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Abstract A partial wave analysis of antiproton–proton
annihilation data in flight at 900 MeV/c into π0π0η, π0ηη

and K+K−π0 is presented. The data were taken at LEAR
by the Crystal Barrel experiment in 1996. The three chan-
nels have been coupled together with ππ -scattering isospin
I = 0 S- and D-wave as well as I = 1 P-wave data utilizing
the K-matrix approach. Analyticity is treated using Chew–
Mandelstam functions. In the fit all ingredients of the K-
matrix, including resonance masses and widths, were treated
as free parameters. In spite of the large number of parame-
ters, the fit results are in the ballpark of the values published
by the Particle Data Group. In the channel π0π0η a signif-
icant contribution of the spin exotic I G = 1− J PC = 1−+
π1-wave with a coupling to π0η is observed. Furthermore the
contributions of φ(1020)π0 and K ∗(892)±K∓ in the chan-
nel K+K−π0 have been studied in detail. The differential
production cross section for the two reactions and the spin-
density-matrix elements for the φ(1020) and K ∗(892)± have
been extracted. No spin-alignment is observed for both vec-
tor mesons. The spin density matrix elements have been also
determined for the spin exotic wave.

Electronic supplementary material The online version of this
article (https://doi.org/10.1140/epjc/s10052-020-7930-x) contains
supplementary material, which is available to authorized users.
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1 Introduction

Two decades ago p̄ p annihilation data in flight from the Crys-
tal Barrel experiment have already been analyzed by com-
bining different channels [1,2]. Such an approach provides
good means to face the challenges related to the large number
of possible initial p̄ p states and of overlapping resonances
with the same quantum numbers in the light meson sector.
The most important advantages compared to single channel
fits are the ability to provide additional constraints by shar-
ing common production amplitudes over different channels
and to describe the dynamical parts in a more sophisticated
way so that the conservation of unitarity and analyticity is
better fulfilled. During the last years lots of efforts have been
put into a better understanding of the ππ -scattering waves.
By considering dispersion relations and crossing symme-
tries the phase shifts and inelasticities for energies below√
s < 1.425 GeV/c2 can be now described very pre-

cisely [3] and have been taken into account in this analysis.
In addition over the last two decades the computing power
has improved dramatically so that nowadays more extensive
coupled channel analyses can be performed on a reasonable
time scale. The reanalysis of the Crystal Barrel data in com-
bination with ππ -scattering data therefore helps to better
understand the production mechanism of light meson states
in the p̄ p annihilation process.
The p̄ p data presented here have been measured by the
Crystal Barrel experiment at LEAR (Low Energy Antipro-
ton Ring) in the year 1996. The analysis has been performed
with PAWIAN (PArtial Wave Interactive ANalysis), a pow-
erful, user-friendly and highly modular partial wave analysis
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software package with the ability to support single and cou-
pled channel fits with data obtained from different hadron
spectroscopy experiments [4]. The analysis of the channels
p̄ p → π0π0η, π0ηη and K+K−π0 at a beam momen-
tum of 900 MeV/c coupled together with ππ scattering data
could be considerably improved compared to previous anal-
yses [1,2,5,6] with emphasis on the following aspects:

• The three channels are dominated by f0 and f2 reso-
nances decaying to π0π0, ηη and K+K−, respectively.
The goal therefore is to determine the pole positions prop-
erly and to some extent the partial widths of these res-
onances utilizing the K-matrix technique with P-vector
approach. The fundamental requirements of unitarity and
analyticity are realized by making use of Chew–Mandel-
stam functions proposed by [7,8]. The advantage of this
description is that the search for resonances and the deter-
mination of their properties is not limited to the real axis
of the complex energy plane where the data are located.
Instead, it is possible to investigate the analytic structure
over the full complex energy plane.

• The channel K+K−π0 is of special interest. Only by
coupling it to the other two channels it is feasible to dis-
entangle the f J and aJ resonance contributions decaying
to K+K−. This is possible because the π0π0η channel
contains only the production amplitudes for the reactions
p̄ p→ aJπ0 and the π0ηη channel only the amplitudes
for p̄ p→ f Jπ0. By sharing these production amplitudes
and by constraining in addition the ρπ0 contribution with
I = 1 P-wave ππ -scattering data the decays proceeding
via φ(1020)π0 and K ∗(892)±K∓ can be well extracted.
Based on the fitted amplitudes the spin density matrix
(SDM) elements for the two vector mesons φ(1020)

and K ∗(892)± can be determined which provide the
full information on the underlying production process.
The comparison with the ω production in the channel
p̄ p → ωπ0[9] delivers new information about the p̄ p
production process of light mesons with strange-quark
content. The reaction p̄ p → K+K−π0 has already
been studied in detail for beam momenta between 1.0 and
2.5 GeV/c[10]. Due to the limited number of events only
SDM elements averaged over the production angle have
been determined. With the data and the refined analysis
presented here it is even possible to extract the produc-
tion angle dependence of the SDM elements with good
accuracy.

• In p̄ p and p̄n annihilations the spin exotic wave π1 was
so far only visible in annihilations at rest [11,12]. It was
the aim of this refined analysis to trace it also in p̄ p
experiments in flight. Also here the extraction of the SDM
elements might help to better understand the annihilation
process for this kind of reaction.

• The outcome of this analysis provides also new and very
helpful insights for high quality and high statistics exper-
iments like PANDA [13]. One major physics topic of
PANDA is the spectroscopy of exotic and non-exotic
states in the charmonium and open charm mass regions
in p̄ p production and formation processes. In particular
similarities between the p̄ p annihilation processes into
the channels φ(1020)π0, K ∗(892)±K∓ and the chan-
nels J/ψπ0, D∗ D̄ consisting of charm quarks can be
expected.

2 Crystal Barrel experiment

The Crystal Barrel detector has been designed with a cylin-
drical geometry along the beam axis. A liquid hydrogen tar-
get cell with a length of 4.4 cm and a diameter of 1.6 cm was
located in the center of the detector where the p̄ p annihilation
took place. Antiprotons that passed the target without anni-
hilation were vetoed by a downstream scintillation detector.
The target was surrounded by a silicon vertex detector, fol-
lowed by a jet drift chamber which covered 90% and 64% of
the full solid angle for the inner and outer layer, respectively.
These devices together with a solenoid magnet providing a
homogeneous 1.5 T magnetic field parallel to the incident
beam guaranteed a good vertex reconstruction, tracking and
identification for charged particles. For the accurate measure-
ment of the energy and flight direction of photons the detector
was equipped with a barrel-shaped calorimeter consisting of
1380 CsI(Tl) crystals covering the full azimuth range of 360◦
and polar angles from 12◦ to 168◦. With this electromag-
netic calorimeter, located between the jet drift chamber and
the solenoid magnet, an energy resolution of σE/E ≈ 2.5 %
and an angular resolution of 1.2◦ in θ and φ each have been
achieved for photons with an energy of 1 GeV. A detailed
description of the full detector can be found elsewhere [14].

3 Data selection

The basic reconstruction and event selection was performed
in analogy to older publications by the Crystal Barrel Collab-
oration (see e.g. [1,2,5,6]). In addition, neural networks were
used to detect electromagnetic [15] and hadronic [16] split-
offs, that could be falsely registered as photon candidates
in the electromagnetic calorimeter. For all three reactions
considered here an exclusive reconstruction was performed.
Thus, events are only accepted and subjected to further anal-
ysis if all final state particles have been detected.

3.1 Selection criteria

π0π0η: This reaction results in a final state of six photons,
thus the number of tracks is required to be zero. Furthermore,
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the number of photon candidates after application of the split-
off detection must be exactly six. Since the final state photons
can be combined in multiple ways to form the required π0

and η resonances, kinematic fits under the hypotheses 6γ ,
π0π0γ γ , π0π0η, π0ηη, 3π0, ωω and 3η are performed.
For all hypotheses energy and momentum conservation are
required, as well as additional constraints of the invariant
two-photon mass to match the respective intermediate reso-
nances π0 or η. For the signal channel the fit must converge
with a confidence level (CL) greater than 10%, correspond-
ing to a probability of p > 0.1, while p < 0.001 is required
for most background hypotheses. For the ωω hypothesis a
requirement of p < 0.01 is used. A previous analysis of the
π0π0η final state based on the same data set has shown [2],
that after the application of kinematic fits events originating
from the reaction p̄ p → ω(→ γπ0)π0π0 → 7γ rep-
resent the main source of remaining background. For these
events in most cases one of the seven final state photons
escapes the detection. To effectively suppress this type of
background events, we make use of a sophisticated event-
based method, which is described in Sect. 3.2.
π0ηη : Since also this reaction results in a six photon final
state, the basic selection criteria are very similar to the ones
applied in the π0π0η case. Also here, multiple kinematic
fits are performed to improve the quality of the selected data
sample. All kinematic fits require conservation of energy and
momentum and additional constraints to the π0 or η mass,
where applicable. Again, the fit is required to converge for the
signal channel with p > 0.1. More stringent requirements
are set to reduce background from the reactions p̄ p → ωω

