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Abstract

Six-dimensional N = (1, 0) superconformal field theories can be engineered geomet-
rically via F-theory on elliptically-fibered Calabi-Yau 3-folds. We include torsional
sections in the geometry, which lead to a finite Mordell-Weil group. This allows us to
identify the full non-Abelian group structure rather than just the algebra. The presence
of torsion also modifies the center of the symmetry groups and the matter representa-
tions that can appear. This in turn affects the tensor branch of these theories. We
analyze this change for a large class of superconformal theories with torsion and ex-
plicitly construct their tensor branches. Finally, we elaborate on the connection to the
dual heterotic and M-theory description, in which our configurations are interpreted as
generalizations of discrete holonomy instantons.ar
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1 Introduction

Six-dimensional superconformal field theories (SCFTs) have played a prominent role in high

energy physics in recent years. Since there are no SCFTs in dimensions beyond six [1], and

those in dimension six are necessarily strongly coupled, these theories are highly interesting

already in their own rights, see e.g. [2–6]. Moreover, 6d SCFTs can be used to derive a vast

network of lower-dimensional SCFTs via compactification, see [7–18] for a partial list of

compactifications of 6d N = (1, 0) theories. In this sense, the 6d SCFTs can be understood

as master theories whose investigation is paramount in order to understand the generation

and connection of SCFTs in general.

Of great importance in the investigation of 6d SCFTs is their construction within string

theory frameworks and especially F-theory [19–21]. In fact, F-theory has lead to a vast

number of 6d SCFTs using a classification of base geometries describing the tensor branch

deformation of the singular theories and taking into account the possibility of singular fibers

[22, 23], see also [24–27] and the review [28]. In most of these models, the construction of the

6d SCFTs was achieved by tuning a Weierstrass model: The appearance of non-Higgsable

clusters on rational curves with negative self-intersection [29], as well as the collisions of

singular divisors, lead to superconformal field theories [30]. While the Weierstrass model,

together with monodromy data [31], is sufficient to extract the non-Abelian part of the gauge

and flavor algebras,1 it is usually not enough to determine the full gauge and flavor groups

on the tensor branch. For works discussing also Abelian flavor symmetries see [32, 33].

In order to determine the full non-Abelian group structure, one needs to access additional

information encoded in the presence of torsional sections, see e.g. [34–37] and also [38].

These impose certain factorization constraints on the parameters in the Weierstrass model.

Equivalently, in these models the full SL(2,Z) monodromy is reduced to an orbit of an

appropriate congruence subgroup, see [37]. With the torsional sections enforcing a modding

out of a finite discrete group embedded into the center of the non-Abelian group factors,

this leads to a restriction on the gauge and flavor representations that appear on the tensor

branch of the corresponding SCFTs. Moreover, the resulting non-Abelian groups are no

longer simply-connected. Therefore, SCFTs respecting the presence of a non-trivial Mordell-

Weil torsion will have restrictions on their tensor branch and other deformations, see e.g.

[39–42].

In this paper, we will extend the classification of 6d SCFTs to models with non-trivial

Mordell-Weil torsion. In this way, we can classify the gauge and flavor symmetry groups ap-

pearing on the tensor branch of 6d SCFTs rather than their algebras. As in the unrestricted

case, the major building blocks are given by non-Higgsable clusters and the collision of two

singular divisors, now, in the presence of torsional sections. Scanning different theories and

their compatible singularity enhancements, we find a class of allowed deformations which

respect the Mordell-Weil torsion. This can be regarded as a starting point for the develop-

ment of constructive approaches as described for example in [42] and has the potential for a

full classification of 6d SCFTs with respect to their global group structure, harnessing the

full power of F-theory.

1Note that F-theory in general only leads to a subgroup of the maximal flavor algebra, cf. [25].
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The global structure also modifies the possibility of compactifications to lower dimen-

sions, since reducing the group structure (see e.g. [43] for compact examples) naturally leads

to a large possibility for background fluxes [44, 45], see also [46, 47] for considerations with

more supersymmetry and the connection of the global group in 4d to flux data in the 6d

theory. In fact, some of the theories we find here have already been anticipated in [48] and

used to compactify from six to four dimensions with fluxes of non-trivial Stiefel-Whitney

class. While in [48] the authors use a field-theoretic intuition based on the operator spec-

trum, our construction sheds light on the UV-complete origin of the global data in terms

of the string theory construction within F-theory.

The rest of this work is organized as follows. In Section 2 we review the construction

of F-theory models with non-trivial and finite Mordell-Weil group related to the presence

of torsional sections or the restriction of the monodromy groups. The approach to the

construction of general 6d SCFTs in F-theory is briefly described in Section 3. While

not essential for our later analysis, we further point out alternative approaches in string

constructions to access the global realization of gauge and flavor groups, which should

be understood as a staring point for further investigations in the M-theory and heterotic

realization of 6d SCFTs. In Section 4 we begin our systematic approach for the construction

of globally constrained 6d SCFTs by investigating non-Higgsable clusters in the presence of

torsional sections. These become important building blocks for the analysis of non-simply-

connected 6d SCFTs, which is carried out in Section 5 and 6. We conclude in Section 7 and

present details of some of the results, as well as exotic models, in the Appendices.

2 Mordell-Weil Torsion and Restricted Monodromies

In this section we briefly review F-theory models with non-trivial Mordell-Weil group. In

F-theory on Calabi-Yau 3-folds, singularities over non-compact curves in the base lead to

flavor symmetries, whereas singularities over compact curves lead to gauge symmetries of

the 6d effective theory. In the presence of non-trivial Mordell-Weil torsion, the structure of

these groups is modified. More precisely, the presence of torsional sections in the geometry

of the elliptically-fibered 3-folds leads to a restriction of the allowed fiber monodromies2.

These restrictions impose constraints on the available matter representations and lead in

general to a non-simply-connected non-Abelian structure of the symmetries in the model.

For a discussion of Mordell-Weil torsion in F-theory see also [34, 35, 37] as well as the review

[51].

2.1 F-Theory and Weierstrass Models

F-theory compactifications can be thought of as a non-perturbative generalization of type

IIB string constructions, where the axio-dilaton is identified with the complex structure

parameter τ of an auxiliary torus E , [19–21]. The generalization proceeds by allowing the

axio-dilaton to vary over the physical compactification space B, sourced by the back-reaction

2Moreover, a conjecture was made in [49, 50], that fibrations with torsion are related to genus-one
fibrations via mirror duality in the fiber.
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Fiber Type ord (f) ord(g) ord(∆) monodromy cover algebra

I0 ≥ 0 ≥ 0 0 - -

I1 0 0 1 - -

Im 0 0 m ψ2 + (2g/2f)|z=0 sp([m/2]) or su(m)

II ≥ 1 1 2 − -

III 1 ≥ 2 3 − su(2)

IV ≥ 2 2 4 ψ2 − (g/z2)|z=0 sp(1) or su(3)

I∗0 ≥ 2 ≥ 3 6 ψ3 + ψ(f/z2)|z=0 ψ + (g/z3)|z=0 g(2) or so(7) or so(8)

I∗2n−5, n > 2 2 3 2n+ 1 ψ2 + 1
4
(∆/z2n+1)(2zf/9g)3|z=0 so(4n− 3) or so(4n− 2)

I∗2n−4, n > 2 2 3 2n+ 2 ψ2 + (∆/z2n+2)(2zf/9g)2|z=0 so(4n− 1) or so(4n)

IV ∗ ≥ 3 4 8 ψ2 − (g/z4)|z=0 f4 or e6
III∗ 3 ≥ 5 9 − e7
II∗ ≥ 4 5 10 − e8

non-min ≥ 4 ≥ 6 ≥ 12 − -

Table 1: Kodaira-Tate classification of singular fibers and local gauge algebras.

of generalized 7-branes, so-called (p, q)-branes. The whole geometry can be described as an

elliptic fibration X

E → X
↓ π
B ,

(2.1)

which, in order to preserve the minimal amount of supersymmetry, needs to be Calabi-

Yau. In the following, we are interested in the description of 6d N = (1, 0) supersymmetric

field theories decoupled from gravity. For this purpose, we choose B to be a non-compact,

complex two-dimensional Kähler manifold.

The main tool for the description of the elliptically-fibered Calabi-Yau 3-fold X is going

to be the Weierstrass model, which defines X by the hypersurface equation

y2 = x3 + fxz4 + gz6 . (2.2)

Here, x, y, and z are projective coordinates in P2,3,1, and the coefficients f, g are sections

of multiples of the anti-canonical class −K of the base,

f ∼ −4K g ∼ −6K . (2.3)

They parametrize the local complex structure τ up to SL(2,Z) transformations. By con-

struction, the Weierstrass model has a smooth section, called the zero-section, given by

s0 : [1 : 1 : 0]. Along the discriminant locus {∆ = 0} with

∆ = 4f3 + 27g2 ∼ −12K , (2.4)

the elliptic fiber degenerates. The type of singularity is determined by the vanishing order

of f , g, and ∆, as well as possible monodromy actions [31]. This classification is summarized

in Table 1. For generalization see also [52].

In codimension one, these degenerations of the fiber precisely correspond to the loci

of (p, q) 7-brane stacks in B, whose world-volume gauge algebras correspond to their Tate

fiber type. Since the gauge-kinetic function of a 7-brane is proportional to the volume of

the divisor it wraps, we distinguish the cases where they have finite or infinite volume:
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• Branes that wrap compact divisors admit dynamical gauge fields and encode gauge

symmetries.

• Branes that wrap non-compact divisors encode non-dynamical background gauge con-

nections and host flavor symmetries.

To engineer a consistent 6d supersymmetric field theory with the described ingredients, can-

cellation of various anomalies must be taken care of by the 6d version of the Green-Schwarz

mechanism [53, 54]. Since we work in a non-gravitational setup, anomaly cancellation only

needs to be imposed for the gauge part of the symmetries, while the flavor sector (or would-

be gravitational sector prior to decoupling) can be anomalous. For a general account of

anomaly cancellation in F-theory see [55].

In the type IIB picture, matter multiplets naturally arise from open strings stretching

between two stacks of 7-branes. These states become massless where the branes intersect.

In the F-theory picture, the 7-branes wrap codimension-one loci in the base, over which

the fiber degenerate. Brane intersections hence correspond to codimension-two loci in the

base. Since two loci over which the fiber degenerates intersect, the fiber singularity becomes

worse at the intersections.

From the type IIB picture, matter multiplets transform in the bi-fundamental repre-

sentation of the two 7-brane stacks. However, since in F-theory more general (p, q) branes

and strings are possible, more general representations can occur. To deduce the precise

representations R of the matter multiplets, one can employ two different techniques: The

first way is to fully resolve the geometry and use the duality to M-theory on the Coulomb

branch to geometrically extract the weights from M2-branes wrapping holomorphic curves

(e.g. see [56]). The second approach is due to Katz and Vafa [57] and is closer to the IIB

picture by interpreting the two intersecting 7-brane stacks as a deformation of the configu-

ration where they were parallel and on top of each other. Even though Kodaira’s (or Tate’s)

classification is strictly speaking only valid in codimension one, one can usually start from

the enhanced algebra gIJ dictated by the codimension-two vanishing orders, and break it

by tilting one part of the brane stack such that two stacks with gauge algebra gI and gJ
arise. In field theory, such a tilting corresponds to a VEV in the adjoint representation and

therefore the representation at codimension two can be read off from the decomposition

adj(gIJ)→
⊕
I,J

(RI ,RJ)⊕ (adj(gI),1)⊕ (1, adj(gJ)) . (2.5)

In most cases, this is enough to deduce matter representations. More care has to be taken

when considering non-simply laced groups. Here the additional source of monodromy has

to be taken into account when deducing the resulting representations [31, 58].

2.2 Non-Simply-Connected Groups from Mordell-Weil Torsion

In this work we focus on the global structure of non-Abelian gauge and flavor symmetries in

the six-dimensional F-theory models. In general, these groups will be non-simply-connected

which means that

π1(G) = T , (2.6)
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where G describes the flavor and gauge symmetries of the model. In the following, we focus

on models without Abelian gauge group factors, thus T is a finite group. By starting with

the simply-connected group G∗ related to the algebras determined by the codimension-one

singularities, (2.6) can be understood as modding out part of the center, see e.g. [45], of the

flavor and gauge symmetries,

G =
G∗

T
. (2.7)

Note that if T is only a subgroup of the centers of the individual factors in G∗, the group

action has to be further specified. One way to deduce it is to study the matter fields of the

theory, which have to transform trivially under T .

In F-theory, the appearance of a non-simply-connected gauge group is related to the

presence of extra sections in the elliptic fibration. In general, additional sections are related

to the Mordell-Weil group of the elliptic fiber. Extra rational sections lead to Abelian

U(1) symmetries [51, 59] and would correspond to the free part of the Mordell-Weil group,

which we do not discuss here. Extra torsional sections are related to the torsion part of the

Mordell-Weil group, which is encoded in the discrete group T , see e.g. [34, 35]. Adding a

k-torsional section k times to itself (addition is meant as an element of the Mordell-Weil

group) will map it back to the zero-section of the elliptic fibration. Therefore, there are no

extra degrees of freedom associated to torsional sections.

The presence of these torsional sections imposes restrictions on the coefficients in the

Weierstrass model [34]. For compact Calabi-Yau 3-folds3 with no extra rational sections the

possibilities for the Mordell-Weil group are quite constrained. The only possibilities are:

T = ZN , N ∈ {2, 3, 4, 5, 6} ,
T = Z2 × Z2N , N ∈ {1, 2} ,
T = Z3 × Z3 .

(2.8)

The most general Weierstrass models for these torsions have been constructed in [34] and

proven to be exhaustive for compact 3-folds in [37]. For convenience we reproduce the

restricted Weierstrass coefficients for all possibilities in (A.1) in Appendix A. In local mod-

els, also more exotic torsion models can be constructed, as illustrated in an example in

Appendix C.

Mordell-Weil torsion can also be understood in terms of the allowed monodromies of

the axio-dilaton field, i.e. the complex structure of the elliptic fiber. While this can be any

SL(2,Z) element in a generic F-theory model, it is restricted to a proper subgroup thereof

(or an SL(2,Z) orbit of the subgroup) in the presence of torsion. Since the monodromies

directly correspond to stacks of 7-branes in the base, one can already anticipate that this

will restrict the allowed symmetry groups as well as matter representations. Indeed, one

finds that the simply-connected group G∗ must have a center which is compatible4 with the

discrete Mordell-Weil torsion T . In addition, the matter representations have to respect the

structure as well and thus have to be uncharged under T .

3This is also true for higher-dimensional Calabi-Yau manifolds, but elliptically fibered K3’s admit more
freedom [37].

4Note that the action of T on the center of some of the factors in G∗ might be trivial, see e.g. [60].
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As a simple example consider the symmetry algebra sun. If T is trivial, all matter

representation are allowed and there is no restriction. However, if the group is SU(n)/Zk
where k divides n, representations that transform under the Zk subgroup of the center are

forbidden. This is not only relevant for the presence of dynamical charged states, but also

on the level of line operators [45, 61]. For product groups, the structure can be even more

versatile. For example, if the global group structure is given by [SU(n)× SU(n)]/Zk, fields

in the bi-fundamental representation are allowed (among others), while fundamentals of one

group which are singlets of the other are forbidden.

Beyond restricting the allowed symmetry groups in the six-dimensional theory, the re-

stricted Weierstrass models in (A.1) also lead to singularities of the fiber that appear gener-

ically. For example in the Z2 case, a4 appears quadratically in ∆ and the zeros of this

section will directly lead to I2 fibers and hence to su2 algebras. These generic singularities

can also be seen by studying the modular curve of the restricted monodromy groups [37].

3 6d SCFTs

In this section we review different ways of generating 6d SCFTs form string theory. We start

with a discussion of the construction via F-theory, which we will then extend to include

Mordell-Weil torsion in later sections. We further describe some of the elements in M-theory

as well as heterotic string theories. While we do not claim to have a full understanding of

the global characterization of the symmetry group in M-theory, we hint at some interesting

possibilities for future investigations in that direction.

