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Abstract

We examine present data for double parton scattering at LHC and discuss their energy dependence from
its earliest measurements at the ISR. Different models for the effective cross-section are considered and
their behavior studied for a variety of selected final states. We point out that data for pp− > 4 jets
or pp → quarkonium pair indicate σeff to increase with energy. We compare this set of data with
different models, including one inspired by our soft gluon resummation model for the impact parameter
distribution of partons.

1 Introduction

Double parton scattering in hadron collisions has been searched for and measured for more than 30 years.

Recently, the ATLAS collaboration 1) has examined all existing data for Double Parton Scattering

events, from ISR to LHC 13 TeV, and a value for the the effective cross-section has been extracted. For

a process of the type pp→ A+B +X the following expression was used

σABDPS =
k

2

σASPSσ
B
SPS

σeff
(1)

with k a symmetry factor to indicate identical or different final states, and σeff interpreted as the overlap

area (in the transverse plane) between the interacting partons.

In this note, the energy dependence of σeff will be discussed in light of a few models and a rather general

theorem. We shall start by presenting in Sect. 2 the general framework for multi parton scattering as

recently presented by D’Enterria in 2) and then apply this formalism to show that, in general, σeff

cannot be asymptotically a constant.
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In Sect. 3 and Sect. 4 we consider various strategies for the calculation of σeff , a geometrical one in

which σeff is interpreted as the area occupied by the partons involved in the collision and thus obtain it

from modelling the impact parameter distribution of partons, another one in which the area is directly

obtained as the Fourier transform of the scattering amplitude. These different strategies may lead to

different energy dependence, as we shall see.

2 Matter distribution in a hadron

Theoretically multi-parton scattering (MPS) has been of great interest 3, 4, 5, 6, 7, 8, 9). A key

element in an analysis of an n-parton process (NPS) with final particle states (a1, a2, ...an) in terms of

the single-parton processes (SPS) is the role played by an effective parton cross-section defined as follows:

σNPSh1h2→a1,a2,...an =
[ m

Γ(n+ 1)

σSPSh1h2→a1σ
SPS
h1h2→a2 .....σ

SPS
h1h2→an

[σeff,NPS ]n−1

]
. (2)

As Eq. (2) deals with probabilities rather than probability amplitudes, it is clear that the description

is semi-classical and ignores any correlation between production of particles. On the other hand, the

degeneracy factor m in these equations, to be defined momentarily, does distinguish between identical

and non-identical particle states and thus must be thought as of quantum mechanical origin. For a two

parton process (DPS) (say, a1, a2), m = 1 if the two particle states are identical (a1 = a2) and m = 2 if

they are different (a1 6= a2). For a three particle process (TPS), m = 1 if a1 = a2 = a3; m = 3 if a1 = a2

and m = 6 if a1 6= a2 6= a3. Etc.

Under a set of reasonable hypothesis of factorization of parallel and transverse momenta, the quantity

of interest σNPSeff is approximated in terms of the normalized single parton distribution or, generally a

matter distribution T (b) inside a hadron in impact parameter space, as follows∫
(d2b)T (b) = 1; Σ(n) ≡

∫
(d2b)Tn(b); σNPSeff = [Σ(n)]−1/(n−1) (3)

Before turning our attention to the crucial input of the single parton overlap function we present here an

argument as to why σeff cannot -in general i.e., for all types of final states in DPS or MPS scattering-

be a constant.

In particular, we shall now show that if σeff (s) approaches a constant as s→∞, then all, multi-parton

cross-sections σna1;....an(s) must also approach constants asymptotically under the very mild hypothesis

that σn+1
a1;....an+1

(s) < σna1;....an(s) for ai 6= aj . Consider in fact Eq.(9) of 2)

σ(2)
a1;a2(s) = (

m

2
)
σ

(1)
a1 (s)σ

(1)
a2 (s)

σeff (s)
;m = 2 if a1 6= a2;m = 1 if a1 = a2; (4)

in an obvious notation. Let

(i) σai(s)→ Li(s); where Li(s) increase with s; (ii) σeff (s)→ a constant; (5)

Then, it follows from (i) and (ii) that

for a1 6= a2 : σ(2)
a1;a2(s) ∝ L1(s)L2(s) but then V

[σ(2)
a1;a2(s)

σ
(1)
a1 (s)

]
∝ L2(s) increases with s; (6)

and thus not bounded by a constant thereby violating the initial hypothesis. Hence, L2(s) can not

increase with s but must be bounded by a constant. We can repeat the proof by exchanging a1 ↔ a2
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and show that also L1(s) must be a constant. Ergo, also σ
(2)
a1;a2(s) must go to a constant as s→∞.