(p < 0.01) and p̄ p → 3η (p < 0.1). Similar to the π0π0η

channel, it is expected that prominent background due to the
reaction p̄ p → ωπ0π0 → 7γ remains after the selection.
This type of background can appear below both η signals
and is treated with the event-based background suppression
described in Sect. 3.2.
K+K−π0 : For this reaction, exactly two oppositely charged
kaons are required, which must originate from a common
vertex within the target cell. Furthermore, the number of
accepted photon candidates after application of the split-off
detection is required to be two. Since pions and kaons can
not be separated easily by using the information on the dif-
ferential energy loss from the drift chamber for momenta
above 500 MeV/c the main background for the reaction
under study is expected to be p̄ p → π+π−π0. To sup-
press background and to improve the quality of the data the
events are subjected to kinematic fits under the hypothe-
ses p̄ p → K+K−π0, K+K−γ γ , π+π−π0, π+π−η,
K+K−η, π+π−η′ and K+K−η′. For each hypothesis the
conservation of momentum and energy are required (four
constraint fit) as well as an additional constraint to the invari-
ant two-photon mass, which must match the mass of π0, η

or η′, where applicable. To accept an event, it is required
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Fig. 1 Confidence level and exemplary pull distributions obtained
from the kinematic fit for the hypothesis p̄ p → K+K−π0. The con-
fidence level a shows a flat distribution towards large p values and an
enhancement for low values, which is caused by background or mis-
reconstructed events. The pull distributions for the angles φ, θ (b, c)
and the square root of the energy (d) for reconstructed photons show
a Gaussian shape centered at zero with a width of approximately one.
The mean values μ are extracted from the fit (red). All four distribu-
tions show the good quality of the selected data and indicate a well
understood error matrix

that the kinematic fit converges for the signal hypothesis with
p > 0, 1, while for background suppression p < 0.01 for the
π+π−π0-hypothesis and p < 10−5 for all other hypotheses
is required. For the signal hypothesis, the distribution of the
CL is found to be almost flat for p > 10%, while all pull dis-
tributions exhibit a Gaussian shape centered at μ = 0 with a
width of σ ≈ 1. This indicates a high quality of the data and
a properly adjusted error matrix. The CL distribution along
with some pull distributions are exemplarily shown for this
channel in Fig. 1. After application of these selection criteria
the remaining background estimated from the sidebands of
the π0 signal in the distribution of the invariant two-photon
mass is negligibly small. Thus, no further steps are taken to
reduce remaining background and the finally selected 17529
events are used for the partial wave analysis.

3.2 Additional signal-background separation

The remaining background contribution for the reactions
resulting in a final state consisting of six photons can in prin-
ciple stem from various sources and is mostly irreducible
using simple one-dimensional selection criteria. To identify
and suppress this type of background, a signal weight fac-
tor Q is assigned to each event. In contrast to other meth-
ods, as e.g. the side-band subtraction method for binned
data, the procedure employed here is an event based method.
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No details about the sources of all non-interfering back-
ground contributions must be known a priory. This method
is described in detail in [17] and was successfully applied in
earlier analyses by the CLAS collaboration [18,19] as well
as in a recent re-analysis of Crystal Barrel data [9]. In prin-
ciple the method relies on the fact, that background events
cannot reproduce the narrow mass shape of resonances as
e.g. π0 or η in the corresponding invariant mass spectrum. To
apply the method the nearest neighbors in the phase space for
each event must be identified. Therefore, a metric containing
relevant kinematic variables must be defined. As described
above, the main background for the reaction p̄ p → π0π0η

stems from processes resulting into a 7γ final state, where
no η meson is involved in the decay. Therefore, the method
is applied to the invariant two-photon mass in the η signal
region. The metric was chosen to consist of four kinematic
variables, namely the polar production angle of the η meson
in the center-of-mass frame, the polar and azimuthal decay
angles of one of the π0’s in the π0π0 helicity frame as well
as the polar decay angle of the η meson in the π0η helic-
ity frame. Figure 2a shows the distribution of the invariant
two-photon mass for the 100 nearest neighbors of a selected
event identified with the metric described above. The Q-
factor for the event under consideration is then defined as the
signal-to-background fraction at the position of the event,
obtained from an unbinned fit to this distribution containing
a description of the signal (described by a Gaussian func-
tion) and a linear background, as visualized in Fig. 2a. The
same event weight method has been applied for the reaction
p̄ p → π0ηη. Also here, the dominant background con-
tribution stems from reactions, which do not involve an η

meson. In contrast to the reaction described above, the Q-
factor method now has to be applied to the two-dimensional
invariant two-photon distribution to simultaneously consider
background below both η resonances. The metric again con-
sists of four variables, namely the polar production angle of
the π0 in the center-of-mass frame, the polar and azimuthal
decay angles of one of the two η mesons in the ηη helicity
frame and the polar decay angle of that η meson in the π0η

helicity frame. In this case a number of 200 nearest neighbors
is identified for each event and the signal is described by a
two-dimensional Gaussian function, while the background is
parameterized with a linear function independently for both
invariant two-photon masses. The Q-factor is then calculated
in the same way as for the one dimensional case.
The performance of the Q-factor method is evaluated using
dedicated Monte Carlo samples which are generated using
proper amplitude models for signal and background contri-
butions. The background can be clearly identified and after
application of the Q-factor method we obtain clean data sam-
ples which are used as input for the partial wave analysis.

Fig. 2 Performance of the Q-factor method for background below the
η signal appearing in the reaction p̄ p → π0π0η. a Shows the invariant
two-photon mass for 100 nearest neighbors of a selected π0π0η event.
The green curve shows the total fit result. The blue and red shapes repre-
sent the signal and background contributions, respectively. The vertical
line denotes the position of the actual event. b Shows the invariant two-
photon mass for all events after application of the Q-factor method for
the identified signal (blue) and background (red) components

Fig. 3 Dalitz plot for the π0π0η data after application of the back-
ground suppression, not corrected for acceptance. Some resonance
masses of interest are marked with thin black lines and gray labels
(two entries per event)

3.3 Overview of the selected p̄ p data samples

After application of the Q-factor method, a sample of 90408
signal events for the π0π0η channel is obtained. Figure 3
shows the Dalitz plot of the selected and Q-weighted π0π0η

events. Prominent structures possibly originating from con-
tributions of the a2(1320) as well as the f2(1270) meson
are clearly visible. Furthermore, possible structures around
1 GeV/c2 can be seen, which may originate from contribu-
tions of the a0(980) and f0(980) states.

Figure 4 shows the corresponding plot for the π0ηη chan-
nel, for which in total 10533 weighted events were retained.
Also here, a strong structure at the mass of the a2(1320)

meson is observed, as well as a rather strong signal of the
a0(980) in comparison with the π0π0η channel. A strong
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Fig. 4 Dalitz plot for the π0ηη data after application of the background
suppression, not corrected for acceptance. Some resonance masses of
interest are marked with thin black lines and gray labels (two entries
per event)

Fig. 5 Dalitz plot for the K+K−π0 data after application of the back-
ground suppression, not corrected for acceptance. Some resonance
masses of interest are marked with thin black lines and gray labels

contribution around 1.5 GeV/c2 is obvious, originating from
an f

′
2(1525), an f0(1500) or both. Figure 5 shows the Dalitz-

plot for all 17529 selected events for the K+K−π0 channel.
It is dominated by bands corresponding to contributions of
the K ∗(892)± meson decaying into K±π0. At the edge of
the phase space a structure corresponding to the φ(1020)

meson is visible, as well as structures around 1.3, 1.5 and
1.7 GeV/c2. The respective invariant mass plots and the effi-
ciency corrected decay angular distributions are shown in
Figs. 7, 8 and 9. Table 1 summarizes the size of the selected
samples and the corresponding number of signal events.

Table 1 Number of selected events for all three reactions

Reaction p̄ p → Total number of events Signal events
∑

Q

π0π0η 97372 90408

π0ηη 11905 10533

K+K−π0 17529 17529

3.4 Overview of the scattering data

Most of the f0, f2 and ρ resonances in the light meson sec-
tor are characterized by the coupling to several decay chan-
nels. Therefore different sets of scattering data are included
which results in an adequate consideration of unitarity. The
individual sets of scattering data used in the coupled channel
fit are as follows: For the reaction ππ → ππ , I = 0 S-
and D-wave (S0- and D0-wave, associated with f0 and f2
resonances) and I = 1 P-wave (P1-wave, associated with
ρ resonances) are taken into account from [3] for the energy
region from the ππ threshold up to

√
s = 1.425 GeV/c2.

These model independent descriptions for the phase shift and
the inelasticity are based on dispersion relations and cross-
ing symmetries. Since the errors provided in [3] are very
small and only based on the uncertainties of the underlying
theory, systematic errors of 0.001 for the inelasticity and of
0.01◦ for the phase motion have been added for the combined
fit with the p̄ p data. The remaining energy range between√
s > 1.425 GeV/c2 and

√
s < 1.9 GeV/c2 is covered

by the CERN-Munich data [20] where the solutions have
been chosen which are labeled with (− − −) and (− + −)
in [21] and [22], respectively. The modulo squares of the
T-matrix for the S0- and D0-wave of the scattering process
ππ → KK are taken from [23] and for ππ → ηη from
[24]. The data from [25] are used for the S0-wave scatter-
ing process ππ → ηη′. A summary of all scattering data is
shown in Fig. 11.