3.1 6d SCFTs and F-Theory

6d SCFTs are non-gravitational theories that are strongly coupled and contain tensionless

strings. In the F-theory framework, decoupling gravity is associated to decompactifying

the base manifold B, as already mentioned in Section 2. The anti-selfdual strings originate

from D3 branes that wrap curves in B. Since the tension of the 6d strings is associated to

the volume of the curves these have to collapse in the SCFT limit. For that to be possible

at finite distance in moduli space they have to be contractible, imposing strong constraints

on the overall geometry.

Using this reasoning, it is possible to classify all configurations that lead to 6d SCFTs

in terms of a collection of (possibly intersecting but still contractible) curves in a complex

two-dimensional, non-compact Kähler manifolds, [22]. For all these models the SCFT point

can be reached by a continuous deformation of the curve volumes, which are given in terms

of the VEVs of scalar fields in tensor multiplets of the 6d theory. This is where the name

tensor branch of the theory comes from. On generic points of the tensor branch the base

manifold B is smooth.

Relevant information about the base is contained in the intersection matrix of the com-

pact curves Ca, given by

Ωab = Ca · Cb , (3.1)
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which has to be negative definite in order for the model to lead to a 6d SCFT, see [62].

Simultaneously, Ω describes the string charge lattice of anti-selfdual strings in the 6d effec-

tive theory, which couple to the 2-form fields in the tensor multiplets. The allowed charge

lattices for such configurations is quite restricted and plays a central role in the classification

of 6d SCFTs [23].

The intersection pattern (3.1) can enforce certain singularities in the elliptic fiber. These

singularities can be further enhanced by tuning complex structure parameters, cf. also [23].

We focus on theories without frozen singularities, see [27, 63] for a discussion of the latter.

Of course many models of this type are connected by deformations with subsequent RG

flow, see e.g. [39–42].

The essential building blocks of the F-theory construction are non-Higgsable clusters

(NHCs) [29] and superconformal matter (SCM) theories [30, 64]. The former can be

separated into single-curve NHCs and multi-curve NHCs. Both involve curves with self-

intersection smaller than (−2), as will be discussed in section 4. Superconformal matter

theories can be understood as the collision of two irreducible components of the discrimi-

nant locus ∆. Usually this would lead to hypermultiplets in certain matter representations5

[57], but in the case of SCM collisions, the vanishing order at the intersection point is

(4, 6, 12) ≤ ord(f, g,∆) < (8, 12, 24) . (3.2)

Therefore, a crepant resolution of these models require resolving not only in the fiber, but

also blowing up the base manifold6, which corresponds to a deformation that moves into the

tensor branch of the theory as stated above. The upper limit in (3.2) is imposed by the fact

that codimension-two singularities with ord(f, g,∆) ≥ (8, 12, 24) do not allow for a crepant

resolution: after blowing up such a codimension-two locus in the base, which reduces the

vanishing order in codimension one by (4, 6, 12), one still finds a codimension-one locus (i.e.

the blow-up divisor) of vanishing order (4, 6, 12) or worse. Often a single blow-up is not

enough and one uncovers a full set of new tensor multiplets forming the SCM sector.

For illustrational purposes, we discuss a simple example of an SCM theory given by the

collision of a II∗ fiber with e8 algebra over the non-compact divisor defined by {u = 0} and

an I1 fiber on {v = 0}, which intersect at the origin

y2 = x3 + xu4(v − 3) + u5(2u− v) . (3.3)

The collision leads to a non-minimal (4, 6, 12) singularity that can be resolved with a single

blow-up, which introduces a curve of self-intersection (−1). More explicitly, the blow-up

along {e1 = 0} reads

u→ ũ e1 , v → ṽ e1 , y → ỹ e3
1 , x→ x̃ e2

1 . (3.4)

After taking the proper transform, the new Weierstrass equation is

ỹ2 = x̃3 + x̃ ũ4(ṽ e1 − 3) + ũ5(2ũ− ṽ) . (3.5)

5Hence the name superconformal matter as a non-perturbative generalization of bi-fundamental matter.
6Another alternative is a non-flat resolution of the fiber which encodes part of the tensor branch structure

[65–67] and can be used to explore 5D SCFTs via the M-theory duality [68–71].
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The resulting geometry is smooth since now ũṽ is in the Stanley-Reisner ideal, indicating

the fact that both coordinates cannot vanish at the same time. The resulting theory is the

tensor branch of the SCM with just a single tensor. This is the minimal example of a 6d

SCFT and it is usually referred to as the E-string theory due to its flavor group being E8.

The full set of 6d SCFTs can be composed of several of the above components connected

by (−1) curves, leading to a vast set of 6d SCFTs. The goal of this paper is to use the

geometric F-theory description of these 6d SCFTs and their fundamental building blocks

and include torsional sections, which leads to a global specification of non-Abelian gauge and

flavor symmetries on the tensor branch. The global constraints can already be anticipated

by studying close relatives of the E-string theory above, namely discrete holonomy instanton

theories (which also feature prominently in [34]).

The E-string theory admits deformations which are described by finite Abelian sub-

groups T of E8. The E8 flavor symmetry in turn is broken to the centralizer of T . The

full list of such possibilities is given in Table 2. The discrete holonomy instanton theories

are understood as collisions of two or multiple flavor branes, constituents of the original

brane configuration. These lead to flavor groups forming a subgroup of E8 with a (4, 6, 12)

singularity at the collision point. For example, the Z5 discrete holonomy instanton theory

corresponds to a breaking7 of E8 to the subgroup [SU(5)×SU(5)]/Z5. This exact setup will

appear in the discussion of SCFTs respecting Z5 Mordell-Weil torsion.

Let us mention that flavor symmetries might get modified at the SCFT point. Moreover,

occasionally only part of the full flavor symmetry expected from field theory arguments is

realized geometrically, see e.g. [25] for the rank one cases. Note that in rare cases the flavor

symmetry can also be reduced, as was e.g. discussed in [8]. The same can happen in the

case of 6d SCFTs with non-trivial Mordell-Weil torsion. In cases where the enhancement

is realized geometrically, we can track the global group structure throughout the RG flow.

Often these situations can be engineered as the collision of two stacks of flavor branes

which can explicitly be performed within the Mordell-Weil torsion models we discuss. As

a consequence, also the flavor-enhanced models are affected by the action of the torsion T .

Sometimes, however, these enhancements lead to non-minimal singularities in codimension

one that violate the Calabi-Yau condition and the corresponding flavor group enhancement

is impossible in the presence of torsional sections.

In cases where the enhancements are not realizable by tuning the geometry, one needs

to employ field theoretic arguments. One possibility is to investigate the allowed flavor

symmetry fluxes on non-trivial spacetime manifolds, as done e.g. in [48]. Since a full un-

derstanding of the different possible flavor enhancements requires an inclusion of Abelian

flavor symmetries, which we do not treat here, we will stick to a discussion of the geometric

realization of the group structure and leave a discussion of the field theoretic arguments

to future work. Nevertheless, we often find differences of the tensor branches in theories

which only differ by their flavor groups (but their algebra), which confirms that global data

is preserved under the RG flow.

Before we initiate the investigation of 6d SCFTs with Mordell-Weil torsion in Sec-

7To obtain the breaking pattern one can delete the root with Dynkin index 5 from the affine Dynkin
diagram of E8. This extends to other breaking patterns with other discrete groups.
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T Flavor group

Z2 Spin(16)/Z2 , [E7 × SU(2)]/Z2

Z3 SU(9)/Z3 , [E6 × SU(3)]/Z3

Z4 [SU(8)× SU(2)]/Z4 , [Spin(10)× Spin(6)]/Z4

Z5 [SU(5)× SU(5)]/Z5

Z6 [SU(6)× SU(3)× SU(2)]/Z6

Z2 × Z2 [Spin(12)× Spin(4)]/[Z2 × Z2] , [Spin(8)× Spin(8)]/[Z2 × Z2]

Z2 × Z4 [SU(2)2 × SU(4)2]/[Z2 × Z4]

Z3 × Z3 SU(3)4/[Z3 × Z3]

Table 2: Flavor groups of E8 discrete holonomy instanton. The surviving flavor group is
given by the centralizer of the discrete subgroup in E8 [34].

tions 4, 5, and 6, we first want to mention alternative descriptions of 6d SCFTs in heterotic

string theory as well as M-theory constructions.

3.2 The Heterotic Perspective

The heterotic duals of F-theories with discrete holonomy instantons can be understood in

the following way. F-theory on a genus-one fibered 3-fold is dual to a heterotic theory

on a genus-one fibered K3 surface. Let us describe the case where the base of X is a P1
F

fibration over8 P1
H , i.e. a Hirzebruch surface Fn. This structure induces a K3 fibration

of X in addition to the genus-one fibration. The heterotic limit is recovered when the

volume of P1
F becomes small compared to that of P1

H . This leads to a stable degeneration

of the 3-fold X, where each generic K3 fiber of X degenerates into a union of two rational

elliptic surfaces that intersect along an elliptic curve. The heterotic K3 is then the elliptic

fibration over P1
H whose fiber is isomorphic to the elliptic fiber at the intersection of the

ruled surfaces. Thinking of P1
F as a circle fibration over an interval, the P1

F turns into the

Hořava-Witten interval of the M-theory picture with the two E8 walls sitting at the zeros

of the two homogeneous coordinates of P1
F .

It is now possible to take an instanton on one of the E8 walls and pull it off into the

bulk as an NS5-brane via a small instanton transition. In terms of the heterotic Bianchi

identity for the Kalb-Ramond field B with field strength H,

ch2(V )− ch2(TX) = n , (3.6)

where ch2(·) denotes the second Chern character and n denotes the number of NS5-branes,

the process can be thought of as lowering ch2(V ) by one and balancing it with an NS5-brane

on the right hand side. We will restrict to unbroken supersymmetry, which means that we

cannot use anti-NS5-branes, i.e. n ≥ 0

8The subscripts F and H are used to distinguish the two P1s, which we call [72] F-theory P1
F and

heterotic P1
H .
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Figure 1: M-theory setup for a higher-rank E-string theory and its F-theory geometry.

If the heterotic K3 is singular, one can also consider discrete holonomy instantons on the

E8 walls with fractional instanton numbers. These cases are discussed for K3/Zn and for

T 4/Zn in [34] and [73], respectively. One should note here that the genus-one fiber of the

Calabi-Yau 3-fold, together with the P1
H , correspond to the heterotic K3 compactification

geometry.9 Hence, the singularities lead to extra components in the discriminant of the

the elliptic fibration of the ruled surfaces in the stable degeneration. This means that the

discrete holonomy instantons are accompanied by extra (non-perturbative) gauge groups

and matter representations. One can also coalesce point-like instantons with these fractional

instantons, or coalesce several fractional instantons; if the charges of the coalesced instantons

sum up to one, they can become a standard point-like instanton which can be moved away

from the orbifold singularity. The occurrence of extra matter or tensor multiplets in such

transitions is somewhat subtle, since extremal transitions can be blocked by a B field (which

corresponds to RR modes in the dual Type IIA) [74].

3.3 The M-Theory Perspective

In the following, we describe the M-theory perspective of 6d SCFTs and their building

blocks. The two main ingredients for their discussion are the M-theory realization of (higher-

rank) E-string theories as well as the SCM theories.

The higher-rank E-string can be formulated in terms of M-theory on a half-space. The

spacetime boundary is associated to an E8 wall. Instantons in this E8 background connection

can be shrunk to a point, a small instanton, as in the heterotic description above. From

this singular point in moduli space, which is associated to the origin of the Higgs branch,

the small instanton can be dragged into the bulk as an M5-brane. The situation is depicted

in Figure 1. The corresponding graph of the dual F-theory geometry10 is also given in

9Note that this is different from the type II limit, where the elliptic fiber is not part of geometry, but the
whole base is.

10The squares indicate flavor symmetries and the the circles with number m encode compact curves with
self-intersection (−m) and mutual intersection according to the picture. If the fiber becomes singular over
the compact curves, we further give the corresponding gauge algebra above the circle.
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Figure 2: M-theory setup for a superconformal matter.
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Figure 3: Realization of the orbi-instanton theory in M-theory on the partial tensor branch.

Figure 1. It has a curve with self-intersection (−1) connected to a flavor algebra given by

e8 and a chain of curves with self-intersection (−2).

The second configuration we will need in the following is the g-type superconformal

matter theory. In M-theory, it can be engineered by placing an M5-brane on an ADE-

singularity of type g, see Figure 2. Depending on the specific type of the ADE-singularity,

the M5-brane can split up into fractions corresponding to a deformation onto the tensor

branch of the theory. In the process, one finds compact curves of negative self-intersection

and the corresponding gauge algebras in the F-theory picture. The flavor symmetry is

described by a non-dynamical seven-dimensional super-Yang-Mills theory, which appears

naturally in M-theory on an ADE-singularity.

One can also combine the two ingredients, which leads to a setup that was called an

orbi-instanton theory in [42]. It is formulated as the intersection of an ADE-singularity

in the bulk that intersects the E8-wall bounding spacetime. Pulling M5-branes into the

bulk along the singularity, one finds the theory depicted in Figure 3. In this way the gauge

algebra g is realized over each of the compact curves of negative self-intersection in the

F-theory geometry and further appears as a flavor symmetry on the far right. In order to

obtain a smooth geometry, one might have to further blow up the base manifold. As above,

this corresponds to a fractionalization of the M5-branes on the ADE-singularity.

With these theories as building blocks, one can engineer six-dimensional SCFTs by

switching on deformations that break the flavor symmetries to subgroups. These defor-

mations can be associated to homomorphisms su2 → g, as well as group homomorphisms

ΓADE → E8. The former objects can be interpreted as semi-simple and nilpotent deforma-

12



tions, and thus contains T-brane data [39–42]. The latter are associated to the possibility

of having a non-trivial E8 background connection on the boundary of spacetime, and are

therefore directly related to discrete holonomy instantons. Of course, once a global group

structure is imposed, these deformations of the theory are also subject to consistency re-

quirements, which will be investigated elsewhere. Here, we just illustrate these restrictions

in a simple example corresponding to M5-branes on an A5 singularity, as e.g. in Figure 2.

In the case of sun-type flavor symmetries, the nilpotent deformations are classified by a

partition of n. For the example n = 6, there are 11 possible partitions given by

P(6) = {[6], [5, 1], [4, 2], [4, 12], [32], [3, 2, 1], [3, 13], [23], [22, 12], [2, 15], [16]} . (3.7)

Denoting a partition by [µd11 , . . . , µ
dk
k ], the preserved flavor symmetry is given by

g = s
(⊕

j

udj
)
. (3.8)

If we want to mod out a global Z3 quotient, we see that only those dj which are a multiple

of three are allowed. This reduces the allowed partitions to

PZ3(6) = {[23], [16]} . (3.9)

For the case [16], the flavor group is not broken at all. For the other case, we can work out

the effects on the gauge algebras close to the deformed flavor group. The corresponding

part of the quiver is given by

s�✸ s�✻

✷ ✳ ✳ ✳

s�✸

✷✷

s�✻

(3.10)

We see that this configuration is indeed consistent with a global Z3 quotient.

Moreover, we have seen above that the discrete holonomy is only possible if the E8

wall contains an orbifold singularity, which is associated to the singular geometry in the

heterotic dual. This singularity naturally extends into the bulk as an ADE-singularity and

introduces further gauge degrees of freedom in the M-theory description. It is therefore

suggestive to assume that the induced group structure also extends into the bulk and in

F-theory corresponds to the existence of a torsional section. While the global realization

of the gauge group is not well understood in general, there are some interesting advances

in higher supersymmetric setups [47]. Before we go to the F-theory analysis, we want to

suggest how to access some of the global data in the M-theory formulation. The full analysis

of these systems, however, is left for future work.

