

Search for new heavy resonances in leptonic or hadronic final states with the ATLAS detector

Matthew Feickert (on behalf of the ATLAS Collaboration)

University of Illinois at Urbana-Champaign

Lake Louise Winter Institute 2020 February 10th, 2020

New physics through the lens of heavy resonances

- Plethora of BSM models that predict new heavy resonances!
 - New scalars in MSSM
 - Sequential Standard Model (simplified models)
 - Heavy vector bosons $Z'_{\rm SSM}$, $W'_{\rm SSM}$
 - E_6 -motivated Grand Unification Z'_{ψ}
 - Heavy Vector Triplet $Z'_{\rm HVT}$
 - Compositness models with excited quarks q*
 - Dark matter mediator Z'
- Excellent targets for searches using our trusted tools: leptons and jets

A talk in three searches

Search strategies

Resonant search strategy

- 1. Reconstruct the 4-momentum of the final state particles
- 2. Combine to form the invariant mass spectrum
- 3. Fit the smoothly falling SM background to search for new resonances
- 4. If no significant deviations, set limits on the BSM process cross section

- Final states with leptons have lower backgrounds that can be triggered on efficiently
- Resonances with hadronic decays can have larger branching ratios
- Modified couplings can result in preferential decays to heavy flavour

Dilepton (starting clean)

Highest invariant mass dielectron candidate 2015–2018 data with $m_{ee} = 4.06$ TeV [Phys. Lett. B 796 (2019) 68]

Dilepton: Search strategy

[Phys. Lett. B 796 (2019) 68]

- Benefits from a factor of 4 increase in luminosity over previous search (36.1 fb⁻¹) [JHEP 10 (2017) 182]
- ▶ After event selection require m_{ℓℓ} > 225 GeV to be above the Z peak region
- Background fit made on data with a functional form chosen to minimize spurious signal

$$f_{\ell\ell}(m_{\ell\ell}) = f_{\mathrm{BW,Z}}(m_{\ell\ell}) \cdot (1-x^c)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i}$$

for $x=m_{\ell\ell}/\sqrt{s}$ and $f_{\mathrm{BW,Z}}(m_{\ell\ell})$ as non-relativistic Breit-Wigner

 Generic signal shape of non-relativistic Breit-Wigner (width varies) convolved with the detector resolution used to determine the significance of observed deviations

Dilepton: Results

- No significant excesses observed in the dielectron or the dimuon channels
- 95% CL upper limits set on the fiducial cross-section × branching ratio for generic resonances decaying to dileptons
- Lower limit on $m_{Z'}$
 - Z'_{SSM}: 5.1 TeV
 Z'_ψ: 4.5 TeV
 Z'_γ: 4.8 TeV
- Most stringent limits to date

(HVT limits in backup)

[Phys. Lett. B 796 (2019) 68]

ATLAS

lepton + missing transverse momentum (finding friends) Event with highest m_T in electron + E_T^{miss} channel in 36.1 fb⁻¹ data [Eur. Phys. J. C 78 (2018) 401]

Lepton + MET: Search strategy

- Uses full Run-2 (139 fb⁻¹) dataset for improvements over [Eur. Phys. J. C 78 (2018) 401] (36.1 fb⁻¹)
- Uses high p_T single-electron or single-muon triggers to fight against Drell-Yan W background
 - Shown in muon p_T and E_T^{miss} (pre-fit) plots
 - Signal and background discrimination relies on the transverse mass

$$m_{T} = \sqrt{2 p_{T} \boldsymbol{E}_{T}^{\text{miss}} \left(1 - \cos \phi_{\ell \nu}\right)}$$

for $\phi_{\ell\nu}$ angle between the charged lepton and missing transverse momentum directions in the transverse plane

E^{miss} [GeV]

[Phys. Rev. D 100 (2019) 052013]

 $W'_{\rm SSM}$

 $\ell \in \{e, \mu\}$

Lepton + MET: Results

[Phys. Rev. D 100 (2019) 052013]

- No significant excesses observed in the electron or the muon channels
- 95% CL upper limits set on the cross-section for SSM W' decaying to leptons of a single generation

- Observed lower limit on m_{W'}
 - $W'_{\rm SSM} \rightarrow e\nu$: 6.0 TeV
 - $W'_{\rm SSM} \rightarrow \mu\nu: 5.1 \text{ TeV}$
 - ► $W'_{\rm SSM} \rightarrow \ell \nu$: 6.0 TeV

Dijet (ending with multitudes)

Dijet event 2017 data with $m_{ii} = 9.5$ TeV [arXiv:1910.08447]

Dijet: Search strategy

- Events selected using single-jet trigger with p_T > 420 GeV (lowest p_T un-prescaled)
- Uses variable binning given varying resolution
- b-jet identification done using deep neural network (DL1r) for first time at ATLAS!
- ▶ Improvements in jet flavour identification at high p_T increase sensitivity over previous analysis [Phys. Rev. D 98 (2018) 032016] more than expected from increased luminosity (36 fb⁻¹ \rightarrow 139 fb⁻¹)

[arXiv:1910.08447]