Extension of the above to the identical case (a1 = a2) and for n = 3, 4, .... are left as exercises to the

reader. The proof is specially easy if Eqs.(3) & (7) of 2) are recalled. In the next section, we turn our

attention to T (b).

3 The BN model for σeff

In this section we examine a model for σeff , in which the impact parameter distribution of partons

is obtained from soft gluon resummation. As we shall see later, this model reproduces the order of

magnitude of σeff but bears different energy trend depending on the PDF used. A suitable model for

a normalized T (b) -albeit with a different name A(b)- has been an object of our attention for over two

decades and detailed references can be found in our review 10). We start with a model in which the

area occupied by the partons involved in parton scattering can be related to soft gluon resummation. In

this model for the total cross-section, the energy behaviour of the total and inelastic cross-sections are

obtained in the eikonal formalism, with mini-jets, partons with pt > ptmin ≈ 1.1 − 1.5 GeV, to drive

the rise and soft gluon resummation to tame it. The impact parameter distribution is determined by

the Fourier transform of the kt distribution of soft gluons emitted during semi-hard parton scattering.

Namely the normalized matter distribution in impact parameter space, T (b) in this model, is

A(b, s) = N(s)F [Π(Kt)] = N(s)

∫
d2Kt

∫
d2beiKt·be−h(b,s); h(b, s) =

∫ qmax

0

d3n̄(k)[1− e−ikt·b] (7)

where the overall distribution Π(Kt) is obtained by resummation of soft gluons emitted with average

number n̄(k). The above expressions are semi-classical and can be obtained by summing all the gluons

emitted with momentum kt in a Poisson like distribution. The effect of imposing energy-momentum

conservation to all possible distributions results in the factor among square brackets in Eq. (7). Such

factor allows to integrate in kt down to zero, if n̄(k) is no more singular than an inverse power. While

this is true in QED, for gluons this is not possible. In our model for the total cross-section, which is

related to large distance behaviour of the interaction, the impact parameter distribution is related to

very small kt values. This implies including very small kt values, lower than ΛQCD, values usually not

included in the resummation or “lumped” into an intrinsic transverse momentum. In order to evaluate

h(b, s) down to such low values, we proposed a phenomenological approximation for αs(kt → 0), namely

our phenomenological choice is

αs(kt → 0) ∝ [
kt

ΛQCD
]−2p; αs(kt >> QCDscale) = αasym−frees (kt) =

1

b0 ln
k2t

Λ2
QCD

(8)

with 1/2 < p < 1. Our model for σeff , using A(b, s) from Eq. (7) is given as

σeff (s) =
[
∫
d2be−h(b,s)]2∫
d2be−2h(b,s)

(9)

We have indicated that the function h(b, s) depends upon the c.m.s energy of the collision, so will then be

true also for A(b, s). Because of the minimum transverse momentum ptmin allowed to the minijet cross-

section, qmax will depend also on ptmin. Through an average procedure 11), one can obtain < qmax) > as

a function of
√
s, PDF, ptmin. The results from this resummation can then be used to model the eikonal

function and calculate inclusive quantities such as total and inelastic cross-section. In our model, soft and

semi-hard gluons contribute to the observed rise of the total cross-section with soft gluons tempering the
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Figure 1: For a given set of PDFs with corresponding ptmin, left and center plots respectively show the
maximum transverse momentum allowed to soft gluons emitted by partons participating to a semi-hard

collision and the behaviour of the minijet cross-section used in the model from 12). The figure at
right shows the corresponding description of total and Non Single Diffractive inelastic cross-section with
appropriate choices of the singularity parameter p.

fast rise (with energy) due to the mini-jet cross section. In Fig. 1 results for < qmax > and σjet(
√
s, ptmin)

are shown four different LO PDFs, together with the total or inelastic cross-section corresponding to the

indicated for parameter choice, including updated PDFs, such as MSTW. One should notice that the

energy behaviour of < qmax > is different for different densities, as does the one from σjet, but that they

compensate in the predicted behaviour of the total cross-sections, which both smoothly rise in accordance

with the Froissart bound, as shown in 13). This will not be true for σeff , as the model produces an

energy dependence of σeff which correlates only with the energy dependence of qmax, i.e. the upper limit

of integration over soft gluon spectrum, so that if qmax ↑
√
s, then σeff ↓

√
s and vice-versa.

