shown in Fig. 29.

Given the background distribution from Fig. 29, we can now assess what types of signals
might be discoverable. Obviously, the larger the signal component, the more pronounced
the wombling boundary. In our conventions, the signal strength was parametrized by the
ρ parameter. For example, in Sec. 7.1.1 we saw that for ρ = 5 we obtained Γ̄w ∼ 0.7,
while the weaker signal with ρ = 1.5 in Sec. 7.1.2 resulted in only Γ̄w ∼ 0.19 (note that

option open for a future investigation [69].
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Figure 30. The point data (left panel) and the |Γ̄[C]| heatmap (right panel) for a representative
pure-background pseudo-experiment entering the blue histogram in Fig. 29.

in Sec. 7.1.2 the data was preprocessed with only 5 Lloyd steps; adding 5 additional steps
as was done in Fig. 29 would further reduce the value of Γ̄w slightly). Given the pure-
background distribution in Fig. 29, it is clear that in both of those examples the observed
effect could not have been attributed to a background fluctuation and would represent a
discovery. At the same time, a careful inspection of the left panel in Fig. 21 shows that the
ρ = 1.5 example of Sec. 7.1.2 was rather “lucky” due to fortuitous fluctuations in the data
near the theoretical boundary. In order to estimate the prospects for a more typical signal
scenario, we simulate 100 pseudo-experiments with N = 1000 data points each, generated
from the distribution (2.5) with ρ = 1.5. The corresponding distribution of the test statistic
|Γ̄w| for those signal pseudo-experiments is shown with the orange histogram in Fig. 29. We
see that, on average, the values of |Γ̄w| are larger in the presence of a signal — the mean
of the orange histogram is shifted to 0.10. Comparing the tails of the two distributions,
we find that in 40% of the cases, the signal is discoverable at 2 sigma and in 16% of the
cases it is discoverable at 3 sigma. These prospects can probably be further improved by
optimizing the different aspects of our wombling algorithm, but such an optimization is
outside the scope of this paper.

9 Conclusions and outlook

In this paper we reviewed and refined the existing procedures for identifying wombling
boundaries in point datasets. Our interest in this topic stems from the fact that high
energy physics collider data can be viewed as point data in the relevant phase space of the
final state signature. For better visual illustration, we considered point data examples in two
dimensions, but our technique can be readily generalized to higher dimensional data. We
proposed several modifications to the standard algorithm which lead to improved detection
efficiency and significance:

• We advocated the use of the Delaunay triangulation of the data instead of (or perhaps
in addition to) the Voronoi tessellation of the data. We argued that the Delaunay
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tessellation is the natural framework for computing the local gradient vectors which
is the first and most important step of any wombling algorithm.

• We considered three different techniques for reducing the effect of statistical fluctua-
tions:

1. Rescaling the local gradient vectors as in (3.8), see Section 3.3.1.

2. Applying Voronoi relaxation of the data via several Lloyd iterations as a prepro-
cessing step, see Section 3.3.2.

3. Local averaging of the gradient vectors, which can be performed either at the
level of a Voronoi cell (3.9) or at the level of a Delaunay triangle (3.10), see
Section 3.3.3.

• We studied new tagging variables (dot products of neighboring averaged gradient
vectors) for selecting elements of the tessellation marking the location of a wombling
boundary. In Section 4 we showed that the new variables have improved selection
efficiency, since they take into account the spatial correlations among neighboring
gradient vectors along the wombling boundary. In Section 5 we pointed out that the
new variables additionally can be used to naturally connect the tagged elements into
continuous boundaries.

• In Secs. 6 and 7 we explored the idea of Refs. [40, 63] to rank wombling boundary
candidates C by a global wombling measure, e.g., Γ[C] from (6.1) or Γ̄[C] from (6.2).
On the basis of several toy examples we showed that this approach is successful in
identifying the correct boundary, and with a slight modification (7.3) can be used even
when the shape of the boundary is different from the assumed ansatz, see Sec. 7.2.2.

• In Sec. 8 we showed how one can estimate the statistical significance of any detected
wombling boundary using a frequentist approach.

The present study complements and further expands the work of Refs. [16, 22, 23, 25, 56]
in an interesting direction which, while popular in other fields of science, is still rather new to
the field of high energy physics. We believe that our investigations here are only scratching
the surface of what could be a very promising research thrust. In particular, the approach
of treating high energy collider data as point data and studying its geometric properties is
complementary to the existing binning techniques and in the long run could prove to be
more suitable to the application of modern machine learning techniques [70, 71].
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Figure 31. The background distribution (A.1) for the example with linearly increasing background
considered in Sec. A.1, for NU/NL = 0.1.

A Studies of non-uniform background distributions

The illustrative examples in the main body of the paper so far have used data generated from
a uniform background distribution (2.2). In most applications outside collider physics this
is a valid assumption, since the density in the bulk is at most a slowly varying function.
However, in particle physics one often has to face backgrounds which are steeply falling
functions parametrized by power laws or exponents. For completeness, in this appendix we
shall relax the uniformity assumption about the background and shall consider two other
typical situations, namely, when the background distribution is given by a (linear) power
law (Section A.1) or an exponential (Section A.2).