4 Partial wave analysis

4.1 Amplitudes

Description of the p̄ p annihilation amplitudes: The ampli-
tudes for the individual p̄ p channels are defined in a similar
way as explained in [9]. The various contributing initial p̄ p
states are expressed as an expansion in terms of I G J PC

states. It has turned out from semi-classical calculations [26]
as well as from data analyses, as described in [9] for example,
that only states up to a maximal orbital momentum Lmax

p̄ p of
the p̄ p system contribute. The complete reaction chain start-
ing from the p̄ p annihilation system down to the decay into
the final state particles is taken into account. The underlying
description is based on the helicity formalism. The consid-
ered angles, illustrated in Fig. 6, are the polar and azimuthal

123



  453 Page 6 of 21 Eur. Phys. J. C           (2020) 80:453 

a b

Fig. 6 Graphical representation of the most important kinematic vari-
ables for the production (a) and decay (b) reference frames. As an
example, a scenario corresponding to the p̄ p → K+K−π0 channel
was chosen. The z-axis in a is defined by the flight direction of the
antiproton, while the directions of the x− and y-axes are arbitrary and
only defined in the laboratory frame by convention (y-axis pointing up
in vertical direction). The p̄ p system then decays to K ∗+K−, with a fur-
ther decay of the K ∗+ into K+π0 (black), or e.g. into f0π0 with the f0

decaying into K+K− (blue). The angle Δφ p̄ p is the angle between the
planes of these two decay branches. According to Eq. (3) K ∗+ stands for
X . In the helicity frame of the K ∗+ depicted in b, the z′ axis is defined
by the opposite direction of the p̄ p system or equivalently of the K−
particle. The x ′ − z′ plane is given by the production plane, spanned by
the flight directions of the proton and antiproton. Accordingly, the y′
axis is perpendicular to this production plane. K ∗+ corresponds to X ,
π0 to s1 and K+ to s2 which are given in Eq. (4)

angle of the production of the intermediate resonance X in
the p̄ p rest frame with respect to the direction of the p̄ beam
(θ p̄ p

X , φ
p̄ p
X ) and the azimuthal and polar angle of the X decay

in its helicity system, in which the y-axis is defined to be par-
allel to the normal vector of the production plane (θ X

s1
, φX

s1
). X

stands either for an isolated single resonance or for a partial
wave containing several resonances with defined spin/isospin
quantum numbers.
The differential cross section is described in terms of the tran-
sition amplitude depending on the helicities of the involved
particles, which is subdivided into the p̄ p initial state ampli-

tude Ap̄p→J PC

λp λ p̄
, the production amplitude BJ PC→Xsr

λXλsr
and the

decay amplitude CX→s1s2
λs1λs2

of the intermediate resonance X .
The differential cross section for each of the three p̄ p anni-
hilation reactions is given by:

dσ

dτ
∝ w =

∑

λpλ p̄

∣
∣
∣

∑

J PC

A p̄ p→J PC

λp λ p̄

·
(∑

X

(∑

λX

B J PC→Xsr
λXλsr

· CX→s1s2
λs1 λs2

))∣
∣
∣
2
, (1)

where τ stands for the phase space, sr describes the recoil
particle of X and s1, s2 are the decay particles of X .

∑
X runs

over all waves and resonances in all possible sub-channels,
like (K−π0)K+, (K+K−)π0. This expression is equivalent
to summing incoherently over the p̄ p triplet states (Sp̄ p =
1) and the singlet state (Sp̄ p = 0) [27]. The initial state

amplitude Ap̄p→J PC

λp λ p̄
is expandable in LS-states:

Ap̄p→J PC

λp λ p̄
=

∑

I

i J
PC

(I J
PC

p̄ p )

·
⎛

⎝
∑

L p̄p,Sp̄ p

〈1/2, λp, 1/2,−λ p̄|Sp̄ p, λ p̄ p〉

·〈L p̄p, 0, Sp̄ p, λ p̄ p|J PC , λ p̄ p〉 · α
p̄ p→J PC

L p̄ p Sp̄ p

⎞

⎠ ,

(2)

where i J
PC

(I J
PC

p̄ p ) represents the isospin contributions I p̄ p=0

and I p̄ p=1 for the relevant initial p̄ p state. The expansion
into the LS-scheme is taken into account by the sum over the
orbital momenta L p̄p and the spins Sp̄ p of the p̄ p system
with the Clebsch–Gordan coefficients for the coupling of the
antiproton and proton spins to Sp̄ p and for the coupling of

L p̄p and Sp̄ p to J PC . The complex fit parameter α
p̄ p→J PC

L p̄ p Sp̄ p

is proportional to the partial wave amplitude T p̄p→J PC

L p̄ p Sp̄ p
and

includes some additional constant prefactors which are not
explicitly specified here.

The production amplitude reads:

BJ PC→Xsr
λXλsr

= DJ PC∗
λ p̄ p λX

(θ
p̄ p
X , φ

p̄ p
X )

· 〈IX , IXz, Isr , Isr z |I J
PC

p̄ p , 0〉
·
( ∑

LXsr SXsr

BLXsr (
√
s,mX ,msr )

· 〈JX , λX , Jsr , λsr |SXsr , λXsr 〉
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· 〈LXsr , 0, SXsr , λXsr |J PCλXsr 〉
·α J PC→Xsr

LXsr SXsr

)
, (3)

where DJ PC∗
λ p̄ p λX

denotes the complex conjugate Wigner-D
function for the decay of the p̄ p system to X and sr . It is
worth noting that also the imaginary part of the Wigner-D
function must be used here. The absolute azimuth angle φ

p̄ p
X

is not unambiguously defined for unpolarized p̄ p measure-
ments. However, the difference of this angle between two dif-
ferent particle subsystems is accessible and thus considered
by this complex function. The first Clebsch–Gordan coef-
ficient describes the isospin coupling followed by the loop
over all possible LXsr SXsr combinations. BLXsr describes
the orbital momentum dependent Blatt–Weisskopf produc-
tion barrier factor. X stands for the set of isospin and spin
quantum numbers of the selected sub-channel. The complex

fit parameter α
J PC→Xsr
LXsr SXsr

includes again some additional and
not explicitly specified constant prefactors.

The decay amplitude is given by:

CX→s1s2
λs1λs2

= DJX∗
λX0(θ X

s1
, φX

s1
) · 〈Is1 , Is1z, Is2 , Is2z |IX , IXz〉

·FLs1s2
X (mX ,ms1 ,ms2) · α

X→s1s2
Ls1s2 ,0 , (4)

here the complex conjugate Wigner D-function DJX ∗
λX 0 depends

also on the azimuthal angle φX
s1

. mX is the energy of the
two-body sub-channel. Since both final state particles exhibit
a total spin of 0 only one LS-combination remains with
Ls1s2 = JX and Ss1s2 = 0, which is included in the param-

eter α
X→s1s2
Ls1s2 ,0 . The term F

Ls1s2
X (mX ,ms1 ,ms2) represents the

dynamics of the partial wave which is described either by
the K-matrix formalism or by the Breit-Wigner parametriza-
tion as discussed in more detail in the following Sect. 4.2.

Since the complex fit parameters α
p̄ p→J PC

L p̄ p Sp̄ p
, α

J PC→Xsr
LXsr SXsr

, and

α
X→s1s2
Ls1s2 ,0 are not independent of each other a certain subset of

them is fixed so that exactly one solution is provided for the
fit procedure. For a single channel scenario it must be ensured
that each product of these fit parameters exhibits one inde-
pendent complex parameter. Additional constraints such as
fixing one global phase in the coherent terms according to
Eq. (1) or the treatment of shared parameters for the coupling
of different channels lead to further restrictions in the choice
of the set of free fit parameters.

For the channels π0π0η and π0ηη only one isospin com-
ponent is allowed which is I = 0 for π0π0η and I = 1
for π0ηη. The channel K+K−π0, however, contains excited
kaons such as K ∗(892)± and probably also the (K±π0)S
wave. The reaction chains (sub-channels) containing these
intermediate resonances with strange quark content must be
treated slightly differently compared to the equations above.
These channels do not exhibit a well defined C and G parity
and can originate from both isospin components I p̄ p = 0 and

I p̄ p = 1 of the p̄ p system. Therefore it is necessary to expand
the two particle systems K ∗(892)±K∓ and (Kπ)±S K∓ to C
and G eigenstates for the relevant I G J PC p̄ p state and the
isospin coupling in Eqs. (2–4) must be replaced by appropri-
ate prefactors for considering C-and G-symmetry.
Description of the ππ scattering amplitudes: As mentioned
in Sect. 3.4, scattering data from the model independent cal-
culations from [3] are used for the reaction ππ → ππ below√
s = 1.425 GeV/c2. The remaining ππ -scattering ampli-

tudes are derived in the usual way from πN -scattering mea-
surements [28]. For small 4-momentum transfers t they are
nearly independent from t and the s-dependence of the ππ

scattering can be extracted in the form of scattering matrices
Ti j . i stands for the initial and j for the final channel, such
as ππ , K K̄ , ηη or ηη′. The T-matrix can be parametrized
in terms of K-matrix elements (see Sect. 4.2). The scatter-
ing data for elastic reactions are provided in terms of phase
shifts and inelasticities, while for inelastic channels, like
ππ → K K̄ and ππ → ηη, the moduli squared of the T-
matrix, e.g. (2J + 1) ρππ |T |2 ρK K̄ , are taken (see Fig.
11).