4 The elastic amplitude and σeff energy dependence

According to 2) and following the summary shown in Sec. 2,∫
(d2b)T (b) = 1; Σ(2) ≡

∫
(d2b)T 2(b); σDPSeff =

1

Σ(2)
(10)

The above arrives upon considering factorization between the hard jet cross-sections and the impact

parameter distribution of the involved partons, whose F-transform gives the transverse momentum of

partons involved in the hard cross-section. This model has a theoretical basis, but one needs an expression

for T (b) to use. The derivation in D’Enterria gives the following expression for T(b):

T (b) =

∫
d2b1f(b1)f(b− b1) (11)

where f(b) describes the transverse parton density of the hadron.

Apart from phenomenological fits of the type e−(b/scale)m , which have problems with analyticity if m < 1
13) consider what is at the root of the formalism being considered regarding the transverse spatial (in

short, the b)-distribution adopted in Eq.(11). Also, we can recall the lessons learnt from analyticity of

hadronic form factors and the elastic amplitudes.
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One begins with f(b), a normalized b-density function and its Fourier transform, the transverse momen-

tum distribution f̂(q) for a single parton, as follows:

f(b) =

∫
[
d2q

(2π)2
]eib·q f̂(q); f̂(q) =

∫
(d2b)e−ib·q f(b); f̂(q = 0) =

∫
(d2b)f(b) = 1 (12)

Let us consider this parton distribution first in momentum space and then in b-space. The simplest

case to start with is that of collinear partons. The probability density that two-partons are at the same

momentum transfer is given by

T̂ (q) ≡ [f̂(q]2; with T̂ (q = 0) = 1 (13)

whose Fourier transform T (b) reads

T (b) ≡
∫

[
d2q

(2π)2
]eib·qT̂ (q) =

∫
[
d2q

(2π)2
]eib·q[f̂(q]2 =

∫
(d2b1)f(b1)f(b− b1) (14)

which exactly reproduces Eq.(11). Also, by virtue of Eq.(12;13), T (b) is properly normalized, viz.,∫
(d2b)T (b) =

∫
d2(b)

∫
(d2b1)f(b1)f(b− b1) = [

∫
(d2b)f(b)]2 = 1; T̂ (q = 0) =

∫
(d2b)T (b) = 1.

(15)

Now to some considerations about the effective cross-section σeff (s), which for this simple identical

parton model shall be taken to be (with a factor of a 1/2)

2σeff (s) =
[ 1∫

(d2b)T 2(b)

]
; (16)

but, by virtue of Eqs.(13) et sec, it follows that∫
(d2b)T 2(b) =

∫
[
d2q

(2π)2
]f̂(q]2f̂(−q]2 =

∫
[
d2q

(2π)2
]|f̂(q|]4;

Since, f̂(q = 0) = 1, at first sight, it may appear reasonable to assume that it is the elastic form factor.

So, for this form factor assuming the dipole form, we have

f̂(q) =
1

[1 + (q2/to(s))]2
;

σ
(el)
eff (s) =

1∫
[ d

2q
(2π)2 ] 1

[1+(q2/to(s))]8

=
[ 14π

to(s)

]
. (17)

To get a simple estimate, we can employ the result from a fit to the elastic differential cross-section,

discussed in 14). At 13 TeV, our estimate for the elastic scattering form-factor value (work in preparation)

is to(13 TeV ) ≈ 0.6 GeV 2, leading to

σ
(el)
eff (13 TeV ) ≈ 28.6 milli− barns. (18)