Consider an E8 wall with a Z3 singularity, which corresponds to the collision with an

A2 singularity from the bulk. On this background, one can switch on a discrete holonomy

instanton that breaks the E8 flavor symmetry to [E6×SU(3)]/Z3. The corresponding discrete

holonomy instanton carries a charge whose fractional part is 2
3 , see [34]. Now consider the

4-chain Σ depicted in Figure 4, which surrounds the discrete holonomy instanton. In this

13



Figure 4: 4-chain on which the M-theory flux G4 evaluates to the fractional instanton
number, i.e. the number of M5-branes.

way one finds that ∫
Σ
G4 =

∮
S3/ΓADE

C3 . (3.11)

Since we choose Σ such that no additional M5-branes in the bulk contribute, one finds

fractional values of the integral of the M-theory 3-form C3 over the Lens space at infinity

also in the bulk. Usually, one would say that A-type singularities cannot host a fractional

holonomy in C3, which is related to the allowed instanton numbers in the 7d super-Yang-

Mills theory [7, 63, 75]. However, if the gauge group on the A2 singularity is SU(3)/Z3

rather than SU(3), there are fractional instantons of instanton number k
3 . These can be

traced back to holonomies which commute in SU(3)/Z3 but not in SU(3) and thus have a

direct connection to the construction of triples for the known cases of fractional holonomies

in C3. Therefore, it seems that the fractional instantons of non-simply-connected gauge

groups have a direct relation to the fractionalization of branes, their induced fluxes, and

holonomies. They are also directly related to frozen singularities, cf. [27, 63].

4 Non-Higgsable Clusters

In this section we begin with our investigation of 6d SCFTs with non-trivial Mordell-Weil

torsion in the simple setups of non-Higgsable clusters. The properties of the geometry of

NHCs enforces the presence of gauge factors on these compact curves with a minimal matter

spectrum preventing further Higgs transitions. In the following, we present a brief recap of

the derivation of NHCs and then turn to their realization with Mordell-Weil torsion.

4.1 Non-Higgsable Clusters Without Torsion

Given an irreducible, effective curve C with negative self-intersection C · C = −m < 0 in a

base B of an elliptically-fibered Calabi-Yau 3-fold, any other effective curve D on B with

14
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Figure 5: Gauge algebra and matter content for single-curve NHCs.

D · C < 0 is necessarily non-reduced and contains C as an irreducible component,

D = C +D′ , (4.1)

with D′ effective [29]. Knowing that the anti-canonical class of the base, −K, has to be

effective and that for genus g = 0 curves one has

−K · C = 2 + C · C , (4.2)

we deduce that for C · C < −2 the anti-canonical class needs to contain C. Since the

discriminant locus of an elliptic fibration is a section of ∆ = −12K, it also has to contain

C. This indicates that the fiber degenerates over C and in general there are non-trivial

gauge degrees of freedom localized on C. The same logic holds for f = −4K and g = −6K

in the Weierstrass form of the elliptic fibration, leading to a minimal degeneration of the

fiber over C and an associated gauge algebra. In general, one can make the ansatz

−nK = kC +D , (4.3)

with C ·D ≥ 0. Plugging this into (4.2) one has

−nK · C = 2n− nm = −km+D · C , (4.4)

and can solve for the smallest possible k, which in turn determines D ·C. Defining C to be

given by {z = 0} in the base and parametrized by the coordinates v1 and v2 with

v1 ∼ v2 , z ∼ v−m1 , (4.5)

this can be rephrased as

−nK ∼ zkPr(v1, v2) . (4.6)

Here, Pr is a general degree r = 2n − nm + km polynomial in the coordinates v1 and v2.

For example for r = 2 this is P2 = P2,1v
2
1 + P2,2v1v2 + P2,3v

2
2 with P2,i ∈ C. The minimal

gauge algebra and matter content derived in this way is summarized in Figure 5.

Similarly, such non-Higgsable gauge theories can appear on multiple intersecting curves

Ci of negative self-intersection where neighboring curves intersect exactly once, as summa-

rized in Figure 6. This can be deduced in a similar manner as above by finding the minimal

number of times the curves with negative self-intersection are contained in the divisors asso-

ciated to f , g, and ∆. For the details of the derivation we refer to the original work in [29].

Our notation is such that the compact curves are given by {u = 0}, {v = 0}, and {w = 0}
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Figure 6: Gauge algebra and matter content for multiple curve NHCs.

from left to right. We further introduce the non-compact base divisors {xu = 0}, {xv = 0},
and {xw = 0} that intersect only the indicated compact curve exactly once. Sections of

−nK are then to leading order given by

−nK ∼ uk1vk2wk3xr1u xr2v xr3w , (4.7)

with higher order terms containing larger powers in u, v, and w.

We see that some of the NHCs above actually do have matter states, albeit in half-

hypermultiplets. Since one cannot give a D-flat vacuum expectation value to a single half-

hyper, the gauge theories can nevertheless not be Higgsed (geometrically) while preserving

supersymmetry to a subgroup.

4.2 Non-Higgsable Clusters With Torsion

For models with non-trivial Mordell-Weil torsion, the Weierstrass coefficients have certain

factorization properties given in (A.1). The corresponding coefficients an, bn, cn transform

as section of −nK and we can apply the same logic as above. Indeed one finds that the

configurations of curves with non-trivial implications for the fiber degeneration are identical

to the discussion above. Note that while the original NHCs do not possess any flavor

symmetries, the presence of torsional sections often enforces flavor factors. We highlight

them in the following discussions.

Single Curve NHCs With Torsion

In the case of single curve NHCs we compute the leading vanishing order in z for the

coefficients in models with non-trivial Mordell-Weil torsion, cf. Table 3. This can be used

to compute the NHC gauge algebras and matter contents for models with Mordell-Weil-

torsion.

Let us illustrate this procedure for the curve with self-intersection (−3) and Z2 Mordell-

Weil torsion. From Table 3 we read off the leading order behavior for a2 and a4

a2 = zP1 , a4 = z2P2 , (4.8)

from which we find, cf. (A.1a),

f = z2
(
P2 − 1

3P
2
1

)
, g = 1

27z
3P1(2P 2

1 − 9P2) , ∆ = z6P 2
2 (4P2 − P 2

1 ) . (4.9)

This indicates a fiber degeneration of type I∗0 . In order to determine the monodromy type
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m a1 a2 a3 a4 b1 b2 c2

3 zP2 zP1 zP0 z2P ′2 zP̃2 zP̃1 zP̃ ′1

4 zP2 zP0 z2P ′2 z2P ′0 zP̃2 zP̃0 zP̃ ′0

5 zP2 z2P4 z2P1 z3P3 zP̃2 z2P̃4 z2P̃ ′4

6 zP2 z2P4 z2P0 z3P ′2 zP̃2 z2P̃4 z2P̃ ′4

7 zP2 z2P4 z3P6 z3P1 zP̃2 z2P̃4 z2P̃ ′4

8 zP2 z2P4 z3P6 z3P0 zP̃2 z2P̃4 z2P̃ ′4

12 zP2 z2P4 z3P6 z4P8 zP̃2 z2P̃4 z2P̃ ′4

Table 3: Leading behavior of the sections ai, bi, ci in z on a curve C with C · C = −m.

we consider the monodromy cover, [31],

µ(ψ) = ψ3 +
( f
z2

)∣∣∣
z=0

ψ +
( g
z3

)∣∣∣
z=0

= ψ3 +
(
P2 − 1

3P
2
1

)
ψ + 1

27P1

(
2P 2

1 − 9P2

)
= 1

27

(
3ψ − P1

)(
9ψ2 + 3P1ψ + 9P2 − 2P 2

1

)
,

(4.10)

which fixes the fiber to be I∗,ss0 with gauge algebra so7. The discriminant of the correspond-

ing monodromy cover is given by

∆0 =
∆

z6

∣∣∣
z=0

= P 2
2 (4P2 − P 2

1 ) . (4.11)

There are hypermultiplets in the spinor representation of so7 located at the zeros of P2 and

one correspondingly finds two hypermultiplets 8. The remaining factor 4P2 − P 2
1 defines

a curve of the monodromy cover that can give rise to non-localized matter in the vector

representation. The number of vector multiplets is given by the genus of the curve. However,

since the genus in the present case is zero11, there is no non-local matter transforming as 7.

The given matter spectrum solves the anomaly condition for a so7 theory on a (−3)

curve. The anomaly polynomial receives contributions from the Green-Schwarz term as well

as from vector- and hypermultiplets. For n8 hypermultiplets in the spinor representation

and n7 in the vector representation, one finds the anomaly polynomial

I8 = IGS
8 + Iv

8 + Ih
8 = 1

32

(
1− 1

2n8
)(

trF 2
)2 − 1

24

(
1 + n7 − 1

2n8
)
trF 4 , (4.12)

which vanishes identically for n8 = 2 and n7 = 0.

Taken by itself, this matter content would be incompatible with Z2 torsion, since the

spinor representation is not invariant with respect to the Z2 center of a Spin(7) gauge

group. However, the geometry with Z2 Mordell-Weil torsion automatically contains two

additional I2 fibers over the two roots of P2, leading to a su2⊕su2 flavor algebra. Therefore,

we find that the so7 matter is contained in two half-hypermultiplets transforming in the

(1,8,2) ⊕ (2,8,1) representation (note that 2 is pseudo-real and 8 is real), which makes

the matter content consistent with a symmetry group

G =
SU(2)× Spin(7)× SU(2)

Z2
. (4.13)

11This can be computed using C · (K + C) = 2g − 2 for the genus g of a curve C.
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Giving a vacuum expectation value to the matter states one breaks the gauge as well as

the flavor symmetries. This in turn violates the restriction imposed by the Z2 Mordell-Weil

torsion as well. An explicit geometric realization of this breaking in terms of a deformation

is given by

g → g + εz2 . (4.14)

However, within the class of models respecting the Z2 torsion, the theory has to preserve

the flavor symmetries, and the model cannot be Higgsed.

Multi-Curve NHCs With Torsion

Next, we consider base configurations with several intersecting curves of negative self-

intersection. Again, the only relevant configurations are the ones already appearing for

the generic NHCs, i.e. one configuration with two curves which intersect once and which

have self-intersections (−3,−2), as well as two chains of three curves of self-intersections

(−3,−2,−2) and (−2,−3,−2).

In the case of two curves, which we describe by {u = 0} and {v = 0}, one arrives at

the form for the anti-canonical class, which necessarily contains the curves with negative

self-intersections, given by

−nK ∼ uk1vk2xr1u xr2v , (4.15)

from which we deduce the leading order behavior of the coefficients with Mordell-Weil

torsion

a1 a2 a3 a4 b1 b2 c2

a1,0 uvxuxv a2,0 uvxv a3,0u
2vx2

u a4,0u
2vxu b1,0 uvxuxv b2,0 uvxv a2,0 uvxv

(4.16)

Again, an, bn, cn are sections of −nK and an,0, bn,0, cn,0 are complex constants. The same

exercise can be repeated for three intersecting curves, leading to

configuration a1 a2 a3 a4

(2, 3, 2) a1,0 uvwxuxw a2,0 uv
2wx2

v a3,0 uv
2wxv a4,0 uv

2w

(3, 2, 2) a1,0 uvwxuxw a2,0 uvwx
2
uxw a3,0 u

2v2wxuxv a4,0 u
2v2wxv

(4.17)

In many situations the intersection of the compact curves with each other or with a

non-compact divisor leads to non-minimal fiber singularities, i.e. ord(f, g,∆) ≥ (4, 6, 12).

In these cases, one has to blow-up the intersection point, thus reducing the self-intersection

of the central curve. In the description below we also include the gauge algebras on the blow-

up divisors. This is very similar to what happens in the standard non-Higgsable clusters

for m ∈ {9, 10, 11}. It can also happen that the singularity on the compact curve itself has

ord(f, g,∆) ≥ (4, 6, 12) in which case there is no resolution and we denote the model as

non-minimal.
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Z2 Torsion

The single curve configurations with Z2 torsion are given by

✸ ✹s�✷ s�✷

✁✂✼ ✁✂✽ ❡✼

✄

✶
☎✭✆✱ ✝✮

✶
☎ ✭✝✱ ✆✮

(4.18)

Curves with self-intersection smaller than (−8) become too singular for a crepant resolution.

For configurations with curves of self-intersection (−5), (−6), and (−7) one encounters

instead non-minimal singularities in codimension two which need to be blown up. The

resulting configurations are given by

❡✼

✽ s�✷

s�✷

s�✷ ✶

✶

✶

❡✼

✽ s�✷s�✷ ✶ ✶

❡✼

✽ s�✷✶

(4.19)

In all cases the final geometry contains a (−8) curve with an e7 algebra.

The configurations with multiple curves are

✸ ✷

s�✁✱✂✂✂

✸ ✷✷

s�✁✱✂✂✂s�✁✱✂✂✂ s✄✼

✶
☎✭✆✝ ✽✮

✶
☎ ✭✽✝ ✆✮

✞✟✠

s✄✼

✶
☎✭✆✝ ✽✮

✶
☎ ✭✽✝ ✆✮

(4.20)

The remaining multi-curve NHC requires a blow-up an the resulting theory is given by

✸ ✷

s�✁✱✂✂✂s✄✼s✄✽

✹ ✶

☎✆✝

(4.21)

The matter is identical to the two-curve cluster above and we see that essentially this results

in the two-curve cluster connected to the NHC on a (−4) curve by a (−1) curve.

In all the cases above, the group structure is given by the simply-connected group

induced from the algebras modded out by the discrete torsion group, i.e. for two-curve

cluster it is given by

G =
ŜU(2)× Spin(7)× SU(2)

Z2
, (4.22)

where we distinguish the flavor symmetry by a hat.
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Z3 Torsion

With the orders for a1 and a3 given in Table 3, we find for the single curve case12

✸

s�✁✱✂❱ ❡✻

✄✄

❡✻

✶ ✶ ✄

❡✻

✶☎✆✝ ☎✆✝ ☎✆✝ (4.23)

where we already performed the necessary blow-ups for m = 4, 5. Beyond m = 6 one has

non-minimal singularities already in codimension one.

All clusters with multiple curves require blow-ups and the final result is given by

✸✶❡✻ ✶ � ✶ ✸

✁✂s✄☎✱✆❱ s✄☎✱✆❱

(4.24)

for two curves and

✶✸ ✶ ✻ ✶ ✸

❡�s✁✂✱✄❱ s✁✂✱✄❱

✶

☎✆✝

s✁✂✱✄❱ ✻ ✶ ✸

❡� s✁✂✱✄❱

✶ ✻ ✶ ✸

❡� s✁✂✱✄❱

✶

☎✆✝

(4.25)

for three. All of these are variations of the e6 superconformal matter as we will see later.

In all clusters, the group structure is uniquely defined. It is given by the product of all

gauge and flavor group factors modded out by Z3.

Z4 Torsion

For Z4 torsion the single curve clusters are given by

s�✷

✶

s�✷

s�✹ ✁

✂✄☎✆

✁s�✷ s�✷

✂✄☎✆

(4.26)

originating from m = 3, 4. There are half-hypers in representation (2,10) between the

so10 and su2’s. The group structure is given by the Z4 quotient of the simply-connected

realization.

As for the example in section 4.2, these two theories can be Higgsed to the classical

NHC on (−4) curve with so8 algebra, breaking the Z4 torsion structure alongside the flavor

symmetries. Note that Z4 torsion does not allow for NHCs on multiple curves or configura-

tions with m > 4; these turn out to have no crepant resolution due to (4, 6, 12) singularities

in codimension one.
12The starting configuration is a single curve with negative self-intersection. Several of these models,

however, require further blow-ups leading to additional compact curves.
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Z2 × Z2 Torsion

As for Z4 torsion, there are only single curve clusters with m = 3, 4, given by

s�✷

✁✂✽

s�✷

s�✷✸

✁✂✽

✹

(4.27)

The (−4) curve does not have any matter. The matter for the (−3) curve is given by

1
2(2,1,1,8v)⊕ 1

2(1,2,1,8s)⊕ 1
2(1,1,2,8co) , (4.28)

where the subscripts (v, s, co) indicate the vector, spinor, and co-spinor representation of

so8 Interestingly, if one tries to tune two of the intersections with the su2 flavor factors

on top of each other, the third su2 factor automatically intersects at the same point as

well. Simultaneously, this intersection point enhances to (f, g,∆) = (4, 6, 12) and one has

to perform a blow-up, thus reducing the self-intersection of the curve to (−4) and getting

rid of all the matter.