4.2 Dynamics

It is well known that Breit–Wigner parameterizations are only
adequate for descriptions of relatively narrow and isolated
resonances located far away from any thresholds and with
a strong coupling to not more than one channel [8]. How-
ever, many light mesons with the same quantum numbers
are broad, overlapping with each other and decaying into
several different channels. Thus more sophisticated descrip-
tions are needed for those non-trivial dynamics. The analysis
presented here makes use of the K-matrix formalism for the
2-body scattering processes and of the P-vector approach for
the p̄ p-channels [29,30]. The P-vector approach is assumed
to provide an effective description not only for the non-trivial
production mechanism, but also for the effect of rescattering.

Description of the scattering processes: The S-matrix of
a 2-body scattering process can be written as

S = I + 2i ρ1/2 T ρ1/2, (5)

with I being the identity and ρ the phase space diagonal
matrix. T is the Lorentz-invariant transition matrix element.
For reasons of simplicity a possible dependence on the orbital
momentum L is neglected here.
T can be written in terms of the K-matrix:

T (s) = (I + K (s) C(s))−1 K (s), (6)

where s is the squared energy of the two-body system and
C(s) is the Chew–Mandelstam matrix which is a diagonal
matrix by definition. For the fits presented here the elements
of this matrix are calculated by the functions as defined in
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[7] and are connected to the phase space elements by:

Im Cii (s) = −ρi i (s), (7)

where i represents one specific channel. In case of the decay
into two stable particles with masses m1 and m2 and with s
being real and above the threshold the phase space element
reads:

ρi i (s,m1,m2)

=
√

(
1 − (m1 + m2)2

s

)
·
(

1 − (m1 − m2)2

s

)

(8)

and is normalized such that ρi i (s,m1,m2) → 1 as s → ∞.
The K-matrix itself is based on the description in [31]:

Ki j (s) = s − s0

snorm
·
∑

α

BL
αi

(qi , qαi )

·
(
gbareαi

gbareα j

mbare
α

2 − s
+

∑

n

c̃ni j · sn
)

·BL
α j

(q j , qα j ) (9)

where i and j stand for the reaction channels. The bare param-
eters gbareαi

and mbare
α represent the coupling strength to the

channel i and the mass of the resonance α in the K-matrix
representation, respectively. BL

αi
(qi , qαi ) denote the Blatt–

Weisskopf barrier factors with the breakup momentum qi
and the resonance breakup momentum qαi depending on
the orbital decay angular momentum L in the channel i .
The s dependent polynomial terms of the order n together
with the parameters c̃ni j describe background contributions,
which are allowed to be added to the K-matrix without vio-
lating unitarity. (s−s0)/snorm represents the Adler zero term
where s0 is the Adler zero position for the elastic scattering
amplitude. Based on ChPT s0 is set to m2

π0/2 for the (ππ)S-
wave with isospin I = 0 [32]. For the parameterization of the
(Kπ)S wave with isospin I = 1/2 s0 = 0.23 GeV/c2 with
snorm = m2

K + m2
π is used [31].

Description of the three-body p̄ p annihilation channels:
Here the dynamics is described in the P-vector approach (see
Eq. (4)) by [29]:

F p
l =

∑

j

(I + K (s) C(s))−1
l j · P p

j , (10)

where s is the energy squared of the respective two-body sub-
channel. p stands for the production of the wave or resonance.
P p
j represents one element of the P-vector taking into account

the production process of the sub-channel X.
∑

j runs over
all channels relevant for the partial wave under consideration.
l is one of the two-body channels relevant for the respective
annihilation channel. The F-vector is equivalent to the T-
matrix of the two-body scattering process. The P-vector has

to exhibit the same pole structures as the K-matrix and is
defined as:

P p
i =

∑

α

(
β
p
α gbareαi

mbare
α

2 − s
+

∑

n

cpni · sn
)

BL
αi

(qi , qαi ), (11)

where β
p
α is the complex parameter representing the strength

of the production process. The remaining terms describe an
eventual energy dependent background term. In the coupled
channel fit the minor dependency on the different p̄ p annihi-
lation processes is neglected and the same effective produc-
tion background terms have been used for the different J PC

initial p̄ p states. The masses and decay couplings are the
same as in the scattering case, only the production strengths
are parameters to be fitted to the annihilation data. For the spe-
cific case of the a0 wave represented by a K-matrix consist-
ing of the resonances a0(980) and a0(1450) and the channels
π0η and K+K− with constant background terms produced
via J PC = 1++ in the reaction p̄ p → a0π

0 → K+K−π0

Eqs. (10) and (11) read:

F1++
(K+K−)

=
(K+K−)∑

j=(π0η)

(I + K (s) C(s))−1
(K+K−) j P1++

j (12)

with

P1++
(K+K−)

=
a0(1450)∑

α=a0(980)

(
β1++

α gbareαK+K−

mbare
α

2 − s
+ c0 (K+K−)

)

(13)

and

P1++
(π0η)

=
a0(1450)∑

α=a0(980)

⎛

⎝
β1++

α gbareα
π0η

mbare
α

2 − s
+ c0 (π0η)

⎞

⎠ . (14)

The Blatt–Weisskopf barrier factors are not needed here
because only the orbital momentum L = 0 is contributing.

4.3 Fits to data

For the coupled channel fit a minimization function is used
that considers all individual channels properly. The p̄ p data,
provided by the full information of each event located in a
multidimensional phase space volume, are treated slightly
differently from the scattering data which are given by one-
dimensional diagrams assigned with errors. For the p̄ p chan-
nels an unbinned maximum likelihood minimization pro-
cedure is used. Input for this method are the selected data
with the event weights Qi as well as phase-space distributed
Monte Carlo events. For properly taking into account the
detector resolution and acceptance the GEANT3 transport
code has been used. To consider the correct reconstruction
efficiency the Monte Carlo events had to undergo the same
reconstruction and selection criteria as applied for data events
and described in Sect. 3. The extended likelihood function
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L for each individual channel k is defined as:

Lk ∝ ndata ! · exp
(

− (ndata − n)2

2ndata

)

·
ndata∏

i=1

w(τ i,α) ε(τ i)∫
w(τ ,α) ε(τ ) dτ

(15)

where ndata denotes the number of data events in the channel
k, τ the phase-space coordinates, α the complex fit parameter,
ε(τ ) the acceptance and reconstruction efficiency at the posi-
tion τ and n = ndata ·∫ w(τ ,α) ε(τ ) dτ/

∫
ε(τ ) dτ . w(τ ,α)

is the weight as given in Eq. (1). α is the set of parameters, like
coupling constants, production strengths and bare resonance
parameters. By logarithmizing Eq. (15), approximating the
integrals with Monte Carlo events and introducing the weight
Qi for each event, the function to be minimized is then given
by:

− ln Lk ≈ −
ndata∑

i=1

Qi · ln w(τ i,α)

+
( ndata∑

i=1

Qi

)
· ln

(
∑nMC

j=1 w(τ j,α)

nMC

)

+ 1

2
·

( ndata∑

i=1

Qi

)
·

(
∑nMC

j=1 w(τ j,α)

nMC
− 1

)2
,

(16)

where nMC represents the number of selected Monte Carlo
events for the channel k.
The scattering data are provided by one dimensional data
points with errors for each scattering channel k′ and here
χ2 functions are introduced for the minimization procedure.
Due to the fact that the relation between χ2 and − ln L
can be approximated by χ2 = −2 · ln L the total negative
likelihood function to be minimized is finally defined as:

− ln Ltotal =
∑

p̄ p channel k

− ln Lk

+
∑

scatt. channel k′
0.5 · χ2

k′ (17)

4.4 Choice of the best hypothesis

The analysis was performed in two steps. In the first
step, which was not performed with the full machinery as
described before, the parameter space was investigated in
order to fix reasonable start values for the final analysis.
Phase 1: The starting point was the performance of single
channel fits for the three p̄ p reactions individually. Several
different hypotheses have been tested in order to get a first
glance on the potentially contributing resonances. Based on
the outcome from [9] the maximal orbital momentum of the
initial p̄ p system has been chosen to be Lmax

p̄ p = 4 for all

fits. Also the production amplitudes have been limited to
Lmax
X sr

= 5. The dynamics of the scalar S wave has been
realized by the K-matrix parameterization with fixed param-
eters from [28]. The (Kπ)S wave with isospin I = 1/2 con-
tributes in p̄ p → K+K−π0. It has been expressed for the
single as well as for the coupled channel fits by the K-matrix
parameterization from the FOCUS experiment [31] contain-
ing only the two channels Kπ and Kη′ and the resonance
pole K ∗±