77% efficient b-tagging DL1r working point gives maximal signal sensitivity for b-tagged categories

Dijet: Results (subset)

- No significant excesses observed
- ▶ 95% CL upper limits set on
 - signal cross-section × acceptance × branching ratio
 - signal cross-section × acceptance × branching ratio × b-tagging selection efficiency (for 1b and 2b)
- Observed lower limits on mass
 - Excited quark q*: 6.7 TeV
 - $Z'_{\rm DMM}
 ightarrow b ar{b}$ for $g_q = 0.25$: 2.9 TeV
- (Quantum black hole, Z', W', W*, and KK graviton results in backup)

- At high mass and high-p_T resonant signatures are relatively clean and so great for HL-LHC environment
- The increased luminosity of 3–4 ab⁻¹ (factor of 20–25 from Run-2 delivered) gives a nice boost
- Important for:
 - models ATLAS is just on the edge of being sensitive to
 - tail effects of new physics

Model	Final State	Lower Limit	arXiv
$Z'_\psi o \ell \ell$	$2e, \mu$	$m_{Z'_\psi} > 4.5 { m TeV}$	1903.06248
$Z'_{\chi} o \ell \ell$	$2e, \mu$	$m_{Z_{Y}'} > 4.8 \text{ TeV}$	1903.06248
$Z'_{ m SSM} ightarrow \ell\ell$	$2e, \mu$	$m_{Z'_{\rm SSM}} > 5.1 {\rm TeV}$	1903.06248
$W_{ m SSM}^\prime o e u$	$1e + E_T^{ m miss}$	$m_{W'_{\rm SSM}} > 6.0 {\rm TeV}$	1706.04786
$W_{ m SSM}^\prime ightarrow \mu u$	$1\mu + E_T^{ m miss}$	$m_{W'_{ m SSM}} > 5.1 { m TeV}$	1706.04786
$W'_{\rm SSM} o \ell \nu$	$1e, \mu + E_T^{ ext{miss}}$	$m_{W'_{\rm SSM}} > 6.0 {\rm TeV}$	1706.04786
$q^* ightarrow qg$	2 <i>j</i>	$m_{q^*} > 6.7$ TeV	1910.08447
QBH ightarrow jj	2 <i>j</i>	$m_{QBH} > 9.4 \text{ TeV}$	1910.08447
W' o qar q'	2 <i>j</i>	$m_{W'}>$ 4.0 TeV	1910.08447
$W^* o qar q'$	2 <i>j</i>	$m_{W^*} > 3.9 \; { m TeV}$	1910.08447
$Z_{ m DMM}^\prime o qar q, g_q = 0.20$	2 <i>j</i>	$m_{Z'_{ m DMM}} > 3.8 { m TeV}$	1910.08447
$Z_{ m DMM}^\prime o qar q, g_q = 0.25$	2 <i>j</i>	$m_{Z'_{\rm DMM}} > 4.6 \text{ TeV}$	1910.08447
$b^* ightarrow bg$	1b, 1j	$m_{b^*} > 3.2 \text{ TeV}$	1910.08447
$Z_{ m DMM}^\prime o bar b, g_q = 0.20$	2 <i>b</i>	$m_{Z'_{ m DMM}} > 2.8 { m TeV}$	1910.08447
$Z_{ m DMM}^\prime o bar b, g_q = 0.25$	2 <i>b</i>	$m_{Z'_{\rm DMM}} > 2.9 \text{ TeV}$	1910.08447
$Z'_{ m SSM} ightarrow bar{b}$	2 <i>b</i>	$m_{Z'_{\rm SSM}} > 2.7 \text{ TeV}$	1910.08447
$G_{KK} ightarrow bar{b}, k/ar{M}_{ m PL} = 0.2$	2 <i>b</i>	$m_{G_{KK}} > 2.8 \text{ TeV}$	1910.08447

- No evidence of new physics. However,...
- Numerous BSM models tested with the full Run-2 139 fb⁻¹ dataset using dilepton, lepton + E_T^{miss}, and dijet searches
- Between the three analyses 17 new limits set!
- Further searches in Run-3 and beyond at the HL-LHC will increase range of sensitivity

Z' in BSM Models

- Sequential Standard Model:
 - $\blacktriangleright~Z'_{\rm SSM}$ couplings to SM fermions is the same as the SM Z
 - Z'_{SSM} width increases proportional to its mass
 - Couplings to SM vector bosons suppressed (or 0)
- ▶ E₆-motivated Grand Unification
 - \blacktriangleright SU(5) with two additional U(1), resulting in two new gauge fields: ψ and χ
 - ▶ Particle associated with the fields can mix to form Z' candidates

$$Z' = Z'_\psi \cos heta_{\mathrm{E}_6} + Z'_\chi \sin heta_{\mathrm{E}_6}$$

 \blacktriangleright Z' couplings to fermions determined by the symmetry breaking and value of ${
m E}_6$

Heavy Vector Triplet

- > Z'_{HVT} is neutral member of a new SU(2) group resulting in being part of a triplet
- Cannot exist without $W'^{\pm}_{\rm HVT}$ that should be nearly degenerate in mass
- Dark matter mediator
 - $Z'_{\rm DMM}$ is member of a new U(1) group