In the case with multiple curves only the two curve case leads to a valid configuration

s�✽

✹

s�✽

✹ ✶✶ ✁✂✄
(4.29)

The configurations with three curves do not have a crepant resolution.

Remaining Cases

The remaining possibilities for the Mordell-Weil torsion, i.e. Z5, Z6, Z4 × Z2 and Z3 × Z3,

immediately lead to (4, 6, 12) singularities in codimension one.

5 Non-Simply-Connected SCM

The next main ingredient in our discussion is going to be non-simply connected superconfor-

mal matter. On an intuitive level it is clear why superconformal matter must be revisited:

Since a non-simply-connected (gauge-)group comes with a modified charge lattice that re-

stricts certain matter representations, one expects that a similar logic should hold for their

non-perturbative extension, the superconformal matter. Indeed, in Section 3 we have al-

ready seen that the presence of torsion can lead to a breaking of the E8 flavor symmetry

of the E-string theory to a subgroup consistent with the global quotient. Before we discuss

the various superconformal matter theories for each quotient factor in detail, we want to

comment on the following three generic features that appear in these models:

• Classical SCM, as discussed e.g. in [30], often already comes with compatible cen-

ters, and therefore a non-simply-connected flavor group, as anticipated in [48]. In

Section 5.1 we show that these models indeed admit torsional sections that are com-

patible with the respective centers.
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• Discrete jumps in the ramp of gauge groups appear on the tensor branch. This

feature results from the restricted monodromy, which forbids various gauge group and

matter factors and hence heavily modifies the tensor branch, as we show in simple

examples in Section 5.2.

• Additional singular I1 loci intersect one or multiple flavor branes in a single point.

As we discuss in Section 5.3, these curves are often singular themselves, which severely

affects the tensor branch of these theories.

5.1 Torsion and SCM

Some of the superconformal matter theories discussed in the literature (see e.g. [30]) in

fact admit a non-simply-connected flavor group. This has already been anticipated by the

authors of [48], who noted that in fact superconformal matter of type (G,G) is changed

to be of type (G,G)/center(G). In this section, we present the geometric realization of

this statement, which is due to the presence of an n-torsional section in the respective

Weierstrass model, with Zn the center of the simply-connected cover G∗. We will mainly

consider the e× e and so× so type superconformal matter.

We start with Z2. The e7 × e7 SCM can be directly engineered in the Z2 torsion model

of (A.1a) by setting a2 = u2v2 , a4 = u3v3. The tensor branch is given by

✶ ✷❡✼ ✷ ✶ ❡✼✸

s�✁ s✂✼ s�✁

(5.1)

where each individual gauge factor has a Z2 center, as enforced geometrically by the Weier-

strass model. Note also that the (2, 3, 2) NHC which appears here is unmodified when Z2

torsion is present, cf. (4.18).

Similarly, the e7 × su2,III collision13 is obtained from a2 = u2v , a4 = u3v and does

in fact correspond to one of the Z2 discrete holonomy instanton theories as discussed in

Section 3. Moreover, superconformal matter of type so8+4n × so8+4m can be engineered by

factorizing a2 = uv , a4 = u2+nv2+m. The tensor branches of those theories are

✶ s�✽✰✁♠s�✽✰✁♥

s✂♥✰♠

(5.2)

with matter transforming in the bi-fundamental representation of two adjacent algebras. In

cases where either n or m are zero (but not both), the so8 flavor factor is reduced to so7.

We note that the torsion never allows collisions of type so8+4n × so10+4m. This can

be understood from the fact that anomaly cancelation on the tensor branch requires the

presence of a single fundamental hypermultiplet of the sp gauge group. However, this is

incompatible with the Z2 torsion. Geometrically, this is ensured in the Z2 torsion model by

13In order to distinguish the su2 algebras arising from type I2 and type III, singularities, we add a
subscript for the latter. We proceed similarly for the su3 of type I3 vs type IV .
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an automatic enhancement of the flavor symmetry. A similar effect appears for [Spin(10 +

4n)× Spin(10 + 4m)]/Z4 models.14

We show in Section 6.1.3 that, even when two extended flavor factors have compatible

centers, it is not guaranteed that a modding by that group exists: The modding can be

obstructed by the presence of incompatible gauge group factors or representations on the

tensor branch. An example for this is superconformal matter of type e7× so which includes

a single sp fundamental, that is not allowed by the Z2 embedding. In Section 6.1.1, we will

see that (E7× SO(2n))/Z2 superconformal matter is possible, but it comes with a modified

tensor branch that is consistent with the global Z2.

The Z3 case can be handled analogously. For example, e6 × e6 type superconformal

matter can be engineered from (A.1b) with a1 = 0 (which sets f ≡ 0), and a3 = u2v2. The

tensor branch is given by

✶ ✶✸❡✻

s�✁

❡✻
(5.3)

without any matter, which is trivially consistent with the the global Z3. Also here we note

that the non-Higgsable cluster of a (−3) curve is unmodified by the Z3 torsion.

To summarize, we find that indeed some superconformal matter theories that have al-

ready been constructed in the literature admit a non-simply-connected flavor group, which

is geometrically manifest by Mordell-Weil torsion in the Weierstrass model. In general, this

is an important lesson that needs to be taken into account, when constructing supercon-

formal matter within a certain torsion model. When starting with a given torsion, specific

flavor configurations might further enhance the Mordell-Weil group beyond the starting

configuration. Such an enhancement e.g. occurs when one chooses a2 = uv and a4 = u2v2

in an Z2 torsion model, which engineers an so8 × so8 flavor algebra. After a coordinate

shift, one easily sees that this model in fact admits a Z2 × Z2 torsion, which is what one

expects from the center of so8. In Appendix A, we show the conditions under which such a

torsion enhancement is possible. Note that this can also be read in reverse, showing which

deformations preserve possible torsion subgroups.

5.2 Example: Flavor Groups vs Algebras

After having illustrated that some superconformal matter theories in fact already admit a

torsion factor, we want to compare two superconformal matter theories that admit the same

flavor algebra, but different flavor groups and hence different tensor branches. We pick the

(E7 × SU(2n))/Z2 theory which we compare with its simply-connected cover. This type of

theory is engineered in the Z2 torsion model of (A.1a) by setting a2 = u2 and a4 = u3vn,

resulting in the Weierstrass functions

f = 1
3(−u+ 3vn)u3 , g = 1

27(2u− 9vn)u5 , ∆ = u9v2n(−u+ 4vn) . (5.4)

14Notably, the Sp group on the tensor branch does not have a Z4 center. As we shall see later, often only
a subgroup of the full torsion group is modded out.
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For n > 0, the collision leads to a (4, 6, 10 + 2n) non-minimal singularity. Note that there

is also an I1 component intersecting the origin as well. Performing the first resolution by

blowing up u = v = 0 with an exceptional divisor e1 and taking the proper transform results

in the Weierstrass functions

f = 1
3(−ũ+ 3ṽne

(n−1)
1 )ũ3 , 1

27(2ũ− 9ṽne
(n−1)
1 )ũ5 , ∆ = ũ9ṽ2ne

2(n−1)
1 (−ũ+ 4ṽn) . (5.5)

Over e1, we thus find an su2n−2 gauge algebra factor, as needed from compatibility with

the prescribed center. Continuing this process n− 1 times results in the chain

✶ ✷❡✼

s�✁

s�✁♥✷ ✳ ✳ ✳ ✷

s�✹ s�✁♥✦✁

(5.6)

All gauge algebra and the bi-fundamental (2k,2k + 2) matter factors are compatible with

the Z2 center that is modded out in addition to gauge anomaly cancellation. Note that the

chain above ends on one of the Z2 discrete holonomy instanton theory.

Let us compare this to the E7 × SU(2n) theory constructed in a similar fashion, but

in the most general Weierstrass model without any torsion. The resulting tensor branch is

given by [30]

✶ ✷❡✼

s�✁ s�✂ s�✸ s�✂♥✦✁

s�✂♥✷ ✳ ✳ ✳ ✷

✄
☎✺✆

(5.7)

The direct comparison shows how the non-simply-connected version of the e7× su2n theory

differs from its cover. We find that every algebra factor and representation that is incom-

patible with the Z2 modding, is indeed missing in (5.6). This includes the su2k+1 factors as

well as the 56 half-hyper. This results in a ramp of su2k gauge factors that runs towards e7

twice as fast as without the quotient, which requires less blow-ups and consequently tensor

multiplets. We present an overview of the two theories with and without torsion in Table 4.

As already pointed out in [48], a characteristic feature of these theories is a modified matter

spectrum and a jump in the rank of the gauge groups in the ramp between the flavor factors.

In a very similar fashion, theories of type (E6 × SU(3n))/Z3 differ from their simply-

connected version by omitting all su3k±1 algebra factors (and the corresponding tensors and

hypermultiplets, see Section 6.1.2).

5.3 Singular Discriminant Components and Resolutions

A distinctive feature of Weierstrass models with torsion points is that the Weierstrass func-

tions f and g are highly tuned as compared to the standard Weierstrass form. Recall for

example the Z2 torsion model and its Weierstrass functions

f = a4 − 1
3a

2
2 , g = 1

27a2(2a2
2 − 9a4) , ∆ = a2

4(4a4 − a2
2) , (5.8)
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E7 × SU(2n) [E7 × SU(2n)]/Z2 Difference

Tensors 2n− 1 n n− 1

rank(G) (n− 1)(2n− 1) (n− 1)2 n(n− 1)

# Vectors 1
3 (n− 1)(2n− 1)(4n+ 3) 1

3 (n− 1)(4n2 − 2n− 3) 4
3n(n2 − 1)

# Hypers 2
3n(4n2 − 1) + 1

256 4
3n(n2 − 1) 2

3n(1 + 2n2) + 1
256

5d dim(C) n(2n− 1) n+ (n− 1)2 n2 − 1

Table 4: Comparison of the e7 × su2n SCM theories with and without torsion. G refers
to the gauge algebras. In the last column we give the dimension of the Coulomb branch
dim(C) of the 5D circle reduced theory.

Note that in addition to the su2 locus, there is an I1 component that includes the a4

polynomial of the respective su2. When tuning this model, we therefore often obtain an I1

divisor with a double-, triple- or higher-point singularity. For example for the model above

with a2 = un , a4 = vm, the I1 component becomes singular, too. Moreover, care needs to

be taken when m is even, since then the I1 divisor becomes reducible and can be split into

two (possibly singular) divisors. Perturbative examples for this phenomenon are given e.g.

by choosing n = 1 and m = 3, which results in the discriminant

∆ = v6(−u2 + 4v3) . (5.9)

This corresponds to an sp3 gauge algebra over v = 0 and an I1 locus with a double-

point singularity at u = v = 0. At this locus, the Weierstrass model enhances to an

(2, 3, 8) singularity with a local so12 algebra contributing a hypermultiplet in the two-fold

antisymmetric representation 14 of sp3, compatible with the center factor.

Similarly, for n = 2 , m = 3, the discriminant is given by

∆ = v6(−u4 + 4v3) . (5.10)

Now, the sp3 fiber becomes split and supports an su6 algebra, and the I1 locus has a

triple-point singularity at the origin. At the intersection with the su6, this results in an

enhancement to a (3, 5, 9) singularity, i.e. that of an e7 algebra, which gives again rise to

the two-fold antisymmetric 15 of su6.15

In a similar vein, tuning the I1 locus can lead to extra superconformal matter, e.g. when

choosing n = 2 and m = 4, in which case the discriminant becomes

∆ = v8(−u2 + 2v2)(u2 + 2v2) = v8(u−
√

2v)(u+
√

2v)(u− i
√

2v)(u+ i
√

2v) . (5.11)

This leads to an su8 over v = 0 and four I1 loci all intersecting at the origin. In fact, all

five curves meet at the origin, producing a (4, 6, 12) singularity. This configuration is an E-

string theory whose flavor group got broken to SU(8)/Z2. Upon blowing up, the singularity

can be removed leading to a (−1) curve intersected by the four I1 curves at different points.

15This can be seen from the decomposition: e7 → su3 × su6, where the adjoint is decomposed as 133 →
(8,1) + (1,35) + (3,15) + (3,15).
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The corresponding diagram is given by

1su8 (5.12)

Degenerating the I1 locus further by setting n = 4, the discriminant becomes

∆ = v8(−u4 + 2v2)(u4 + 2v2)

= −v8(u2 −
√

2v)(u2 +
√

2v)(u2 − i
√

2v)(u2 + i
√

2v) .
(5.13)

Now, there is still the su8 factor over v = 0 but the I1 curves have slightly changed. After

two blow-ups in the base, this results in the chain

1su8 2 (5.14)

which is simply the same SU(8)/Z2 theory as before, but with additional unpaired tensors.

Note that (5.12) can be reached from (5.14) along an RG flow that decompactifies the (−2)

curve.

Similarly, when taking the factorization a2 = uvl+1 , a4 = u4v,

f =
1

3
u2v(3u2 − v(1+2r)) , g =

1

27
u3v(2+r)(−9u2 + 2v(1+2r))

∆ =u10v3(4u2 − v(1+2r)) .
(5.15)

one obtains a su2,III×so16 flavor group, where l only affects the I1 locus and its intersection

at the origin. For l = 0, a single resolution with a (−1) curve suffices, resulting in

1so16

su2,III

su2,III (5.16)

However, for l > 0 the I1 locus develops a double-point singularity at the origin and one

needs l additional blow-ups that host su2,III factors to get a fully non-singular model,

1so16 2 2 2. . .

su2,III

su2,III

su2,IIIsu2,IIIsu2,III

(5.17)

Hence, we find a chain that repeats l times an su2 gauge factor from the right, similar to

the orbi-instanton discussed in Section 3. From another perspective, the above model can

be interpreted as an su2 flavor brane that collides with a discrete holonomy instanton at a

Zl−1 orbifold singularity. In the Weierstrass model, this is all encoded in the structure of

the I1 locus. Features like these require taking extra care when analyzing the theory, since

the I1 loci can influence the structure of the tensor branch substantially.

In the process of studying non-minimal singular Weierstrass models, we use that traverse

intersections of two divisors that lead to singularities of vanishing order less than (8, 12, 24)

can be reduced by a sequence of blow-ups in the base. Since some of the the models

we analyze can have non-transverse intersections, we need to be careful. In particular, it

can happen that a singularity of type (8, 12, 24) (or worse) only becomes apparent after
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performing some blow-ups. We demonstrate this with the Z2 torsion model where we tune

the coefficients a2 = u3 , a4 = u3v6. This leads to the Weierstrass model

f = 1
3u

3(u3 − 3v6) , g = 1
27u

6(2u3 − 9v6) , ∆ = −u9v12(u3 − 4v6) . (5.18)

At first glance this model seems to admit a crepant resolution: It has a simple e7 × sp6

collision, but also an I1 curve with a triple-point singularity at the origin. The overall

vanishing orders at the origin sum up to (6, 9, 24) which is just below the bound of a non-

crepant resolution. Upon performing the first blow-up, one obtains a model with

f = 1
3e

2
1u

3(−u3 + 3e3
1v

6) , g = 1
27e

3
1u

6(2u3 − 9e3
1v

6) , ∆ = e12
1 u

9v12(−u3 + 4e3
1v

6) .