0 (1430). All remaining resonances have been taken
into account by Breit-Wigner approximations. In order to
achieve meaningful results all masses and widths have been
fixed to PDG values. Only the narrow φ(1020) resonance
has been treated slightly differently. To take into account
the detector resolution a Voigtian function, a convolution of
a Breit-Wigner and a Gaussian parameterization, has been
used. The total width of φ(1020) has been fixed to the very
precisely known value of 4.2 MeV/c2 [8] in order to avoid
unphysical correlations with the fit parameter representing
the description of the detector resolution.
Phase 2: Based on the outcome of these fits with simpli-
fied and rudimentary descriptions, more sophisticated cou-
pled channel fits taking into account the relevant scattering
data have been started. Apart from few isolated resonances
the Breit–Wigner and the scalar S wave parameterizations
have been replaced by K-matrix descriptions as specified in
Sect. 4.2. The masses, coupling strengths and relevant back-
ground terms have been released for all contributing reso-
nances. Only the narrow φ(1020) resonance, the K ∗(892)±
and the fixed parametrization for the (Kπ)S-wave have been
treated in the same way as done before for the single channel
fits.
The best fit hypothesis had the following ingredients:

• f0-wave (I G J PC = 0+0++): 5 K-matrix poles ( f0(500),
f0(980), f0(1370), f0(1500), f0(1710)) with 5 channels
(ππ , K K̄ , ηη, ηη′, 2π 2π ). 2π 2π is treated as an effec-
tive channel with m1 = m2 = mπ + mπ according to
Eq. (8) covering all channels with the decay into four
pions.
Similar descriptions for the f0-wave have been used in
two other previous analyses. A complementary K-matrix
approach with the same decay channels and the same
number of poles has been chosen in [28]. The advan-
tage was that a richer set of data samples was considered.
On the other hand the treatment of analyticity was more
rudimentary since Chew-Mandelstam functions have not
been taken into account. In [33] instead high-accuracy
dispersive representations have been applied based on a
three channel description only.

• f2-wave (I G J PC =0+2++): 4 K-matrix poles ( f2(1270),
f ′
2(1525), f2(1810), f2(1950)) with 4 channels (ππ ,

2π 2π , K K̄ , ηη).
The decay mode to ηη′ was not used here, since the rel-
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Table 2 Likelihood values and
the number of free parameters
for fits with the best and
alternative hypotheses. ΔNLL,
Δndf, ΔBIC and ΔAIC are the
differences of the obtained
negative log likelihood values,
the number of free parameters as
well as the BIC and AIC values
between the alternative and the
best hypothesis. The fits marked
with (*) are taken into account
for the estimation of the
systematic uncertainties.
Exemplarily, the results using
the scattering data for the
solution (− − −) from [21] are
shown

Hypothesis NLL ndf ΔNLL Δndf ΔBIC ΔAIC

best hypothesis −43198 595 0 0 0 0

w/3 f2 poles (*) − 43072 562 126 33 −135 185

w/π1 η (*) − 43239 615 −41 20 150 −43

w/φ(1680) π0 (*) − 43223 619 −25 24 230 −3

w/ρ3(1690) π0 (*) − 43267 633 −69 38 305 −64

π1 w/Breit− Wigner − 43151 592 47 −3 57 87

w/2 π1 poles in π0π0η − 43212 612 −14 17 171 12

w/3 ρ poles − 43206 613 −8 18 194 19

w/1 a2 pole − 43074 578 124 17 49 214

w/o π1 π0 − 43030 570 168 25 44 286

w/4 f0 poles − 42957 559 241 36 61 410

w/1 a0 pole − 42955 572 243 −23 351 439

evant resonances are expected to couple only weakly to
this channel. Also here 2π 2π is used as an effective
decay mode.

• ρ-wave (I G J PC = 1+1−−): 2 K-matrix poles (ρ(770),
ρ(1700)) with 3 channels (ππ , K K̄ and 2π 2π ). This
wave is only relevant for the p̄ p annihilation channel to
K+K−π0.

• a0-wave (I G J PC =1−0++): 2 K-matrix poles (a0(980),
a0(1450)) with 2 channels (π0η, K K̄ ).
Only these two channels were directly measurable via
the p̄ p-data. No information from ππ -scattering data
could be used. An effective channel for covering all decay
modes into 2π 2π is not introduced here. Fits with addi-
tional free parameters related to such an effective channel
lead to unreasonable results since no scattering data and
thus no constraints on inelasticities can be used.

• a2-wave (I G J PC =1−2++): 2 K-matrix poles (a2(1320),
a2(1700)) with 2 channels (π0η, K K̄ ).
For the choice of the decay channels the same arguments
as before hold.

• (Kπ)S-wave (I J P = 1/2 0+): Fixed K-matrix param-
eterization from the FOCUS experiment [31] with one
pole (K ∗

0 (1430)) and 2 channels (Kπ, Kη′).
• π1-wave (I G J PC = 1−1−+): 1 K-matrix pole with

two channels (πη, πη′). This description is motivated
by the recent analysis of COMPASS data [34], where the
observed rapid phase shifts of the 1−+ wave in πη and in
πη′ can be explained by the presence of only one pole.

• φ(1020), K ∗(892)±.
These isolated resonances occurring in the channel
K+K−π0 are parametrized by Breit-Wigner functions.

In addition, constant background terms for the K-matrix as
well as for the P-vector were needed for the three waves

f0, f2 and ρ in order to get consistent good results for the
simultaneous description of the p̄ p and scattering data. All
background terms of the effective 2π 2π channel for the f0-,
f2- and ρ-wave have been fixed to zero. For the dynamics of
the a0- and a2-wave no background terms have been consid-
ered and the π1-wave is described by a constant background
term only for the πη channel.

The K-matrix parameters for the f0-, f2- and ρ-wave
obtained by the best fit are summarized in the supplemental
material. The parameterizations for the a0, a2 and π1-waves
are not listed there since the descriptions are simplified and
limited to two channels each.
For the selection of the best fit hypothesis the Bayesian infor-
mation criterion (BIC) and the Akaike information criterion
(AIC) [35,36] have been used, which are given by

BIC = − ln L + ndf · ln(N ) (18)

and

AIC = − ln L + 2 · ndf, (19)

with ndf being the number of free fit parameters and N the
number of data events. The best fit is characterized by a
minimal value. The penalty term related to the number of
free parameters is larger in BIC than in AIC. Therefore the
exclusive use of AIC generally tends to overfitting, while the
more stringent criterion BIC instead favors solutions with
less parameters and tends to underfitting. A very significant
result is achieved when both criteria prefer the same hypoth-
esis. In Table 2 the BIC- and AIC-values for the best fit and
for alternative fits are summarized. The best hypothesis is
selected by having the lowest AIC + BIC value. A better BIC
value is achieved for the hypothesis with only three f2 poles.
However, the worsening based on the ΔAIC value is consid-
erably larger. Slightly better AIC-values are achieved for the
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hypothesis by adding theρ3(1690) resonance and for the ones
by adding the φ(1680) and a contribution of the π1 to the πηη

channel, respectively. But due to the additional large number
of free parameters the BIC criteria gets dramatically worse
compared to the best hypothesis. Alternatively to the π1 con-
tribution with one pole also this spin-exotic wave containing
two poles was tested but discarded because of worse ΔBIC-
and ΔAIC values. Also the description of the π1-wave with a
relativistic Breit-Wigner function led to a significantly worse
fit result. In addition fits have been performed by adding one
more pole for the f0-, f2-, a0- and a2-waves which are not
explicitly listed in Table 2. These fits do not yield significant
improvements. In most cases the additional poles move far
away from the real axis into the complex energy plane and
mimick the slowly varying behavior of the K-matrix back-
ground terms.