- Substructure of quarks would lead to contact interactions at high energy scales between the constituents
- Lead to deviations from the expected QCD scattering behaviour, which would be most visible in:
 - ▶ Inclusive jet cross section at high p_T
 - Dijet invariant mass distribution
 - Dijet angular distributions of jets in the parton-parton centre-of-mass system

Drell-Yan Backgrounds

$$f_{\ell\ell}(m_{\ell\ell}) = f_{\mathrm{BW},\mathrm{Z}}(m_{\ell\ell}) \cdot \left(1 - x^c\right)^b \cdot x^{\sum_{i=0}^3 p_i \log(x)^i}$$

for $x = m_{\ell\ell}/\sqrt{s}$ and parameters *b* and p_i with $= 0, \dots, 3$ are left free in the fit to data and independent for dielectron and dimuon channels. The parameter *c* is 1 for the dielectron and 1/3 for the dimuon channel. $f_{\rm BW,Z}(m_{\ell\ell})$ is the non-relativistic Breit-Wigner with $m_Z = 91.1876$ GeV and $\Gamma_Z = 2.4952$ GeV.

The chosen fit range of $m_{\ell\ell} \in [225 \text{ GeV}, 6 \text{ TeV}]$ is mainly affected by the Z peak region, which starts to modify the spectrum towards lower $m_{\ell\ell}$. Studies with modified fit ranges show that a lower starting point of the fit yields higher spurious signal values.

Dilepton: HVT Model Limits

- Dilepton upper limits converted to exclusion contours in the HVT model coupling space
- \triangleright g_i are coupling strength between the triplet field for

Fermion coupling

0.

0.

-0.

_0

-0.

- g_{ℓ} : leptons
- \triangleright g_a : quarks
- \blacktriangleright g_h : Higgs
- Area outside of curves is excluded at the 95% CL

$$\{g_h,g_f\}$$
 with $g_f\equiv g_\ell=g_q$

[Phys. Lett. B 796 (2019) 68]

$$\{g_q, g_l\}$$
 with $g_h = 0$

- \blacktriangleright Uses high p_{T} single-electron or single-muon triggers to fight against Drell-Yan W background
 - ▶ e: p_T > 60 GeV
 - $e: p_T > 140$ GeV (worse electron id)
 - μ : $p_T > 50$ GeV

Throughout Run-2, a modeling issue has been observed, leading to a higher yield in data than in MC in the low end of the signal region m_T distribution. The issue has been observed in both the electron and muon channels, and is assumed to be predominantly due to an issue with the modeling of the non-leptonic event activity, such as jet emissions, parton shower, and/or underlying event, and/or the corresponding modeling of the detector response to this activity (jet reconstruction, E_{τ}^{miss} soft term, etc.). Indeed it is the systematic uncertainties related to these effects, in particular to the jet energy resolution and E_{τ}^{miss} soft term that allows a suitable description of the mismodeling in terms of nuisance parameter pulls in the statistical analysis. A large component of the mismodeling seems to be a better E_T^{miss} resolution in MC than in data. leading to a wider reconstructed W boson mass peak in the data than in MC, and a corresponding overshoot of data over MC in the steeply falling region at the high end of the peak.

[Phys. Rev. D 100 (2019) 052013]

Combined upper limits on the SSM W' model

Combined upper limits on the SSM W' model for various widths

BumpHunter Algorithm

Example from PHYSTAT2011, arXiv:1101.0390

- PHYSTAT2011, arXiv:1101.0390
- BumpHunter: fit in varying width window to find region of data most discrepant with model and calculates global *p*-value (accounts for "look elsewhere effect")

Dijet: W^* Limits

[arXiv:1910.08447]

95% CL lower limit on m_{W^*} of 3.9 TeV

Dijet: b^* Limits

[arXiv:1910.08447]

95% CL lower limit on m_{b^*} of 3.2 TeV

Dijet: QBH and W' Limits

[arXiv:1910.08447]

^{95%} CL lower limit on $m_{\rm QBH}$ of 9.4 TeV

^{95%} CL lower limit on $m_{W'}$ of 3.9 TeV

Dijet: $Z'_{\rm SSM}$ and Kaluza-Klein Graviton Limits

[arXiv:1910.08447]

^{95%} CL lower limit on m_G of 2.8 TeV

The experiments would like to have more time to complete their upgrades. As a consequence, LS2 has been extended by two months [to May 2021], and LS3 has been delayed by one year [to 2025] to accommodate the extra time needed by ATLAS and CMS to finalise their Phase 2 upgrades while maximising the integrated luminosity from Run 3.

- Fabiola Gianotti, Director-General of CERN

Fractional Event Counts?

- Dilepton fit plots are representing events differential in mass (density not count)
- Plot has variable width bins, so the individual bin density (integer) needs to be scaled by the bin width scale factor to reach the plot density (Events/10 GeV)

Events _	Events	(10 GeV)
10 GeV =	w GeV	$\left(\overline{w \text{ GeV}} \right)$