(5.19)

This has an I∗,s6 fiber along the blowup divisor {e1 = 0}, which corresponds to an so20

gauge algebra. However, now we see a (8, 12, 24) singularity at the intersection of the

so20 divisor {e1 = 0} and the e7 divisor {u = 0}, revealing that no crepant resolution is

possible. Cases like these are relatively generic and complicate a systematic study of the

non-simply-connected superconformal matter theories.

6 Non-Simply-Connected Conformal Matter Zoo

In this section we discuss superconformal matter theories with various torsion factors, as

well as their tensor branches, in more detail. The theories are constructed by systematically

engineering singularities in the restricted Weierstrass models compatible with the Mordell-

Weil torsion factors. In order to obtain superconformal matter theories, the singularities

are engineered such that the vanishing orders are below (4, 6, 12) in codimension one, and

between (4, 6, 12) and (8, 12, 24) in codimension two. These conditions mean that a crepant

resolution by blowing up the base is possible. This allows us to determine all gauge group

factors and matter representations of each theory. In order to present our results in a

systematic way, we discuss each torsion theory using the following approach:

1. For each torsion factor, consider all E8 breaking patterns of a discrete holonomy

instanton, which can be inferred from Table 2. Subsequently, consider all further

breakings that can be engineered in a torsion-preserving way (see e.g. [34]).

2. From this, we obtain non-compact flavor branes at the coordinates of the C2 base

(u = 0 and v = 0), which host the E-string theory at the origin.

3. For each flavor group over a codimension one locus, we engineer higher and higher

singularities, until we hit the limit of crepantly resolvable theories.

4. We perform all resolutions in the base, which allows us to deduce the 6d tensor branch.

We then determine the gauge groups and matter content, check anomaly cancellation,

as well as compatibility with torsion.

Note that some theories cannot be reached via this procedure of starting from a discrete

holonomy instanton and engineering further singularities. We call these “outlier theories”.
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We present a few interesting outliers in the following sections, but the bulk of them is

discussed in Appendix B.

Let us briefly recap our notational conventions:

• Square nodes denote flavor algebras and circle nodes denote gauge algebras.

• We specify these algebras inside the squares and above the circles. We follow the

convention su2 ' sp1, su1 = su0 = ∅. Likewise, nodes without a gauge algebra above

them signal trivial algebras.

• The number in the circle denotes the negative self-intersection of the corresponding

divisor.

• Unless specified otherwise, all matter transforms in the bi-fundamental representation

of two adjacent nodes. For groups other than sun, the “fundamental” is the lowest-

dimensional non-trivial irreducible representation.16

6.1 Single Factors Theories: Zn , n = 2 . . . 6.

We start by considering theories with Mordell-Weil torsion given by a single Zn factor and

employ the strategy outlined above. It turns out that Z2 torsion is the most versatile

in terms of different models, since a wide range of compatible gauge group factors exist.

Typically, one obtains fewer possibilities when the order of the torsion is enhanced. However

for non-prime torsion, there is the possibility that the gauge and flavor groups are only

affected by a subgroup of the full torsion, which in turn increases the number of possibilities

again.

6.1.1 Z2 Torsion: Conformal Matter

Superconformal matter with Z2 Mordell-Weil torsion is described by the Weierstrass model

in (A.1a). Note that the model generically has an su2 singularity at the zeros of a4. The

16Lines connecting the nodes are only used in order to unclutter the notation and do not indicate any
special kind of matter.
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possible breakings of E-string theories by a Z2 discrete holonomy instanton are17

Flavor Group a2 a4

1 [E7 × SU(2)]/Z2 u2 u3v

2 [Spin(8)× Spin(8)]/[Z2 × Z2] uv u2v2

3 [Spin(16)]/Z2 uv u4

4 SU(8)/Z2 u2 v4

5 [SU(6)× SU(2)III ]/Z2 u2 uv3

6 [Spin(8)× SU(4)]/Z2 u2 u2v2

7 [Spin(12)× SU(2)III ]/Z2 uv uv3

8 Sp(4)/Z2 u3 v4

9 [Sp(3)× SU(2)III ]/Z2 u3 uv3

10 [Spin(8)× Sp(2)]/Z2 u3 u2v2

(6.1)

For the first three theories, the E8 flavor group is broken to one of its maximal subgroups,

while theories 4-7 have rank lower than 8. The last three theories have an additional

monodromy that folds the flavor group to a non-simply laced group.

In the following, we will discuss the first seven of these theories and defer the last three

to the Appendix. Starting with theory 1, we can enhance the su2 flavor symmetry over

v = 0 to an su2n factor simply by replacing u3v → u3vn in a4. This example has already

been discussed in Section 5.2, and its tensor branch is summarized in (5.6). The same is

true for theory 2, for which we can further enhance the ranks of the so algebras by setting

a4 = u2+nv2+m, leading to well known theories [30] whose tensor branches have already

been discussed in (5.2).

We continue our discussion with theory 3, which is an so16 theory intersected by an I1

component. Enhancing its flavor algebra leads to theories with tensor branch

1so16+4n

sp
n

(6.2)

with-half hypermultiplets in the bi-fundamental representation. This cancels the spn gauge

anomalies.

Moving on to theory 4, we have the E-string theory from an su8 × I4
1 collision. We can

enhance the su8 factor to su8+2n by changing a4 in the Weierstrass form to a4 = u4+n. Note

that for these choices the I1 locus is irreducible when n is odd, factors into two components

if n is divisible by 2, and into 4 components if n is divisible by 4. The form of tensor branch

17As mentioned in Section 2, the group structure is sometimes not uniquely specified by the indicated
quotients. In these cases, the group action of T can be deduced from the matter states that are present on
the tensor branch of the theories.
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depends on 2n mod 8, which specifies the rank of the gauge algebra on the final (−1) curve,

1 22. . .

su2nmod 8

su2n+8

su2nsu2n−8

(6.3)

Note that the (−1) curve does not carry any gauge algebra if n is a multiple of 4. All

matter multiplets are bi-fundamental. However, in the case that n = 3 mod 4, the chain

ends on an su6 over the (−1) curve and the I1 curves do not split. In such a case, one

finds another antisymmetric 15-plet representation at the collision with the I1 curve. The

15-plet can be seen to arise from an enhancement to an (3, 5, 9) singularity in codimension

two, encoding an e7 fiber (note that an e7 enhancement is consistent with the restricted

Z2 monodromy). The matter representation can then be inferred from decomposing the

adjoint 133 [57] into irreducible su6 representations, which gives rise to a 15-plet. In the

case n = 2 mod 4, on the other hand, the chain ends on an su4 over the (−1) curve

which intersects two I1 components. The su4 comes with fundamentals, but also with two

6-plet half-hypermultiplets (this is the two-fold antisymmetric representation), originating

from the intersections with the two I1 components. This is again confirmed by noting

that the (−1) curve intersects the I1 curve in an enhanced (2, 3, 6) singularity, which yields

a codimension two enhancement to so8. This local enhancement is compatible with the

desired center in its simply-connected realization as one expects from the Z2 torsion. By

using the Katz-Vafa rule and branching the adjoint 28 of so8 into su4 representations, one

finds the required 6-plets as necessary for anomaly cancellation.

Next we consider theory 5, which is an su6×su2,III broken E-string theory, and enhance

the su6 factor to su2n+6 by setting a4 = uv3+n. This results in the chain

✶ ✷✷✳ ✳ ✳ s�✁♥✰✂

✄☎✆✝✄☎✆✝✦✻✄☎✆✝♠✞❞ ✻

s�✁✱✟✟✟ (6.4)

Note that the rank of the su factors above jumps by 6 in the quiver. Again, if the chain ends

on an su4 on the last (−1) curve, there are additional states to the usual bi-fundamentals.

Indeed, we find a half-hypermultiplet in the (6,2) representation, but also a full hypermul-

tiplet in the (4,2) representation at the intersection with the su2 flavor brane. This can be

explicitly verified from its intersection with the su2, which enhances to an e7 singularity in

codimension two, from which we get the two-fold antisymmetric representation required for

anomaly cancellation.

We can also enhance the su2 to an so8, and additionally keep enhancing the su2n+6

factors further, which gives the chain

✶ ✷✷✳ ✳ ✳s�✽ ✁✂✄♥✰☎

✁✂✄♥✁✂✄♥✦☎✁✂✄♥♠✆❞ ☎

(6.5)

Depending on n, the above theory can either end on the broken E-string theory 6 (for n

even), or on a theory with a gauged su2 on the (−1) curve (for n odd). In the latter case,
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there are (2,6) bi-fundamentals hypermultiplets and (8,2) half-hypermultiplets under the

flavor so8, as required by anomalies. As noted, the above chain also includes the enhanced

version of the [SO(8)× SU(4)]/Z2 of theory 6.

We continue with theory 7, where we enhance the so12 factor by setting a4 = uv3+n.

This results in the tensor branch

✶ s�✁✻✰✂♥

✄☎✆✝✞

✟✠✷✱✡✡✡ (6.6)

Enhancing the other flavor group, i.e. the su2 (which is actually a type III singularity) to an

so8+4n, basically results in a theory we have already discussed before in (5.2). Remember,

however, that it is often impossible to enhance multiple flavor factors to arbitrarily high

vanishing order, as this typically leads to non-minimal singularities. A couple of theories

where multiple flavor factors can be enhanced simultaneously (but not necessarily both

indefinitely), are presented in Appendix B.

Another class of models can be obtained by taking theory 1 and enhancing the su2

factor to an so8+4n group. Concretely this is achieved by setting a2 = u2v , a4 = u3v4+n.

This branch is relatively close to the standard conformal matter, but there is also an I1

component intersecting the origin as well, changing the tensor branch in a subtle way,

✶ ✷❡✼ ✸ ✹✶ ✹✶ ✶✳ ✳ ✳ s�✁✂✰✄♥

☎✆✝✞☎✆✝✟☎✆✠ ☎✡☛ ☎✡✝☞✟✌☎✡✝☎✍✟✱✎✎✎

(6.7)

Here, the su2 over the (−2) curve is of type III. Note that for n = 0 the chain terminates

at the so12 factor and for higher n multiple chains of (−1) (−4) curves are appended, as

shown above. It is important to point out that the above type of theories differ from the

standard superconformal matter (see e.g. [30]), which has so2n+1 gauge algebras over the

(−4) curves. The Z2 factor furthermore changes the spectrum with respect to the non-

torsion case, such that with torsion only bi-fundamental matter is present. Note that the

last “bi-fundamental” between the so7 and the su2 factor is in the eight-dimensional spinor

representation of so7 as for the Z2 NHCs above.

Before we continue our discussion with other torsion groups, we want to emphasize

that the tensor branch strongly depends on the form of the additional I1 component. To

illustrate this, consider theory 4 and set a2 = v4. This does not change the flavor algebra at

v = 0. Taking n = 3 or n = 4, corresponding to a4 = u6 or a4 = u7. From the perspective of

the flavor brane, these simply look like an su12 or su14 flavor symmetry intersecting the I1

component and from that perspective one might have expected theories like those presented

in (6.3). However, with this modification, the I1 locus develops a triple-point singularity

for n = 3 and a septuple-point singularity for n = 4 at the origin. As a consequence, the
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tensor branches are actually quite different from (6.2),

1 22 su12

su8su4

4

so8

(6.8)

1 2 2. . .

su10e7

8 su14

su12

2

su2

(6.9)

Indeed, the resulting tensor branches are closer to theories like (6.5) and (5.6), where the so8

or e7 flavor algebra is gauged. More theories of similar type can be found in the Appendix B.

6.1.2 Z3 Torsion: Conformal Matter

F-theory models with Z3 torsion are constructed from the Weierstrass model (A.1b). It is

easy to see that this model only allows fibers of type I3n, IV , and IV ∗,s, which are consistent

with the restricted monodromy.

We start with presenting the Z3 discrete holonomy instanton theories:

Flavor a1 a3

1 [E6 × SU(3)]/Z3 u u2v

2 SU(9)/Z3 u v3

3 [E6 × SU(3)IV ]/Z3 uv u2v

4 [SU(6)× SU(3)IV ]/Z3 u uv2

(6.10)

Note that the last entry above is not a maximal commutant in E8, but can instead be

viewed as originating from a deformed e6 × su3 theory.

Theory 1 is somewhat analogous to theory 1 of the Z2 case. New types of conformal

matter arise from colliding an e6 with an su3n algebra. Setting a1 = u and a3 = u2vn, in

theory 1 leads to theories with a tensor branch

✷ ✳ ✳ ✳❡✻ ✶ ✷ s�✸♥

✁✂✄ ✁✂☎ ✁✂✄✆✦✄

✷ (6.11)

This is similar to the classic e6 × su collision, but the ranks of the gauge algebras on the

tensor branch increase in steps of three. This necessarily had to happen, since they have to

be compatible with the Z3 torsion factor.

Let us move on to theory 2 in the table above and enhance the I9 fiber to an I3n fiber

by setting a1 = u , a3 = vn. From the Weierstrass model

f = 1
48κ1u(−κ3

1u
3 + 24vn) , g = 1

864(κ6
1u

6 − 36κ3
1u

3vn + 216v2n),

∆ = 1
16v

3n(−κ3
1u

3 + 27vn)
(6.12)
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we find that the I1 locus develops a triple-point singularity at the origin for n > 2. Each

blow-up in the base reduces the rank of the gauge algebra over the blow-up divisor by 9,

which results in the tensor branch

2 . . .1 2 su3n

su3n−9su3(nmod 3) su3(nmod 3)+9

(6.13)

The matter sector consists of bi-fundamentals. If there is an su6 factor over the final

(−1) curve, the intersection with the I1 component gives an additional half-hyper in the

20-dimensional triple-antisymmetric representation. To see this note that the su6 divisor

intersects the I1 direction in an e6 point. Similarly, for n = 0 mod 3, the theory has no

gauge group over the (−1) curve, which we identify as the E-string theory where the su9

flavor factor is enhanced further. The three types of theories defined by n = 0, 1, 2 mod 3

are in precise agreement with the constructions found in [48].

Let us continue with theory 3. The flavor algebra at the su3 end can only be enhanced

once by setting a3 = u2vn with n = 0, 1. Higher values of n lead to non-minimal sin-

gularities. For n = 1, we obtain the classical e6 × e6 conformal matter theory discussed

in (5.3). Let us stress at this point that tuning the I1 fiber of the generic model decides

whether we have perturbative matter, or whether the collision of the flavor branes leads

to superconformal matter theories. For example, for a1 = κ with κ ∈ C and a3 = unvm,

we can engineer theories with su3n × su3m groups. The codimension-two vanishing order

at their intersection u = v = 0 is benign (i.e. below (4, 6, 12)) and hence leads to ordinary,

perturbative theories rather than superconformal matter theories. However, by choosing

a1 = κ1u+ κ2v and a3 = unvm the discriminant becomes

∆ = u3nv3m(−κ3
1u

3 − 3κ2
1κ2u

2v − 3κ1κ
2
2uv

2 − κ3
2v

3 + 27unvm) (6.14)

where the collision of the su3n × su3m branes appears at the triple-point singularity of the

I1 factor. There, the singularity enhances to (4, 6, 3(m + n + 1)) if m + n > 2. Blowing

up the intersection point introduces a (−1) curve with an su3(n+m−1) gauge algebra that is

intersected three times by the I1 curve. The tensor branch is given by

✶ s�✸♠s�✸♥

✁✂✄☎✆✰✝✦✄✞

(6.15)

Notably, in the case where the central node has an su6 gauge factor (i.e. for n+m = 5), more

matter is required to cancel the local gauge anomaly. In total we require 15 hypermultiplets

in the fundamental 6 of su6, which arise naturally as bi-fundamentals for the three distinct

combinations of n and m, which have su15 × I1, su12 × su3 and su9 × su6 flavor groups.