4.5 Comparison of data and fit

4.5.1 Results for p̄ p data

The fitted mass and decay angular distributions for the reac-
tions p̄ p → π0π0η , π0ηη and K+K−π0 are compared
with the data in Figs. 7, 8 and 9, respectively. A good descrip-
tion of the data can be clearly seen for all projections. In
Fig. 9c an acceptance hole is clearly visible in the produc-
tion angular distribution of the K±π0 system for cosθ p̄ p

K±π0

between 0.7 and 1. The loss of acceptance is caused by the
limited coverage of the jet drift chamber in the very forward
direction. However, this range can be fairly covered by the
extrapolation of the fit result.
A goodness of fit test of the obtained probability density
function to the data has been performed by utilizing a mul-
tivariate analysis based on the concept of statistical energy
[37]. The underlying principle is the comparison of the event
density distribution in the phasespace volume between the
reconstructed data sample and a set of Monte Carlo sam-
ples which are generated with the obtained fit parameters
and different random seeds each. This powerful binning free
approach makes use of the distance between the events in the
multidimensional phase-space volume. The p-value is cal-
culated from the number of the comparative scenarios with
energies above the nominal statistical energy φ f i t divided by
the number of all scenarios. The general idea behind and all
details of the energy test are explained extensively in [37]. As
shown in Fig. 10, p-values of 0.388, 0.414 and 0.854 demon-
strate the good description of the data for all three channels
π0π0η , π0ηη and K+K−π0 , respectively. Furthermore this
outcome reveals that the model selection based on the BIC
and AIC values is a good choice for the extraction of the best
fit hypothesis.
The reliability of the fit procedure has also been tested by an
input-output check. Based on the parameter file obtained by
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Fig. 7 Not acceptance corrected invariant π0π0 and π0η mass distri-
butions (a, b), acceptance corrected decay angular distributions for the
production (c, d) and for the decay (e–h) of the reaction p̄ p → π0π0η.
The data are marked with red and the fit result is illustrated by black
dots with error bars

the best fit to the data (called reference fit), Monte Carlo
samples for the individual channels have been generated.
The reliability has been checked by performing fits where
the start parameters were randomized within 15 σ for the
amplitude and 10 σ for the resonance parameters. After the
fitting procedure the obtained physical quantities are com-
pared with the outcome of the reference fit. The agreement is
good and the deviations of all relevant quantities, i.e. differ-
ential cross sections, masses, widths, partial widths and spin
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Fig. 8 Not acceptance corrected invariant ηη and π0η mass distribu-
tions (a, b), acceptance corrected decay angular distributions for the
production (c, d) and for the decay (e–h) of the reaction p̄ p → π0ηη

. The data are marked with red and the fit result is illustrated by black
dots with error bars

density matrix elements, are less than 3σ of the statistical
uncertainties.

4.5.2 Results for scattering data

The outcome of the simultaneous fit for the scattering data is
summarized in Fig. 11. Apart from some systematic discrep-
ancies, appearing in Fig. 11e, h, the agreement is good. It
should be emphasized that in particular a good consistency

1 1.5 2

]2) [GeV/c-K+m(K

0

200

400

2
E

ve
nt

s 
/ 1

0 
M

eV
/c

Data
Fit

a

1 1.5

]2) [GeV/c+/-K0πm(

0

200

400

600 b

1− 0.5− 0 0.5 1

+/-K

pp)θcos(

0

a.
u. c

1− 0.5− 0 0.5 1

0π

pp)θcos(

0

d

1− 0.5− 0 0.5 1

+/-K

-K+K)θcos(

0

a.
u. e

1− 0.5− 0 0.5 1

+/-K

0π+/-K)θcos(

0

f

2− 0 2

+/-K

-K+Kφ

0

a.
u. g

2− 0 2

+/-K

0π+/-Kφ

0

h

Fig. 9 Not acceptance corrected invariant K+K− and K±π0 mass
distributions (a, b), acceptance corrected decay angular distributions
for the production (c, d) and for the decay (e–h) of the reaction p̄ p →
K+K−π0 . The data are marked with red and the fit result is illustrated
by black dots with error bars

is achieved for the phase shifts based on the model inde-
pendent parameterizations with small uncertainties below√
s < 1.425 GeV/c2. Figure 12 shows the resulting Argand

diagrams for the individual waves.

4.6 Comparison to other measurements

One striking feature of the best selected fit is the agreement of
the obtained phase difference between the a2 and the π1 wave
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Fig. 10 Goodness of fit. Statistical energy φ distribution and corre-
sponding p-value for p̄ p → a π0π0η, b π0ηη and c K+K−π0. The
red dashed line marks the position of the nominal statistical energy φ f i t
and the gray area illustrates the number of scenarios with energies above
φ f i t

compared to previously published data for ηπ - and η′π pro-
duction in diffractive π− p scattering at 191 GeV/c, studied
by the COMPASS collaboration [38]. Figure 13 shows the P-
wave versus the D-wave phase motion resulting from an ηπ

partial wave analysis [38], overlayed with the present result
extracted from the best fit. It should be stressed that Fig. 13
merely shows a comparison with no subsequent fitting.

5 Extracted properties

For the extraction of all properties the chosen ππ → ππ

scattering data in the high energy range between
√
s >

1.425 GeV/c2 and
√
s < 1.9 GeV/c2 are the solution

labeled with (− − −) from [22] for the D0- and P1-wave
and from [21] for the S0-wave. Since these solutions might
be not unambiguous, further alternative fits have been per-
formed by replacing these data by the ones based on the
solutions labeled with (− + −) in [22] and [21] for the
S0-, D0- and P1-wave and with (− − −) in [22] for the
S0-wave, respectively. All of these fit results and the ones
marked with (*) in Table 2 are taken into account for the esti-
mation of the systematic uncertainties. Since exchanging the
scattering data in the high mass region has a large influence
on the resonances in that region, asymmetric uncertainties
for the parameters of the f0(1710), f2(1810), f2(1950) and
ρ(1700) are determined. Additionally, whenever asymme-
tries are observed for the deviation of resonance parameters

from the respective values of the best fit, these are reflected
by asymmetric systematic uncertainties in Table 4, as e.g. for
the f0(1500), a2(1700) and π1.

5.1 Contributions of different waves

The contributions of the individual waves have been deter-
mined according to the prescription in [39] by calculating the
absolute square of the amplitudes of the relevant wave only,
and dividing it by the absolute square of the incoherent and
coherent sums of all amplitudes as defined in Eq. (1). As the
waves can interfere with each other the sum of all fractions
is not necessarily unity. In Table 3 the fractions are listed for
each wave and each annihilation channel individually. The
total sum of 135.0 ± 1.2 (stat.) ± 8.7 (sys.) % for the π0π0η,
101.2 ± 2.4 (stat.) ± 11.7 (sys.) % for the π0ηη and 107.8 ±
1.9 (stat.) ± 12.5 (sys.) % for the K+K−π0 channel show
interference effects which are small enough to believe that the
fit result relies on a reasonable physics description. For the
resonances described with the K-matrices it is not straightfor-
ward to disentangle the individual contributions of different
resonances and background terms [39]. Therefore, only the
contributions of the partial waves described by the K-matrix
are summarized in Table 3. The dominant contributions with
more than 20 % are the a0 π0, a2 π0 and f2 η components for
the π0π0η, the f0 π0, f2 π0 and a0 π0 waves for the π0ηη

and the K ∗(892)± K∓ reaction for the K+K−π0 channel.
It is worth mentioning that the spin exotic component π1

exhibits a fraction of almost 20 % in π0π0η. Figures 14, 15
and 16 show the invariant mass spectra with the contributions
of the individual waves for the channels π0π0η, π0ηη and
K+K−π0, respectively.

For the reaction p̄ p → π0π0η the contributions are com-
parable with the outcome of the former Crystal Barrel analy-
sis [2]. An obvious difference is that the spin-exotic wave has
not been seen in the old analysis. However, an evident con-
tribution of this wave has been found in p̄ p annihilation data
at rest with liquid deuterium and gaseous hydrogen targets
[11,12]. The individual fractions for the channels π0ηη and
K+K−π0 show slight differences compared to former Crys-
tal Barrel analyses [2,40]. However, the two contributions
φ(1020)π0 and K ∗(892)±K∓ which are of special interest
here and where the intermediate resonances are isolated and
parameterized by Breit–Wigner functions, are in good agree-
ment with [40]. For most of the remaining resonances, which
are described by K-matrices in this work, it is not straight-
forward to compare the contributions to those obtained from
Breit–Wigner based fits.

5.2 Pole and Breit–Wigner parameters

The dynamics of the isolated resonances K ∗(892)± and
φ(1020) are described by relativistic Breit–Wigner approxi-
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Fig. 11 Results for scattering data. a, b for S wave ππ → ππ

inelasticity and phase shift, c–e for |T |2-values of processes ππ →
ηη, ηη′, KK in S wave. f, g for D wave ππ → ππ inelasticity and
phase shift. h, i for |T |2-values of processes ππ → KK , ηη, j, k for
P1 wave ππ → ππ inelasticity and phase shift. The data considered
in the best fit are given by red points with error bars which includes the
solution (− − −) from [21] (a, b), and solution (− − −) from [22]
(f, g, j, k). Data sets from multiple solutions are taken into account as

alternative fits. Data points for solution (− + −) from [21] are labeled
with magenta stars (a, b), and data points for the solution(− − −) and
solution (− + −) from [22] are labeled with blue triangles (a, b) and
blue squares (a, b, f, g, j, k). The black line represents the fit result,
the tiny yellow bands illustrate the statistical uncertainty and the gray
bands stand for the systematic uncertainty obtained from the alternative
fits. The references for the individual scattering data sets are listed in
Sect. 3.4