We notice that the value predicted for σeff appears large compared to present data 1). Of course, what

the above naive calculation might be telling us is that f̂(q) is related not so much to the elastic but to

an “inelastic form factor”. Counting 4 protons being present in elastic events whereas only two (initial)

protons being present in a true ”break up” inelastic event, we expect only the second power and not the

fourth power of the elastic form factor to appear in Eq.(17). If so,

σ
(inel)
eff (s) =

1∫
[ d

2q
(2π)2 ] 1

[1+(q2/to(s))]4

=
[ 6π

to(s)

]
; σineleff (13 TeV ) ≈ 12.3 milli− barns, (19)
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Figure 2: In the left panel, existing DPS data as described in the text from Axial Field Spectrometer

(AFS), 15), UA2 16), CDF 1993 17) for p̄p→ 4 jets and ATLAS at
√
s = 7 TeV 18) for pp→ 4 jets.

We also have plotted CDF 1997 19) and D0 20) for p̄p→ γ 3 jets, D0 21) for p̄p→ J/Ψ J/Ψ, ATLAS
22) and LHCb for pp → J/Ψ J/Ψ 23), CMS for pp → Υ Υ 24), D0 for p̄p → J/Ψ Υ 25). At right,
comparison of p̄/p p→ 4 jets or with p̄/p p→ quarkonia pair with two models described in the text.

a bit closer to the phenomenological value estimated by exploration of ATLAS compilation 1).

In this model the energy dependence of σeff proceeds from that of the parameter t0(s). We notice here

that in 14) we have shown that the presently available data for the differential elastic cross-section as

well as the total cross-section, i.e. the imaginary part of the forward elastic amplitude, can be described

rather accurately through an expression which includes an energy dependent form factor. In this model,

t0(s) decreases with energy, hence this model would predict σeff (s) ↑
√
s. We now turn to a discussion

of the data and a comparison with the models we have just illustrated.

5 About data and models

Available data not only span a very large energy range, but, as compiled by ATLAS, refer to very

different types of final states. This may indeed generate confusion since parton distributions, hence the

calculation of σeff , differ according to whether the initial state be mostly driven by gluon-gluon scattering

or implicating valence quarks as well. Thus we have focused on similarly homogenous final states and

show them in the left panel of Fig. 2. The figure may indicate the following trends:

• for processes dominated by gluon gluon scattering, such as p̄/p p → 4jets and p̄/p p → J/Ψ J/Ψ,

σeff (
√
s) ↑
√
s, although the scale is different, with σsingleteff (

√
s) ≈ 1

3σeff (
√
s)all

• for processes in which at least one of the final state particles must originate from a valence quark,

as in 3jets+γ, the effective cross-section appears to be decreasing, as seen in the left panel of Fig.2

by the full blue symbols.

In the right hand panel we have compared the selected sets of data vs. two models: the BN-inspired

soft gluon resummation model described in Sect. 3, and a model based on the ansatz that all inclusive

cross-sections rise. This model would be adequate to describe the case of gluon initiated processes, less

so when valence quarks initiate the process, as it is likely to be the case for the 3 jets + γ final state.

6



Our ansatz, to describe σeff for p̄/p p→ 4 jets, is

σeff ∝ σNSDinel (20)

We then use the description of σNSDinel from the model of 14) and plot it as as blue band in the right

hand panel of Fig. 2, with an arbitrarily chosen factor 2/9 for normalization to the data.. We consider

the two different cases of GRV or MSTW densities (MRST densities for total and inelastic cross-section

are in good agreement with results from MSTW, as shown in the right hand panel Fig. 1).

For the model which uses A(b) from soft gluon resummation, Sect.3, we see that at LHC energies the

model gives good agreement with data, but the trend with energy is different.

In summary for pp→ 4 jets:

• the impact parameter description as from Sect. 3 (green, red and dotted curves in Fig. 2) gives

an absolute overall normalization of LHC data in a good agreement with the plotted data, but is

inconclusive as far as the energy dependence is concerned,

• the scattering amplitude cum form factor model from Sect. 4 would also reproduce the correct order

of magnitude at LHC, and may indicate a rising σeff from ISR to LHC,

• an empirical description from the NSD inelastic cross-section of 26) would reproduce a rising energy

trend from ISR to LHC.
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