In addition, anomaly cancellation requires a half-hyper in the triple-antisymmetric 20 is

required. This can indeed be found by analyzing the discriminant carefully and noting

that over {κ1u+ κ2v = 0} there is a collision with the exceptional divisor, which enhances

the I6 to an e6 singularity. From the branching of the e6 adjoint one finds the triple-

antisymmetric representation as expected. Note that this is the only type of enhancement
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that can produce the required representation while being consistent with the restricted

monodromy. For n+m > 5, further blow-ups are required that lead to the chain

. . . 21 2

su3n

su3m

su3(n+m−3)su3(n+m−6)su3(n+mmod 3)

(6.16)

Notably, this theory has a similar tensor branch structure to the one given in (6.13). Hence it

appears plausible that the theory (6.16) is a deformation of (6.13) which splits the su3(n+m)

flavor algebras into su3m × su3n.

Let us move on to theory 4. While a collision of an I3m with an I3n fiber leads to a

perturbative theory for any n and m, we get superconformal theories if we replace one of

the I3m by an su3 of type IV , which takes us to theory 4. Enhancing the other I3m factor

by setting a3 = uvn, we obtain the Weierstrass function

f = 1
48u

2(−u2 + 24vn) , g = 1
864u

2(u4 − 36u2vn + 216v2n)

∆ = 1
16u

4v3n(−u2 + 27vn) ,
(6.17)

where the I1 component develops a double point singularity at the origin. For n > 2 and

even, the tensor branch is given by

✷ ✳ ✳ ✳✶ ✷ s�✸♥

✁✂✻

✷

✁✂✄☎ ✁✂✆✝✦✻

✞✟✠✱✡❱ (6.18)

where the left-most part is again the Z3 discrete holonomy instanton theory. For n > 2 and

odd, one has

✷ ✳ ✳ ✳✶ ✷ s�✸♥✷

✁✂✄☎✦✻✁✂✄ ✁✂✾ ✁✂✆✝

✞✟✠✱✡❱ (6.19)

Note that the two theories (6.18) and (6.19) could also been obtained by enhancing (6.14),

setting n = 1, and deforming to κ2 = 0. Various other outlier theories can be found in

Appendix B.

6.1.3 Z4 Torsion: Conformal Matter

For Z4 conformal matter we analyze theories whose Weierstrass model is given in (A.1c).

One could have expected to find only groups with a Z4 center. However, this is not the

case: it is also possible to find groups with a Z2 subcenter of the full Z4 as already being

evident for the most generic model, which has an su4 × su2 algebra. Group factors with Z4

and Z2 center also appear when considering the three different discrete holonomy instanton
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configurations

Flavor a1 a2

1 [SU(8)× SU(2)]/Z4 u v2

2 [Spin(10)× SU(4)]/Z4 u uv

3 [SU(4)× SU(4)× SU(2)]/Z4 u+ v uv

(6.20)

We start our discussion by enhancing the su2 flavor algebra in the first discrete holonomy

instanton theory by setting a1 = un. From this, we obtain the following chain of theories

✷ ✳ ✳ ✳✶ ✷✷

s�✁ s�✹ s�✁♥✦✁

✂✄☎✆✂✄✽
(6.21)

If we instead further enhance the su8 flavor symmetry by setting a2 = v2n, we get

✷ ✳ ✳ ✳✶ ✷✷s�✁

✂✄✽ ✂✄✽☎♥✦✆✝✂✄✆✞

s�✟✠ (6.22)

As in the examples above, the jump in the gauge group rank proceeds along the gauge

factor coming from the (broken) flavor theory of the E-string theory. Note that a similar

theory exists when the power of v in a2 is odd, a2 = v2n+1, which leads to

✷ ✳ ✳ ✳✶ ✷ s�✽♥✰✁

s�✁ s�✂✄ s�✽♥✦✁

☎✆✝

✞
✟✭✠✱ ✻✮

(6.23)

The su4 above the (−1) curve next to the su2 flavor algebra comes with a half-hypermultiplet

in the (2,6) representation, as required by anomaly cancellation and consistent with a Z2

center charge. Geometrically, the representation arises from a (2, 3, 7) singularity at the

collision point, which corresponds to an so10 enhancement. This is also consistent with the

full Z4 center. Branching its adjoint into su2 × su4 representations indeed gives rise to the

required representation.

For the second theory in (6.20), one can enhance the su4 factor to su4n by setting

a2 = uvn, which results in the chain

✷ ✳ ✳ ✳✶ ✷✷

s�✹ s�✽ s�✹✁♥✦✂✄

☎✆✝✞☎✟✠✡ (6.24)

Note the order 4 jump in between the su4k factors. Enhancing the so10 side on the other

hand (by setting a1 = un) leads to

✶ s�✹

✁✂♥

✄☎✆✝✰✞✵ (6.25)
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Finally, we consider the third theory in (6.20), which represents the only non-maximal

e8 subgroup with su2
4 × su2 flavor group. Note that this theory can in fact be seen as a

deformation obtained from the Z4 × Z2 discrete holonomy instanton case that we consider

in Section 6.2.2, which reduces the global flavor group by an su2 factor. Starting from that

theory, there is the possibility to either enhance the su4 factors or the su2 factor. The

former case is obtained by setting a2 = unvm and results in

s�✹♥

s�✹♠

s�✷ ✳ ✳ ✳ ✁✶ ✁

✂✄☎✆✝✰✞✦✟✠✂✄☎✆✝✰✞✦☎✠✂✄☎✆✝✰✞✡☛❞✟✠

(6.26)

From a technical point of view, the above chain can be obtained by performing a coordinate

shift after the first blow-up. Setting w = u − v puts the su2 over the toric locus w = 0.

For (n + m) = 1 mod 2, there is again an su4 attached to the su2 flavor factor, with half-

hypers in the (2,6) representation, as required by anomaly cancellation. This is directly

seen by noting that the intersection locus is a (2, 3, 7) singularity and hence yields the

desired representations from the decomposition of the adjoint as argued before. For the

case n+m = 3, one obtains a single su4 gauge algebra on the (−1) curve

s�✹♥

s�✷ ✶

✁✂✄

☎✆✝✞✦✟✠✝
✞✭✡✱ ✻✮

(6.27)

We can also enhance the non-toric su2 flavor group to su2k by setting a1 = (u+ v)k. Note

that the su2 flavor is only modded by a Z2 subgroup of the full Z4. If we enhance this flavor

group further, we obtain the following tensor branch:

✶s�✷♥

s�✹

s�✹

✁✂✄✦☎

✆
✝✭✞✟ ✠ ✞✱ ✻✮

✆
✝ ✭✞✟ ✠ ✞✱ ✻✮

(6.28)

Here, we find collisions of orders (2, 3, 3+2n) where the spn−1 intersects the su4 flavor factors.

Hence, we expect half-hypermultiplets that transform in the two-fold antisymmetric of su4,

consistent with anomaly cancellation. In order to keep the appearing singularities crepantly

resolvable, one cannot enhance the non-toric su2 and the other su4 factors arbitrarily. In

fact, the only consistent configuration where one enhances multiple sides is by setting a1 =
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(u+ v)2 and a2 = uv2 which results in

✶ ✷ s�✽s�✹

s�✹

✁

✂✄☎✂✆✝✞

✶
(6.29)

Note that one can interpret the above configuration in part as theory 2 glued to another

instanton configuration along the so10 algebra, and further enhancing the su4.

Finally we present the possibility to engineer an so10+4n×so10+4m superconformal matter

collision which appeared already in [30]. Our geometric construction shows that the groups

will be modded by a Z4 quotient factor. The theory is obtained by setting a1 = u1+nv1+m

and a2 = uv and reads

✶s�✹♥✰✁✵ s�✹♠✰✁✵

s✂♥✰♠✰✁

(6.30)

This concludes the simple theories which can be obtained by enhancing flavor groups of

Z4 discrete holonomy instanton theories. Various other outlier theories can be found in

Appendix B.

6.1.4 Z5 Torsion: Conformal Matter

Next, we focus on the Z5 torsion model. Monodromies of this type only allow for fibers

of type I5n, i.e. su5n algebras, as one expects from the field theory side. The Weierstrass

model is given in Eqn. (A.1d). The only discrete holonomy instanton theory is

Flavor Group a1 b1

[SU(5)× SU(5)]/Z5 u v
(6.31)

Enhancing one of the su5 flavor factor is the only non-trivial possibility for superconformal

matter of this kind (enhancing both factors simultaneously leads to non-minimal models),

which is obtained by setting a1 = u , b1 = un. This results in a theory with an [SU(5) ×
SU(5n)]/Z5 flavor group. This class is the analog of e8×su superconformal matter restricted

to geometries with a 5-torsion section. Its tensor branch reads

✷ ✳ ✳ ✳✶ ✷✷s�✺ s�✺♥

✁✂✄ ✁✂☎✆ ✁✂✄✝✞✦☎✟

(6.32)

At the end of the chain, we have the regular Z5 discrete holonomy instanton theory. This

class of theories has also been constructed from a field theory perspective in [48].
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6.1.5 Z6 Torsion: Conformal Matter

Finally, the Z6 restricted model given in (A.1e) demands a similarly strong tuning as the

Z5 case, which leads to a single consistent discrete holonomy instanton theory,

Flavor Group a1 b1

[SU(6)× SU(3)× SU(2)]/Z6 u v
(6.33)

Note that there are groups with centers Z2, Z3, and Z6. Since Z6 ' Z2 × Z3, this means

that also subgroups of Z6 appear as centers.

We have the choice to extend the flavor groups of the E-string theory from several

directions, which leaves a chain with jumps in their respective orders. Technically, this is

best achieved by performing a coordinate shift in the above Weierstrass model and then

increasing the vanishing order of the shifted coordinate. Remember that

∆ = 1
224

(3a1 − 5b1)(3a1 + b1)2(a1 + b1)3(a1 − b1)6 . (6.34)

Setting w = a1−b1 = (u−v) and increasing the vanishing order to wn allows us to construct

the chain

✶ ✷ ✷ ✷✳ ✳ ✳

s�✻ s�✁✂ s�✻♥✦✻

✄☎✆✝

✄☎✞

✄☎✸

(6.35)

as was also deduced in [48] from field theory arguments. However, we can also construct

extended chains along other directions: Setting w = a1 + b1 = (u + v) and then sending

w → wn leads to

✶ ✷ ✷ ✷✳ ✳ ✳s�✻ s�✸♥

s�✁

✂✄☎ ✂✄✆ ✂✄☎✝✦☎

(6.36)

while setting w = 3a1 + b1 = (3u+ v) and then increasing the vanishing order to wn gives

✶ ✷ ✷ ✷✳ ✳ ✳s�✻

s�✸

s�✁♥

✂✄☎ ✂✄✹ ✂✄☎✆✦☎

(6.37)

Simultaneous enhancement of two gauge factors will result in non-minimal singularities.
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6.2 Double Factors Theories: Z2 × Z2 , Z2 × Z4 , Z3 × Z3

This section continues the investigation of superconformal matter theories with non-simply-

connected groups that admit two quotient factors. These theories have similar features to

the ones we have already discussed. However, tuning the torsion points severely restricts

the possible breaking patterns of the E-string theory by discrete holonomy instantons.

Moreover, as e.g. in the Z4 case, the center of some of the group factors is only modded out

by a subgroup of the full torsion group.

6.2.1 Z2 × Z2 Torsion: Conformal Matter

Here we summarize the general models with Z2×Z2 torsion given by the Weierstrass models

spelled out in Eqn. (A.1f). These models admit a couple of E8 breaking patterns:

Flavor Group b2 c2

1 [SU(4)2 × SU(2)2]/[Z2 × Z2] u2 v2

2 [Spin(12)× SU(2)2]/[Z2 × Z2] uv v2

3 [Spin(8)× Spin(8)]/[Z2 × Z2] uv 1
2uv

(6.38)

Again, the rank of the resulting gauge algebra factors can be further increased by tuning

higher vanishing orders. Note that the first broken instanton theory carries a Z4×Z2 torsion

factor which we discuss later.18

Enhancing one of the su4 factors to su4n by setting b2 = u2n (or c2 = v2m), we get the

tensor branch

✶ ✷✷ ✷ s�✹♥s�✹

s�✁

✂✄☎ ✂✄☎✆✝✦✞✟

s�✁

✂✄✽

✳ ✳ ✳ (6.39)

This enhancement also preserves the Z4 torsion point, which is why the group symmetry is

modded by the full Z4 × Z2.

This, however, is not the case when enhancing the su4 to an su4n+2 by setting b2 = u2n−1.

In that case, the outer su2 factors do not split anymore but become a single su2 flavor factor.

Moreover, the su4 is folded to an sp2. The rank of the gauge groups on the tensor branch

is still going to jump by steps of four for the su factors, but it ends with an su2 on a (−1)

curve intersecting the su2 and sp2 flavor factor at a double-point singularity. The full tensor

18Indeed, by shifting the coordinates as ũ = 2(u− v), ṽ = 1
2
(u+ v), one obtains the same model from the

Z2 × Z4 torsion model, cf. (6.45).
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branch reads

✶ ✷✷ ✷✳ ✳ ✳

s�✁ s�✻ s�✂✄ s�✹♥✦✁

s�✹♥✰✁

☎✆✝

☎✞✝

✟
✠✭✡✱ ☛✱ ✡✮ (6.40)

Note that similarly, we can enhance the original su2 factors, which yields a similar tensor

branch but only jumps by two in the rank of the su gauge factors.

Turning to the second discrete holonomy instanton theory above, we can further enhance

the so factor by setting c2 = v2+n, which results in theories of the type

✶

s�✷

s�✷

✁✂✄♥

☎✆✽✝✰✞✟ (6.41)

as well as

✶

s�✷♥✰✁

✂✄✽☎✆✝✻

✞✟✠

✞✟✠

(6.42)

Alternatively, we can enhance an su2 factor on the other end and obtain a chain very

similar to that of Z2 matter with modified end part:

✶s�✁✂ ✳ ✳ ✳✷ ✷ ✷

s✄✂

s✄✂♥

☎✆✝ ☎✆✹ ☎✆✝✞✦✝

(6.43)

A tuning that sits in between the second and first E-string theory can be obtained by

using su4 ' so6 and enhance it to an so12×so8+4n×su2 collision by setting b2 = u2v1 , c2 =

ukvn. This, however, cannot be done beyond k = 1, since one eventually ends up with

(4, 6, 12) singularities in codimension one (or (8, 12, 24) singularities in codimension two).

However, one is free to send n to any other value which results in the chain

✶ ✶ ✶s�✁✂ ✸ ✹

✄☎✆✄✝✽ ✄✝✞✟✄☎✞✄✠✟

s✡✂

✹

✄✝✞☛

✳ ✳ ✳ ✶ ✶✹ ☞✌✍♥✰✎

☞✌✍♥✰✍ ☞✏✷♥✰✷☞✏✷♥✰✑

(6.44)
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Note that for n ≤ 1, the additional su2 flavor factor decouples. The so8 on the (−3) curve

is just the Z2 × Z2 NHC as given in (4.27), with three half-hypers in the bi-fundamental

representation of vector, spinor and co-spinor representation, as required by anomaly can-

cellation. The rest of the matter are half-hypers in the bi-fundamental representations.