mations. The corresponding masses and widths are treated as
free parameters so that these properties including their sta-
tistical uncertainties can directly be obtained from the out-
come of the fit. However, the parameters of the resonances
described by the K-matrices must be determined from the
pole positions in the complex energy plane of the T-matrix
on the Rieman sheet located next to the physical sheet. A
detailed description of the classification of poles and their
occurrence on the different sheets can be found in [41], for
example. Therefore the pole position properties are not direct
fit parameters. The scan of the complex energy plane is real-
ized here by a minimization procedure where the real and
imaginary parts of the pole in the complex T-matrix plane are
the free parameters. The extraction of the statistical errors is
based on this fit method as well and makes use of a numerical
approach by taking into account the covariance error matrix

obtained by the coupled channel fit. Due to the fact that the
f0(980) and a0(980) resonances are located very close to
the K K̄ threshold their pole positions have been extracted
from the two relevant sheets below and above this thresh-
old. The masses, widths and pole positions obtained for both
sheets are listed in Table 4. The systematic uncertainties were
derived as described before in Sect. 5.1. It turned out that the
statistical errors in particular for the masses and widths pro-
vided by the minimization tool MINUIT2 are systematically
too small. Therefore the likelihood profiling method [42]
has been used for some specific resonances. The obtained
uncertainties based on this procedure are larger by a factor
of between 2 and 5 compared to the outcome from MINUIT2.
However, the uncertainties for the positions of all poles with a
significant contribution to the p̄ p channels are dominated by
the systematics and thus the statistical errors are negligible.
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Fig. 13 Phase difference between the a2 and the π1 wave in πη. The
red dots with error bars show the COMPASS data for the P- and D-wave
of the ηπ system in diffractive π− p scattering [38]. The corresponding
result for the πη channel extracted from the a2 and the π1 scattering
matrices Tπη→πη obtained from the best fit in p̄ p annihilation is repre-
sented by the black line. For comparative purposes the obtained phase
difference is shifted by an offset of 180◦. The gray shaded area repre-
sents the systematic uncertainty obtained from the alternative fits listed
in Table 2 and the yellow band illustrates the statistical uncertainty based
on the covariance error matrix from the MINUIT2 fit. Note that this fig-
ure does not show a fit to the COMPASS data but merely a comparison

Most of the obtained quantities are in good agreement with
other measurements [8]. It should be noted that the f0(500)

exhibits a larger mass and width. This is probably related to
the chosen K-matrix approach. The description chosen here
does not take into account properly crossing symmetries and
other sophisticated constraints for the low ππ mass region, as

for example used in [3]. The pole mass of the a0(1450) meson
is measured to be 1302.1 MeV/c2 , a significantly lower
value compared to the PDG average [8]. It is, however, com-
parable with the old Crystal Barrel analysis [2] and several
other measurements collected in [8]. It should be noted that
the obtained pole parameters of the f0, f2 and ρ resonances
with a non negligible coupling to ππ are mainly driven by
the used scattering data. Since old analyses are also based
on these data and their measurements already contribute to
the PDG world average the quantities obtained here are not
completely independent. However, the π1-, a0- and a2-waves
are exclusively contributing in the p̄ p data samples. There-
fore the measurements of the pole positions related to these
waves can be claimed to be independent.

5.3 Partial decay widths

Due to the fact that the K-matrix ansatz chosen here fulfills
unitarity and analyticity it is for some specific resonances
even possible to extract not only the pole positions but also
the coupling strengths and thus the partial widths for the
individual decay channels. The widths can be extracted via
the residues of the scattering matrix T with the projection
to the relevant decay channel k on the sheet closest to the
physical one. The residues are determined by calculating the
integral along a closed contour Czα̃ around the pole α̃ (cf.
[8]):

Resα̃
k→k = 1

2π i

∮

Czα̃

√
ρk · Tk→k(z) · √

ρk dz (20)

where zα̃ denotes the pole position of the resonance α̃ in
the complex energy plane. This integral has been numeri-
cally estimated by making use of the Laurent expansion as
described in [43], for example. By determining the Laurent
coefficient ak−1 numerically via

1

ak−1

= ∂

∂z

∣
∣
∣
z=zα̃

1√
ρk · Tk→k · √

ρk
≈ 1

Resα̃
k→k

, (21)

one approximates the partial width Γk for the decay channel
k by:

Γk ≈ 2 ·
∣
∣
∣ ak−1

∣
∣
∣. (22)

This method is numerically stable because the inverse T-
matrix exhibits a value of zero at the pole position. In addition
no integration is needed and thus the calculation is fast. This
procedure simplifies the extraction of the statistical uncer-
tainties where the calculation must be redone several times.
Table 4 lists the partial widths for the f2(1270), f ′

2(1525),
ρ(770) and ρ(1700) resonances. These quantities are not
extracted for the decay channel to 2π 2π which is not directly
accessible and is only treated as an effective channel to con-
sider unitarity. The partial widths are in good agreement
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Table 3 Contributions in % of
the individual waves for the
three channels p̄ p → π0π0η ,
π0ηη and K+K−π0

Contribution (in %) for channel

π0π0η π0ηη K+K−π0

f0 π0 23.7 ± 1.2 ± 2.3 7.4 ± 0.3 ± 4.1

f0 η 10.7 ± 0.4± 1.8

f2 π0 30.1 ± 1.3± 2.7 17.1 ± 0.7 ± 10.0

f2 η 52.3 ± 0.8 ± 5.0

ρ π0 17.2 ± 1.0 ± 4.0

a0 π0 22.4 ± 0.4 ± 1.0 6.1 ± 0.2 ± 2.8

a0 η 28.6 ± 1.1± 7.5

a2 π0 33.0 ± 0.6 ± 2.9 6.4 ± 0.2 ± 2.9

a2 η 18.8 ± 1.1 ± 5.6

K ∗(892)± K∓ 45.0 ± 1.3 ± 11.0

(Kπ)±S K∓ 6.1 ± 0.4 ± 4.9

φ(1020) π0 2.5 ± 0.3 ± 0.3

π1 π0 16.7 ± 0.5 ± 3.0

Σ 135.0 ± 1.2± 8.7 101.2 ± 2.4 ± 11.7 107.8 ± 1.9± 12.5
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Fig. 14 Efficiency corrected invariant π0π0-(left) and π0η-mass
(right) for the reaction p̄ p → π0π0η . The overall result is marked
in black, while the individual contributions are visualized by different
colors

with all other measurements [8]. It should be noted that
the obtained quantities for the ρ(770) are only based on
the fit to the scattering data. This vector meson does not
couple to the p̄ p channels analyzed here. The absolute cou-
pling strengths for the a0 and a2 resonances have not been
determined because the K-matrices are only described by
the two channels πη and K K̄ . Since further relevant decay
modes like 3π or ωππ are not considered, the extraction
would result in unreliable values for these coupling strengths.
Instead, the ratios Γπη/ΓK K̄ have been determined for these
resonances which should deliver more reasonable results.
Due to the fact that the numerical method based on the Lau-
rent expansion is only a trustful approximation for resonances
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Fig. 15 Efficiency corrected invariant ηη-(left) and π0η-mass (right)
for the reaction p̄ p → π0ηη . The overall result is marked in black,
while the individual contributions are visualized by different colors

located not too far from the real axis and not too close to
thresholds the coupling strengths have not been extracted for
the f2(1810), f2(1950) and for all f0 resonances. The rel-
evant K-matrix of the (ππ)S-wave is very complex and is
characterized by 5 channels and 5 poles. These poles are in
fact located far from the real axis or close to specific thresh-
olds.

5.4 Production cross sections and spin density matrix
elements for φ(1020), K ∗(892)± and the π0

1 -wave

The differential production cross sections and the SDM ele-
ments for the resonances φ(1020), K ∗(892)± in the reaction
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Fig. 16 Efficiency corrected invariant K+K−-(left) and K±π0-mass
(right) for the reaction p̄ p → K+K−π0 . The overall result is marked
in black, while the individual contributions are visualized by different
colors

p̄ p → K+K−π0 and for the spin-exotic wave π1 in the
reaction p̄ p → π0π0η derived from the final fit result are
discussed in the following. Due to the fact that the infor-
mation on the beam luminosity is not accessible anymore,
only the relative cross sections could be extracted. Absolute
values were determined by normalization to the measured
total cross sections at the beam momentum of 900 MeV,
347 ± 37 μb for the channel p̄ p → K+K−π0 [40] and
83.3 ±4.9 μb for the reaction p̄ p → π0π0η with η → γ γ

[44].
The SDM elements for the three vector mesons have been
extracted in a similarly way as already done for the ω in the
reaction p̄ p → ωπ0 [9]. Since interference effects are not
negligible in particular for the contributions K ∗(892)±K∓
and π0

1 π0, the extraction of these quantities is more challeng-
ing compared to the ωπ0 case which is characterized by an
isolated narrow resonance. The traditional way, also called
Schilling method [45], cannot be utilized for the decay topol-
ogy here. This method uses only the decay angles and it is
therefore mandatory that no interference effects rise up in
connection with the resonance of interest. Instead, the SDM
elements have been determined here by using the relevant
production amplitudes obtained by the fit which contain the
full information on these quantities. This method has already
been applied successfully for the reaction γ p → ωp [19]
and later on for the p̄ p annihilation process p̄ p → ωπ0 [9].
The individual ρ-elements can be extracted from the initial
p̄ p and production amplitudes via [46]:

ρλiλ j = 1

N

∑

λ p̄,λp

(
Ap̄p→J PC

λp λ p̄
B J PC→Xsr

λi 0

)∗

·
(
Ap̄p→J PC

λp λ p̄
B J PC→Xsr

λ j 0

)
, (23)

where λi denotes the helicity of the vector meson and N is
the normalization factor:

N =
∑

λ p̄,λp,λX

∣
∣
∣A

p̄p→J PC

λp λ p̄
B J PC→Xsr

λX 0

∣
∣
∣
2

(24)

According to Eq. (3) the SDM elements are slightly depend-
ing on the invariant mass of the two-body subsystem X which
is caused by the production barrier factor BLXsr (

√
s,mX ,msr ).