A.1 Example with linearly increasing background

In this section we reconsider our circular boundary example from Sec. 7.2, only this time
we trade the uniform background distribution (2.2) for a linearly increasing function

f(x, y) =
NU/NL + 2y

NU/NL + 1
. (A.1)

Due to the rotational symmetry, without any loss of generality we can take the function f
to increase in the positive y direction, as shown in eq. (A.1). The black solid line in Fig. 31
illustrates the y-dependence of this background distribution. Note that since f(x, y = 0) >

0, we can think of (A.1) as being made of two components: f = fU +fL, where the uniform
component

fU (x, y) =
1

1 +NL/NU
,

illustrated by the dark-shaded blue histogram in Fig. 31, contains a total of NU events,
while the linear component

fL(x, y) =
2y

1 +NU/NL
,
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Figure 32. The point data for the example with linearly increasing background considered in
Sec. A.1 before (left panel) and after (right panel) the probability integral transform (A.2).

Figure 33. The same as Fig. 27, but for the point data in Fig. 32. Here we scanned on a coarser
40× 40 grid after applying 7 Lloyd steps. The red lines have rescaled flux values (7.3) in the top 4
percentile (with γ = 1).

depicted by the light-shaded cyan histogram in Fig. 31, contains a total of NL events. In
what follows (as well as in Fig. 31) we fix NU/NL = 0.1.

To this background distribution (sampled with NU + NL = 1500 points) we add a
uniform circular signal as before, with total number of signal points NS = 450. The
resulting point dataset is shown in the left panel of Fig. 32. In principle, we could now run
our previous analysis from Sec. 7.2 directly on this dataset, and the result is depicted in the
left panel of Fig. 33, which is the analogue of Fig. 27 for this case. In producing Fig. 33, we
applied 7 Lloyd steps and scanned on a coarser 40× 40 grid, which results in 4 times fewer
lines compared to Fig. 27 (which was made on an 80× 80 grid). Correspondingly, to make
a fair comparison with Fig. 27, we plotted the lines within the top 4 percentile of rescaled
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flux values (as opposed to the top 1 percentile shown in Fig. 27).
The result in the left panel of Fig. 33 demonstrates that our method is able to success-

fully identify the boundary in the presence of non-uniform background as well. However,
we also notice that there are a few isolated line segments being picked up which are located
in the background region near the top portion of the plot, where the background is large
and the statistical fluctuations are creating relatively large local gradients. We therefore
try an alternative strategy, where we first perform a change of variables designed to flat-
ten the background distribution [72], after which we perform the wombling analysis on the
resulting dataset. In cases where the background distribution is known analytically, e.g.,
as in eq. (A.1), the required transformation is simply the probability integral transform,
which in our case reads

y → (y + b)2 − b2

2b+ 1
, (A.2)

where
b =

NU

2NL
.

Note that the transformation (A.2) preserves the location of the points at y = 0 and y = 1,
i.e., it is a map of [0, 1] → [0, 1]. After rescaling the y values of our original dataset,
we obtain the data shown in the right panel of Fig. 32 — note how the density within
the background region appears much more uniform, since by construction it is sampled
from a uniform distribution. At the same time, the signal region has shifted down, but its
boundary is still clearly defined. Now, performing our wombling analysis on the dataset in
the right panel of Fig. 32, we obtain the result in the right panel of Fig. 33. We see that
the boundary is again identified, this time somewhat more cleanly, since there are fewer
spurious line segments in the bulk of the background region. In summary, the two panels
in Fig. 33 show that in the case of known non-uniform backgrounds, both approaches are
viable, and the choice of which one to use can be left to the individual user.

A.2 Example with exponentially increasing background

In this section we shall consider another example with non-uniform background, namely a
background distribution given by

f(x, y) =
3 e3x

e3 − 1
. (A.3)

This function is illustrated in Fig. 34 with the black solid line, together with a histogram of
the simulated background data points. For comparison, we also show the linearly increasing
background distribution from the previous section (the black dashed line).

We shall now repeat our wombling analysis exercise, but with an added twist, to make it
more challenging. First, we shall keep the same number of background points (1500) but we
shall weaken our signal down to 300 points only. Second, we shall not assume that we know
the exact analytical form (A.3) of the background distribution, so that we cannot do the
background flattening exactly. Instead, we shall attempt to flatten the background using
“the wrong” linear relation (A.1), since it resembles the actual (exponential) background —
compare the solid and dashed lines in Fig. 34.
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Figure 34. The unit-normalized background distribution (A.3) (solid line) and the corresponding
simulated data (histogram) used for the example considered in Sec. A.2. For comparison, the dashed
line shows the linear background distribution used for the example in Sec. A.1.

The left panel in Fig. 35 shows the original point dataset, while the right panel in
Fig. 35 shows the same data after rescaling the y values with the “wrong” transformation
(A.2) corresponding to a linearly increasing background. After performing our wombling
analysis on these two datasets, we obtain the results shown in the respective panels of
Fig. 36. We see that even in this more challenging exercise, the boundary is still being
identified properly in the right panel, where we have applied an approximate flattening
transformation. In the left panel, on the other hand, the method is still doing its job - it is
finding the regions with largest gradients, which in this case are in the background region,
due to the exponential behavior.
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