6.2.2 Z2 × Z4 Torsion: Conformal Matter

The Z2 × Z4 model breaks E8 to [SU(4)2 × SU(2)2]/[Z2 × Z4] generically, which can be

observed in the Weierstrass model given in Eqn. (A.1g). This means that the simplest

discrete holonomy instanton theory is

Flavor Group a1 b1

[SU(4)2 × SU(2)2]/[Z2 × Z4] u v
(6.45)

We can enhance one of the su2 flavor factors by e.g. setting b1 = vn, which results in the

tensor branch

✶ ✷✷ ✷s�✹

s�✁

✳ ✳ ✳ s�✁♥

✂✄☎✆✦☎✂✄☎ ✂✄✝

s�✹

(6.46)

Note that we are not able to simultaneously enhance the second su2 factor in the model

without introducing a codimension-two (8, 12, 24) point at the origin. Alternatively we can

enhance the su4 factor by setting a1 = u , b1 = 1
4(vn + u), which gives an analogous chain

✶ ✷✷ ✷ s�✹♥s�✹

s�✁

✂✄☎ ✂✄☎✆✝✦✞✟

s�✁

✂✄✽

✳ ✳ ✳ (6.47)

6.2.3 Z3 × Z3 Torsion: Conformal Matter

The final model we are discussing preserves two 3-torsion sections and has the restricted

Weierstrass model given in (A.1h). The simplest factorization is also its generic gauge group

in a compact setup, which is identical to the associated discrete holonomy instanton theory

Flavor Group a1 b1

SU(3)4/[Z3 × Z3] u v
(6.48)
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We can now increase the rank of any of the su3 algebras. Since the b1 locus is toric, it is

easiest to set b1 = vn. From this, we obtain the analog of the E8−A superconformal matter

theory for this restricted monodromy, with tensor branch

✶ ✷✷ ✷✳ ✳ ✳

s�✸

s�✸♥

✁✂✄☎✦✄✁✂✄ ✁✂✻

s�✸

s�✸

(6.49)

Enhancing more than one su3 factor leads to non-minimal singularities.

6.3 Construction of General SCFTs with Torsion

With the above building blocks at hand we can outline the construction of general 6d SCFTs

with Mordell-Weil torsion along the lines of [42]19. This constructive approach proceeds in

two steps.

First, one performs a fission process for which one switches on relevant deformations

that trigger an RG flow. These deformations can have two effects:

1. They deform the gauge and flavor algebras on the tensor branch.

2. They can lead to a flow in which one of the curves of negative self-intersection. de-

compactifies.

Concerning effect 1, we have already seen in Section 3 that the deformations which modify

the group structure are restricted to a subclass by a non-trivial Mordell-Weil torsion. Ef-

fect 2 might split the compact part of the geometry in two pieces and is not problematic

from the point of view of the global group structure: the resulting disconnected parts all

respect the restricted Weierstrass form and consequently the action of T is preserved.

Second, one performs a fusion operation which connects two previously disconnected

parts, either via a (−1) curve or by gauging a common flavor group factor in the UV. This

step is more problematic in the presence of Mordell-Weil torsion, since the gauging has to

be performed in a way that is compatible with the global group structure. Having multiple

parts with respective torsional groups Ti, a fusion operation can only preserve the maximal

common subgroup. Even if there is a non-trivial common subgroup, the fusion process still

has to be performed in a torsion-preserving way, since otherwise the torsional part is lost in

the process. This can be easily understood in terms of the restricted monodromies in models

with Mordell-Weil torsion. The individual pieces before the fusion process only allow for

monodromies in certain subgroups of SL(2,Z). After the fusion process, all monodromies

appear in the same configuration and one might find a different subgroup of SL(2,Z) or even

the full duality group. The torsion of the fusion product accordingly preserves or destroys

the torsional sections of the individual pieces.

19In contrast to the torsion models, progenitor theories have an E8 flavor group factor with trivial center.
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We want to demonstrate the above considerations in two relatively simple examples.

The first possibility for a fusion process is to connect two distinct pieces via a curve with

self-intersection (−1). For that consider for example the Z2 × Z2 NHC on a (−4) curve

and the Z2 two-curve cluster. Connecting the two pieces via the exceptional curve will at

least break the torsion group to the maximal common subgroup Z2. Indeed, we see that the

fusion product can actually be identified with the resolved Z2 three curve cluster in (4.21).

✸ ✷

s�✁✱✂✂✂s✄✼s✄✽

✹ ✶

☎✆✝

s✄✽

✹ ✸ ✷

s�✁✱✂✂✂s✄✼

☎✆✝

(6.50)

This shows that the fusion process can in fact preserve the Z2 torsion.

The second way to connect disconnected theories is by gauging a common flavor sym-

metry. If the individual parts do contain compatible torsion sections, this gauging of the

flavor symmetry can be performed in a way to retain at least part of the torsion group.

As an example, consider a fission product of the Z3 × Z3 theory given in (6.49) derived

from decompactifying the first (−2) curve and the Z3 discrete holonomy instanton theory.

Gauging the two su3 flavor algebras one finds

✷ ✷✳ ✳ ✳ s�✸♥

✁✂✄☎✦✄✁✂✻

s�✸

✷ ✳ ✳ ✳❡✆ ✶ ✷ s�✸♥

✝✞✟ ✝✞✠ ✝✞✟✡☛✟

✷

❡✆ ✶ s�✸

(6.51)

which is identical to the Z3 theory (6.11) and shows that a torsional Z3 subgroup can be

preserved in the fusion process.

7 Conclusion and Outlook

In this article we construct a wide range of 6D SCFTs with non-simply connected non-

Abelian flavor groups by tuning the geometry in an F-theory setup. The tensor branch of

these theories inherits this non-simply-connected structure.

In more detail, we proceed by analyzing singular non-compact Calabi-Yau 3-folds which

are elliptically-fibered with extra torsional sections. These models feature a non-trivial,

finite Mordell-Weil group T . The construction restricts the full SL(2,Z) duality of type IIB

string theory to a congruence subgroup. As a consequence, not all (p, q) 7-branes are allowed
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and the flavor and gauge groups of the models are constrained. Moreover, the Mordell-Weil

torsion mods out a part of the center of the simply-connected cover G = G∗/T . This restricts

the possible flavor and gauge groups to those Lie groups whose center admit an action of

T , or a subgroup thereof.

Within this set of restricted Weierstrass models, we construct the essential building

blocks for 6d SCFTs and their tensor branches for all possible T . We start by analyzing

non-Higgsable clusters with Mordell-Weil torsion. Many of the original gauge algebras

of [29] on curves with negative self-intersection need to be enhanced in order to respect the

global group structure. This enhancement is automatic once we restrict the geometry such

that the elliptic fibration has Mordell-Weil torsion.

We then turn to the E-string theory in the presence of Mordell-Weil torsion, which can be

interpreted as theories with discrete holonomy instanton in the heterotic/M-theory frame-

work. These theories result in flavor groups which are subgroups of E8 with an associated

action of T as described above.

Finally, we investigate the collision of two non-compact components of the discriminant

locus which lead to non-minimal singularities in codimension two, also known as super-

conformal matter theories. The non-trivial group T imposes strong restrictions on the

realization of the tensor branch as well as the deformations of this class of theories. This

results in important differences for theories with the same flavor algebra but different flavor

group. We further confirm some field theoretic constructions in [48] as a subclass of models

derived in this way and complement the explicit geometric construction. We observe that

singularities of vanishing order (8, 12, 24) (or worse) in codimension two often appear when

trying to enhance flavor group factors. If blown up, such singularities lead to (4, 6, 12)

singularities in codimension one over the blow-up divisor. Interestingly, in many cases col-

liding two flavor groups looks benign. However, after blowing up the collision, we find that

(8, 12, 24) singularities appear between the blown up divisor and one of the flavor group

factors.

There are several interesting avenues to pursue further. In Section 3 we already hinted

at the modifications of allowed deformations and RG flows in the presence of Mordell-Weil

torsion. It would be interesting to explore these ideas and obtain a complete network of 6d

SCFTs with torsion. Beside the techniques employed in [39, 41, 42], an alternative approach

to classify the deformations associated to T-brane data is via (p, q) string junctions, see e.g.

[76], which can also be utilized in geometries with restricted monodromies, i.e. Mordell-Weil

torsion.

We also suggested an M-theory interpretation of models with non-trivial torsion in

Section 3. Exploring this further would not only shed some light on the M-theory picture

of the group structure in 6d SCFTs, but on M-theory models in general. The appearance

of fractional fluxes might further elucidate the interplay between the gauge group of the 7d

super-Yang-Mills theory on an ADE-singularity and the worldvolume theory of M5-branes

probing it, with possible effects in holographic descriptions. Compactifying the resulting

6d theories leads to additional possibilities in the flavor backgrounds due to the global

group structure. An investigation involving these might reveal further structure in the

lower-dimensional superconformal field theories, as discussed e.g. in [48].
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Of course another way to investigate the implications of the global group structure in

M-theory is to use M-/F-theory duality. For that one compactifies the 6d model F-theory

model on a circle (including possible twists), and deforms the 5d theory onto the Coulomb

branch [16–18]. It is suggestive that the modification of the group structure in the 6d setup

also affects the allowed twists and resulting 5d theories.

Beyond this, a pure 5d approach to M-theory on elliptically-fibered Calabi-Yau 3-fold

with torsion, similar to [69–71], could be used to study possible effects of restrictions imposed

by the presence of torsional sections. In this way, one can fully benefit from the power-

ful geometrical F-theory construction of 6d SCFTs acting as seeds for lower-dimensional

theories via compactification.

Furthermore, the explicit geometries of this work can serve as a starting point for the

constructions of various other theories in six and lower dimensions. One promising direction,

presented in [43, 77] is to combine the fiber translation encoded in the finite Mordell-Weil

group with an automorphism in the base. This allows to combine quotients in the base,

such as in [78], with a non-trivial action on the fiber to obtain new smooth local Calabi-Yau

quotients, with new F- and M-theory duals.

Finally, a full classification of non-simply-connected flavor groups also includes addi-

tional U(1) factors in the flavor sector. In [33], it was shown that these do not necessarily

originate from the free part of the Mordell-Weil group, but can descend from deformed

non-Abelian symmetries. In our analysis we often found additional I1 loci whose tuning

strongly influenced the overall tensor branch structure. It is tempting to connect these I1

singularities of the fiber, or combinations thereof dictated by their ABJ anomalies, to the

additional Abelian flavor factors. Since these also contribute to the group structure, their

inclusion might increase the allowed possibilities. Moreover, they impact the embedding of

the discrete torsion group T into G∗.
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A Enhanced Weierstrass Models

In this appendix we list the specific factorizations of the Weierstrass coefficients that ensure

the presence of torsional sections. We then further discuss the possibility to enhance the

Mordell-Weil torsion by further tunings.

A.1 Weierstrass Models with Mordell-Weil Torsion

The enhanced Weierstrass models for all allowed torsion groups are given by

Z2 : f = a4 − 1
3a

2
2 , g = 1

27a2(2a2
2 − 9a4) , ∆ = a2

4(4a4 − a2
2) , (A.1a)
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Z3 : f = 1
2a1a3 − 1

48a
4
1 , g = 1

4a
2
3 + 1

864a
6
1 − 1

24a
3
1a3 ,

∆ = 1
16a

3
3(27a3 − a3

1) , (A.1b)

Z4 : f = − 1
48a

4
1 + 1

3a
2
1a2 − 1

3a
2
2 , g = 1

864

(
a2

1 − 8a2

)(
a4

1 − 16a2
1a2 − 8a2

2

)
,

∆ = − 1
16a

2
1a

4
2

(
a2

1 − 16a2

)
, (A.1c)

Z5 : f = 1
48(−a4

1 − 8a3
1b1 + 16a2

2b
2
1 + 8a1b

3
1 − 16b41) ,

g = 1
864(a2

1 − 2a1b1 + 2b21)(a4
1 + 14a3

1b1 + 26a2
1b

2
1 − 116a1b

3
1 + 76b41) ,

∆ = 1
16(a1 − b1)5b51(a2

1 + 9a1b1 − 11b21) , (A.1d)

Z6 : f = 1
192b1(3a3

1 − 3a2
1b1 − 3a1b

2
1 − b31) ,

g = 1
21233

(3a2
1 − 6a1b1 − b21)(9a4

1 − 6a2
1b

2
1 − 24a1b

3
1 − 11b41) ,

∆ = 1
224

(3a1 − 5b1)(3a1 + b1)2(a1 + b1)3(a1 − b1)6 , (A.1e)

Z2 × Z2 : f = 1
3(b2c2 − b22 − c2

2) , g = − 1
27(b2 + c2)(b2 − 2c2)(2b2 − c2) ,

∆ = −b22c2
2(b2 − c2)2 , (A.1f)

Z2 × Z4 : f = − 1
768a

4
1 − 7/24a2

1b
2
1 − 1/3b41 ,

g = 1
21133

(a2
1 + 16b21)(a2

1 − 24a1b1 + 16b21)(a2
1 + 24a1b1 + 16b21) ,

∆ = − 1
216
a2

1b
2
1(a1 − 4b1)4(a1 + 4b1)4 , (A.1g)

Z3 × Z3 : f = − 1
48a1(a1 − 2b1)(a1 − 2ωb1)(a1 − 2ω2b1) ,

g = 1
864(a2

1 + 2a1b1 − 2b21)(a2
1 + 2ωa1b1 − 2ω2b21)(a2

1 + 2ω2a1b1 − 2ωb21) ,

∆ = 1
432(a1 + b1)3(a1 + ωb1)3(a1 + ω2b1)3b31 , (A.1h)

where ω corresponds to a non-trivial cube-root of unity and the index of the coefficients

ai, bi, ci indicates the degree in terms of the anti-canonical class of the base, i.e. an ∼ −nK.

A.2 Torsion Enhancements

Next, we discus factorizations that enhance the torsion in the enhanced Weierstrass models.

In Table 5, we have determined all tunings that further enhance the torsion. Read in

reverse, this can also be understood as deformations (such as Higgsing) that preserve a

certain subgroup of the initial torsion.

Models with Z2, Z3, and Z2×Z2 torsion admit a tuning f ≡ 0 or g ≡ 0 while preserving

the torsion points. Those configurations have a constant J-invariant and are hence strongly

coupled. The allowed tunings are

Factor Tuning f g ∆

Z2 a4 = a2
2/3 0 −(a3

2/27) a6
2/27

Z2 a4 = (2a2
2)/9 −(a2

2/9) 0 −((4a6
2)/729)

Z2 × Z2 b2 = −e(2πi/3)c2 0 −i/(3
√

3)c3
2 −c6

2

Z2 × Z2 b2 = −c2 −c2
2 0 −4c6

2

Z3 a1 = 0 0 a2
3/4 (27a4

3)/16

(A.2)
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❩✹ ❩✷ ❩✻ ❩✸ ❩✺

❩✹ ✂ ❩✷ ❩✷ ✂ ❩✷ ❩✸ ✂ ❩✸

start torsion tuned torsion tuning

Z2 Z4
a2 →

a21
4 − 2ã2 ,

a4 → ã2
2

Z2 Z6
a2 → 1

16(b21 + 6a1b1 − 3a2
1) ,

a4 → 1
256(a1 − b1)3(3a1 + b1)

Z2 Z2 × Z2
a2 → −b2 + 2c2 ,

a4 → −b2c2 + c2
2

Z2 Z2 × Z4
a2 → 1

16(a2
1 − 24a1b1 + 16b21) ,

a4 → − 1
16a1b1(a1 − 4b1)2

Z3 Z6
a1 → b1

a3 → 1
32(ã1 − b1)2(ã1 + b1)

Z3 Z3 × Z3

a1 → i
√

3 ã1

a3 → − i
3
√

3
(ã3

1 + b31)

Z4 Z2 × Z4
a1 → −4ib1

a2 → 1
16(a2

1 − 16b21)

Z2 × Z2 Z2 × Z4
b2 → a1b1

c2 → − 1
16(a1 − 4b1)2

Table 5: Chain of torsion enhancements and their explicit globally defined Weierstrass
tunings.
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Note that the models in line 1 and 3 become identical, as do the models in line 2 and 4.