In oder to suppress the impact of this model dependent fac-
tor the elements have been extracted within the range of ±20
MeV/c2 around the obtained mass values for all 3 vector
mesons. This limitation ensures that the fluctuations related
to the invariant mass values are small and thus negligible
compared with other uncertainties.
The spin density matrix elements averaged over the complete
production angle have also been calculated via:

ρi j =
∫ 1
−1

dσ
dcos θ p̄ p ρi j (cos θ p̄ p) dcos θ p̄ p

∫ 1
−1

dσ
dcos θ p̄ p dcos θ p̄ p

(25)

5.4.1 p̄ p → φ(1020)π0

The differential cross section for the produced φ(1020) is
shown in Fig. 17a. It is clearly visible that this vector meson
is produced strongly in the forward and backward direction
and is symmetric in cosθ p̄ p

φ , as expected according to the
underlying strong interaction process. Based on this outcome
and the one from [40] the total cross section for the reaction
p̄ p → φ(1020)π0 at a beam momentum of 900 MeV/c
is determined to be σ( p̄ p → φ(1020)π0) = 17.5 ± 1.9
(stat.) ± 2.1 (exp.) ± 1.9 (ext.) μb. The first error is the
statistical and the second one the systematic uncertainty from
this analysis. The third error represents the uncertainty for
the total cross section of the reaction p̄ p → K+K−π0

extracted from [40].
The SDM elements for φ(1020) in its respective helicity sys-
tem are shown in Fig. 17b–d. All matrix elements exhibit
a strong oscillatory dependence on the production angle
cos θ

p̄ p
φ . This oscillatory behavior was already observed in

the SDM elements of the ω(782) [9]. The integrated elements
averaged over the complete production angle are consistent
with no spin alignment (Table 5) which means that all diag-
onal elements are in agreement with ρi i = 1/3.

5.4.2 p̄ p → K ∗(892)K

In contrast to the φ(1020) the cross section of the K ∗(892)−
is characterized by a very significant asymmetric dependence
on the production angle (Fig. 18a) . The production of the
K ∗(892)+ is directly related to the one of the K ∗(892)− by

dσ

dcosθ p̄ p
K ∗−

(cosθ p̄ p
K ∗−) = dσ

dcosθ p̄ p
K ∗+

(−cosθ p̄ p
K ∗+) (26)
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Fig. 17 Differential production cross section (a) and spin density
matrix elements ρ00 (b), ρ10 (c) and ρ1−1 (d) of the φ(1020) in
p̄ p → φ(1020)π0. All elements are shown in the helicity system
of the φ(1020). The yellow and the gray bands stand for the statistical
and systematic uncertainty, respectively
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and thus the corresponding histograms are not explicitly
shown here. The reaction p̄ p → K ∗(892)−K+ exhibits
very similar characteristics like p̄ p → K−K+ measured
by a spark chamber experiment for 20 incident p̄ momenta
between 0.8 and 2.4 GeV/c [47]. There the forward peak

becomes stronger by increasing beam momenta and it has
been suggested that this observed s-dependence might be
caused by Regge exchange effects [48,49]. It might be
possible that similar underlying processes are also rele-
vant for the charged K ∗(892)± production in this energy
region. The total cross section for the reaction p̄ p →
K ∗(892)−K+ at a beam momentum of 900 MeV/c is deter-
mined to be σ( p̄ p → K ∗(892)±K∓) = 474.5 ± 14.1
(stat.) ± 116.0 (exp.) ± 50.6 (ext.) μb. Also here the third
error is due to the uncertainty of the total cross section for
the reaction p̄ p → K+K−π0 [40].
The SDM elements for K ∗(892)− in its respective helicity
system are shown in Fig. 18b–d. Similar to the φ(1020) and
ω(782) case all matrix elements exhibit a strong oscillatory
dependence on the production angle cos θ

p̄ p
K ∗− . Also here the

integrated elements averaged over the complete production
angle are consistent with no spin alignment (Table 5).

5.4.3 p̄ p → π0
1 π0

The differential production cross sections and the SDM ele-
ments for the π0

1 -wave are summarized in Fig. 19. In com-
parison to the φ(1020) case the forward and backward peak
is similarly pronounced and the SDM element ρ00 averaged
over the production angle exhibit a value of 66.7%. The total
cross section for the reaction p̄ p → π0

1 π0 with the decay
π0

1 → ηπ0 at a beam momentum of 900 MeV/c is cal-
culated to be σ( p̄ p → π0

1 π0, π0
1 → ηπ0) = 36.1 ± 1.0

(stat.) ± 6.5 (exp.) ± 2.1 (ref.) μb. The third error repre-
sents the uncertainty of the total cross section for the reaction
p̄ p → π0π0η extracted from [44].

6 Summary

A coupled channel analysis of p̄ p annihilation to π0π0η,
π0ηη and K+K−π0 at a beam momentum of 900 MeV/c
has been performed by considering ππ -scattering data for the
S0-, D0- and P1-waves. The usage of the K-matrix approach
for the description of the dynamics ensures a sufficient fulfill-
ment of unitarity and analyticity conditions. It was demon-
strated, that it is possible to extract the properties of all con-
tributing resonances in a simultaneous fit to all data. In lots
of analyses in the past, part of the properties were taken from
previous fits to a sub-set of data and are not treated as free
parameters. All data are reproduced reasonably well by the
simultaneous fit. The dominant contributions in the three p̄ p
channels are the a2 π0, and f2 η components for π0π0η, the
f0 π0 and a2 η waves for π0ηη and the K ∗(892)± K∓ reac-
tion for K+K−π0. Masses and widths obtained from the
Breit-Wigner paramerterizations for isolated resonances and
pole positions extracted from the K-matrix descriptions have
been determined and are within the ballpark of other individ-
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Table 5 Spin density matrix elements averaged over the whole produc-
tion cross section for the φ(1020), K ∗(892)+ and π0

1 vector mesons in
their respective helicity system. The errors give the statistical and the

systematic uncertainties. Due to symmetry reasons the elements  ρ1 0
for φ(1020) and π0

1 are exactly 0 and therefore not listed here

φ(1020) K ∗(892)+ π1

ρ0 0 (%) 25.2 ± 6.9+ 8.3
− 8.0 31.1 ± 1.8+ 13.2

− 2.5 66.7 ± 0.1+ 10.7
− 22.8

ρ1 −1 (%) −3.5 ± 5.0+ 1.7
− 5.3 −1.8 ± 1.1+ 0.1

− 3.4 −16.3 ± 0.1+ 8.8
− 6.2

 ρ1 0 (%) −8.4 ± 1.0+ 3.1
− 0.3
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Fig. 19 Differential production cross section of p̄ p → π0
1 π0 with

π0
1 → π0η (a) and spin density matrix elements ρ00 (b), ρ10 (c) and

ρ1−1 (d) of the π0
1 in p̄ p → π0

1 π0. All elements are shown in the
helicity system of the π0

1 . The yellow and the gray bands stand for the
statistical and systematic uncertainty, respectively

ual measurements. In the channel π0π0η a significant contri-
bution of the spin exotic I G = 1− J PC = 1−+ wave decay-
ing to π0η has been observed. By choosing the K-matrix
approach with one pole and two decay channels (πη, πη′)
for the description of the dynamics, a mass of (1404.7 ± 3.5
(stat.) +9.0

−17.3 (sys.)) MeV/c2 and a width of (628.3 ± 27.1

(stat.) +35.8
−138.2 (sys.)) MeV are obtained. An analysis explic-

itly focused on this spin-exotic wave will be presented in
a forthcoming paper. Partial decay widths for the f2(1270),
f ′
2(1525),ρ(770) andρ(1700) states and ratios of these prop-

erties for the a0 and a2 resonances have been retrieved via
the residues of the pole positions. The differential production
cross section and the spin-density-matrix elements for the
φ(1020) and the K ∗(892)± have been extracted. While the
φ(1020) vector meson is produced strongly in the forward
and backward direction, the K ∗(892)− instead, is charac-
terized by a very significant asymmetric dependence on the
production angle. No spin-alignment effects are observed for

both vector mesons but the individual spin-density matrix ele-
ments exhibit an oscillatory dependence on the production
angle. The SDM elements have also been determined for the
spin-exotic wave π0

1 with an averaged value of ρ00 = 66.7%.
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