The Z3 model has a type IV fiber with vanishing orders (∞, 2, 4), whereas all other

models have a type I∗,s0 fiber. The latter are very restricted and only allow for very few

further specializations. These include so8× so8 collisions which can be resolved by a simple

(−1) curve, or by having a more general polynomial Ansatz

a2 = (u− κ1v)(u− κ2v)(u− κ3v) , (A.3)

with κ ∈ C. This geometry has an so3
8 flavor algebra. Resolving the collision requires three

exceptional divisors resulting in

s�✽

✹ ✶✶

✶

✁✂✄ ✁✂✄

✁✂✄

(A.4)

The Z3 case allows the collision of even more components of the discriminant locus at

the origin. The maximal singularity is achieved for the collision of five type IV fibers, for

a3 =
5∏
i

(u− κiv) . (A.5)

The first blow-up yields an e6 gauge factor. A smooth base requires five more blow-ups and

the final configuration is given by

✶

✻

❡�

✶

✶✶

✶

s✁✸✱✂❱s✁✸✱✂❱

s✁✸✱✂❱

s✁✸✱✂❱

s✁✸✱✂❱

(A.6)

Alternatively, one can replace two of the su3,IV with one e6 flavor algebra. Technically this

is done by setting some of the parameters κi in (A.5) to zero. Two possibles configurations
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can be generated in this way

✶

✻

❡�

✶✶

✶

✶

✁✂

✸

s✄☎✱✆❱

s✄☎✱✆❱s✄☎✱✆❱

s✄☎✱✆❱

✻

❡�

✶✶

✶

✸✸✶ ✶ ✁✂✁✂

s✄☎✱✆❱s✄☎✱✆❱

s✄☎✱✆❱

(A.7)

where the flavor symmetry contains one and two e6 factors, respectively.

B Outlier Theories

Z2 outlier theories

A simple class of outlier theories can be constructed by tuning the I1 locus such that it

has a double- or triple-point singularity at the origin. This increases a regular collision

to a singularity with vanishing order ≥ (4, 6, 12) in codimension two and hence enhances

singularities that would have had perturbative matter to require a blow-up at the origin

and hence lead to superconformal matter. This has already been encountered in (6.13) in

Section 6.1.2 for Z3 torsion models. Here, we use the tuning a4 = unvm and a2 = κ, which

results in su2n×su2m flavor algebras with perturbative bi-fundamental matter at the origin.

Setting a2 = κ1u+κ2v, the su2n and su2m factors reduce to spn×spm and their intersection

is of so type i.e. (2, 3, 2(n + m + 1)); this still results in perturbative matter. However,

setting a2 to a generic quadratic polynomial, a2 = κ1u
2 +κ2v

2 +κ3uv, leads back to an sun
flavor group, but with a non-minimal collision. The tensor branch is given as

1su2n su2m

sp
n+m−4

(B.1)

Notably, if n + m = 4 the (−1) curve is has no gauge algebra and we obtain a discrete

holonomy instanton theory. Similarly, if we choose a2 = κ1u
3 + κ2v

3 + κ3uv
2 + κ4u

2v, the

flavor factors become spn factors again, but with a non-minimal collision giving rise to

1sp
n

sp
m

so4(n+m−4)

(B.2)
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in cases with n+m ≥ 7. For the lower cases we find

n+m gauge symmetry

≤ 3 no blowup
4 ∅
5 su2,III

6 so7

(B.3)

In the following we continue the systematic enhancement of E-string theories. They all

feature an additional monodromy that folds the outer flavor group to a non-simply laced

version. We start with E-string theory 8 of Table (6.1) with flavor group Sp(4)/Z2 and

enhance it by setting a2 = u3 and a4 = vn. For n ∈ {4, 5, 6, 7}, this leads to the following

tensor branches:

1 1 1 1

su2,III so12

sp4 sp5 sp6 sp7

so7

3

2
32(2,10) 1

2
(8,12) 1

2
(12,14)2× 7

(B.4)

The first case is the discrete holonomy instanton theory with no gauge group. In the

sp5 case there are bi-fundamentals of the su2. Also note that one would expect an ad-

ditional sp2 flavor factor [25], which we do not see geometrically realized. There are two

singular I1 components thought that intersect the (−1) curve. In the last case, we find bi-

fundamental half-hypermultiplets in the (12,14) representation, but in addition we expect

three half-hypers in the spinor representation of so12. These arise from an e7 enhancement

of multiplicity three at the codimension two locus u = e1 = 0. Note that this is consistent

if one assumes that the gauge group is Spin(12)/Z2 where the Z2 is identified with the Z2

factor in the Z2 × Z2 center of Spin(12) that acts trivially on the spinor representation.

The chain above can in fact be increased up to sp11 factors by increasing n up to 11.

However, at this point, the chain starts introducing multiple gauge factors:

1 sp82 2 4

so16

(B.5)

12 2 4 sp9

so20sp3su2,III so7

1

2
(2,8) 1

2
(8,6)7

(B.6)

1 4

so16

sp101 414 3

so8 sp2 sp6 so24

1

2
(8,4)

so7

(B.7)
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4 sp11. . .414

so28so16sp3

11

sp1e7 so12

8 2 3

su2,III so7

1

2
(2,8) 1

2
(8,2)

(B.8)

We continue with the discrete holonomy instanton theory 9 with [SU(2)III × Sp(3)]/Z2

flavor group and continue enhancing the symplectic factor to an sp3+n by setting a2 = u3

and a4 = uv3+n. At the same time the I1 component in the discriminant, which is of the

form I1 = u5 + v3+2n, enhances as well. For n > 6, one finds a non-crepantly resolvable

singularity. Each chain is slightly different, given by the following tensor branches

1su2,III

su2,III

sp
4

(2,2) (2,6)

(B.9)

1su2,III sp5

so7

1

2
(2,8) 1

2
(8,10)2× 7

(B.10)

su2,III 1 2 sp6

so12

1

2
(12,12)32

(B.11)

su2,III 12 2 4 sp7

su2,III su2,III su2 so16

(2,2) 1

2
(2,16)

(B.12)

su2,III 12 4

su2,IIIso7

3

so12 sp4 so20

sp81 4
(B.13)

su2,III 1 43 1 41 1 2 1 4 1 48 sp9

e7 so7su2 sp1 so12 so16 so20 so24sp3 sp5 sp7

(B.14)

Next, we reconsider the discrete holonomy instanton theory 1 with [E7×SU(2)]/Z2 flavor

symmetry. For those theories we can enhance the su2 flavor factor further to spn by setting

a2 = u3 and a4 = u3vn with n ≤ 5 to avoid non-minimal singularities,

1e7 sp1 (B.15)
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1e7 sp22

su2,III

(2,4)

(B.16)

1e7 2

su2,III

2

so7

sp3

1

2
(2,8) 1

2
(8,6)7

(B.17)

1e7

su2,III

2

so7

2 sp443 1

su2,III so12

(B.18)

1e7

su2,III

2

so7

23 1

su2,III

1 2 3 1 4 1 48

so7su2,III sp1 so12 so16sp3

sp5

e7

(B.19)

Let us next illustrate the importance of the exact form of the I1 locus for the tensor

branch. For that consider the family of models with tuning a2 = u3+2n and a4 = u3v3 with

n = 0, 1, 2. Those three theories all have an e7 collision with an sp3 flavor brane, but all

lead to different tensor branches:

❡✼ ✶ ✷

s�✁✱✂✂✂

✷

s✄☎

✆✝✸
(B.20)

❡✼ ✶ ✷

s�✁✱✂✂✂ s✄☎

✆✝✸✶✞

s�✁✱✂✂✂

(B.21)

❡✼ ✶ ✷

s�✁✱✂✂✂ s✄☎

✆✝✸✶✞

s�✁✱✂✂✂

✷ (B.22)

Finally, we consider the discrete holonomy instanton theory 10 with [Spin(8)×Sp(2)]/Z2

flavor group, given by the factorization a2 = u3 and a4 = u2v2, and enhance the Sp(2) side

to Sp(n) by setting a4 = u2vn. This chain is bounded by n ≤ 7 in order to admit crepant

resolutions. The flavor algebra further depends on whether n is even or odd. For n even,

the flavor so7 algebra enhances to an so8 factor, leading to the chains

1 2

so7

so8 sp4

1

2
(8,8)7

(B.23)
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1

so7

so8 1 134 4

so8 sp2 so16

sp6

1

2
(8,4)

(B.24)

For n odd, we get the three theories

1so7 sp3

su2,III

1

2
(8,2) (2,6)

(B.25)

so7

su2,III

sp52 1 3

so12

1

2
(8,2) 1

2
(12,10)1

2
32

(B.26)

so7

su2,III

2 1

so12

1 38 2

su2,III

1 4 1 4 1 4 sp7

e7 so7 sp1 sp3 sp5so16 so20

(B.27)

Z3 outlier theories

In this section we study the factorization of an su3n flavor algebra into three different pieces.

This is enforced by setting

a1 → u , a3 → (u+ v)k(u− v)l(c1u+ c2v)m . (B.28)

The model is an [SU(3k)× SU(3l)× SU(3m)]/Z3 theory with all groups intersecting at the

origin. After blowing up in the base, we get an su3(k+l+m−3) gauge symmetry over the (−1)

curve and bi-fundamental matter at the intersections with the three flavor branes.

1su3k

su3l

su3m

su3(k+l+m−3)

(B.29)

In case that k + l + m = 2, there is an su6 gauge algebra found on the (−1) curve that

introduces an additional half-hyper in the triple anti-symmetric representation. If k + l +

m > 3, we need to perform additional blow-ups until we end on a (−1) curve with an
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su3(k+l+m mod 3) factor:

1 2. . . 2

su3k

su3l

su3m

su3(k+l+m−3)su3(k+l+m−6)su3(k+l+mmod 3)

(B.30)

As before, the above theory has a similar tensor branch structure as e.g. (6.13) and (6.16).

Therefore, we might expect that theory (B.30) can be understood as a deformation of these

theories.

Z4 outlier theories

In this section we consider theories of type [Spin(10 + 4n)×SU(4)]/Z4 and enhance the su4

to su8 via the factorization a1 → u1+n , a2 → uv2. This modifies the tensor branch to

✳ ✳ ✳ ✹✶✹✶ ✷s�✁♥✰✂✵

s�✁♥✰✄s☎✆♥ s☎✆♥✦✆ ✝✞✟✠

✶

✝✡☛

☞✌✽
(B.31)

Note that if n > 1, one cannot enhance the su4 higher than su8, since one would

encounters (8, 12, 24) singularities in codimension two. The structure of the tensor branch

includes the superconformal matter theories of so10+4m×so10+4n type, as well as the discrete

holonomy instanton theory of type [Spin(10)× SU(4)]/Z4 at the end. Note that the above

theory can also be enhanced to [Spin(10)×SU(12)]/Z4 (but not further) by setting a1 = u1

and a2 = uv3, with the tensor branch

1 2

su4

2 su12so10

su8

(B.32)

Finally, we can turn the so10 flavor algebra into sp2 by setting a1 = u2 and a2 = v2. The

tensor branch then reads

✶✹ ✷✷ s�✁✂

✄☎✽✄☎✆✄✝✞✟

s✠✂
(B.33)

Any further enhancement on either the sp2 or su12 side would lead to non-crepantly resolv-

able singularities.
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Z2 × Z2 outlier theories

We start by enhancing so12 to so16 in the discrete holonomy instanton theory 2 by setting

b1 = uv and c1 = v3. This leads to the tensor branch

✶

s�✁

s✂✁✄

s�✁

☎✆✝

(B.34)

When one of the sp flavor factor is further enhanced, we obtain

1 2so16 sp2

sp2 so8

su2

su2

(B.35)

as well as

✶ ✶ ✶✹ ✸s�✁✂ s✄☎

s✄✁

✹

✆✝✞ ✆✝✟✆✠✟✡ ✆✠✽✆✝✟ ✆✠✟✡

(B.36)

For tunings of the type b2 = un and c2 = vm there are a couple of models that have not yet

been discussed for values n+m < 9 and n > 2. In the following, we fix n = 3. For m = 3,

we find

✶s�✁

s�✁

s�✁

✂✄✽

s�✸

s�✸

(B.37)

The model has the special property that its sp1 locus is of the form z = u3 − v3, i.e. it

is reducible and can be reduced into three different pieces. Upon blow-up, all components

intersect the (−1) curve that hosts the so8 at different points. This contributes the three

spinor, vector and co-spinor representations required from anomaly cancellation. The flavor

symmetry is the same as the one found in [25].
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For m = 4, 5 we obtain the following two theories

✶✹

s�✁

s�✂ s✄✻✷

☎✆✝ ☎✆✞☎✟✠✝

✷
(B.38)

and

14

sp1

so12

sp5 sp3

so16 sp3 sp1

44 1 1

sp1 so12so8

3
(B.39)

Z2 × Z4 outlier theories

The outlier theories we consider here start from the [SU(4)2×SU(2)2]/[Z2×Z4] theory. We

enhance the flavor su2n algebra to su2n × su2m by setting

a1 → (u+ v)n(u− v)m , b1 → v . (B.40)

Hence, there are five flavor factors in total, all intersecting at the origin. The resulting

tensor branch is

22 2

su2

. . .1

su4

su4

su2m

su2nsu2 su4 su2(n+m−1)

(B.41)

A similar factorization can be done for the su4 part, leading to a similar chain but with

jumps by multiples of four in the rank of the gauge group on the tensor branch. Again, we

note that the above tuning looks very similar to the theories constructed from an [SU(4)2×
SU(2)×SU(2k)]/[Z2×Z4] theory with k = n+m as shown in (6.46). Hence, its is conceivable

that these theories arise from a deformation of the theory with su2(n+m) flavor algebra.

Z3 × Z3 outlier theories

The only simple outlier theories we can construct here come from further factorizing the

components of the su3n loci as

a1 = u , b1 = (u− v)m(u− ωv)n(u− ω2v)k(u+ v)l , (B.42)
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which results in splitting the toric su3(m+n+k+l) locus into four individual blocks that all

intersect at the origin. This is reflected in the tensor branch, where all four loci intersect

the first resolution divisor, while the other three su3 factors sit at the final (−1) curve:

✶ ✷✷ ✷✳ ✳ ✳

s�✸
✁✂✄ ✁✂✻

s�✸

s�✸

s�✸♥

s�✸♠

s�✸❧

s�✸❦

☎✆✝✞✟✰✠✰✡✰☛✮✦✝

(B.43)

The picture is very similar to the cases we had e.g. in the Z2×Z4 case in the section before.

Hence also in this case we might expect the four flavor factors on the right to arise as a

deformation of an su3(n+m+l+l) theory.

C Higher Order Torsion

Throughout the paper we have worked with Weierstrass models whose torsion groups can

appear in global models. However, it is also possible to construct higher order torsion

models which are only consistent with non-compact 3-fold geometries. We construct one

such quiver-like gauge theory with higher torsion that can flow to a non-trivial SCFT in

the IR. For this we use a Z7 model over F0 ≡ P1
s × P1

t [37], given by

y2 + (s0s1t0t1 + (s0t0 − s1t1)(2s1t1 − s0t0))xy + s0s
3
1t0t

3
1(s0t0 − 2s1t1)(s1t1 − s0t0)y

= x3 + s2
1t

2
1(s0t0 − 2s1t1)(s1t1 − s0t0)x2 . (C.1)

The model has two (8, 12, 24) singularities over the loci s0 = t1 = 0 and s1 = t0 = 0.

However, we ignore these points for now, decompactify the two P1 factors to C2, and set

the coordinates s1 and t1 to one. The discriminant of the Weierstrass model then becomes

∆ = 1
6s

7
0t

7
0(s0t0 − 1)7(1− 8s0t0 + 5s2

0t
2
0 + s3

0t
3
0) . (C.2)

Note that the (8, 12, 24) singularities have been pushed off to infinity and the resulting

model is crepantly resolvable. Moreover, since the local coordinates always appear in the

combination s0t0, we can add to this model a Zn singularity at the origin via the action

(s0, t0) → (e2πi/ns0, e
−2πi/nt0) . (C.3)

Resolving the geometry with a chain of n − 1 exceptional divisors {ei = 0} leads to the

discriminant

∆ = 1
6e

7s7
0t

7
0

(
s0t0e− 1

)7(
1− 8s0t0e+ 5s2

0t
2
0e

2 + s3
0t

3
0e

3
)
. (C.4)
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with e =
∏n−1
i ei. The tensor branch is given by

2 22 2. . .su7

su7 su7 su7 su7

su7
(C.5)

with bi-fundamental matter between adjacent symmetry group factors.
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