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We discuss second quantization, discrete symmetry transformations, and inner products in free
non-Hermitian scalar quantum field theories with PT symmetry, focusing on a prototype model of
two complex scalar fields with anti-Hermitian mass mixing. Whereas the definition of the inner
product is unique for theories described by Hermitian Hamiltonians, its formulation is not unique for
non-Hermitian Hamiltonians. Energy eigenstates are not orthogonal with respect to the conventional Dirac
inner product, so we must consider additional discrete transformations to define a positive-definite norm.
We clarify the relationship between canonical-conjugate operators and introduce the additional discrete
symmetry C0, previously introduced for quantum-mechanical systems, and show that the C0PT inner
product does yield a positive-definite norm, and hence is appropriate for defining the Fock space in non-
Hermitian models with PT symmetry in terms of energy eigenstates. We also discuss similarity
transformations between PT -symmetric non-Hermitian scalar quantum field theories and Hermitian
theories, showing that they would require modification in the presence of interactions. As an illustration of
our discussion, we compare particle mixing in a Hermitian theory and in the corresponding non-Hermitian
model with PT symmetry, showing how the latter maintains unitarity and exhibits mixing between scalar
and pseudoscalar bosons.
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I. INTRODUCTION

Recent years have witnessed growing interest in non-
Hermitian quantum theories [1], particularly those with PT
symmetry, where P and T denote parity and time reversal,
respectively [2]. It is known that a quantum system
described by a non-Hermitian Hamiltonian has real ener-
gies and leads to a unitary time evolution if this
Hamiltonian and its eigenstates are invariant under PT
symmetry [3]. This increasing interest has been driven in
part by theoretical analyses supporting the consistency of
such theories in the context of both quantummechanics and
quantum field theory, and in part by the realization that
such theories have applications in many physical contexts,
e.g., photonics [4,5] and phase transitions [6,7]. Although

there are strong arguments for the consistency of PT -
symmetric quantum field theory, a number of theoretical
issues merit further attention. These include the analysis of
discrete symmetries, which requires in turn a careful
analysis of the Fock spaces of non-Hermitian quantum
field theories with PT symmetry and their inner products.1

In this paper, we study and clarify these issues in the
context of a minimal non-Hermitian bosonic field theory
with PT symmetry at the classical and second-quantized
levels. We construct explicitly in the quantum version the
operators generating discrete symmetries and discuss the
properties of candidate inner products in Fock space. We
also construct a similarity transformation between the free-
field PT -symmetric non-Hermitian model and the corre-
sponding Hermitian counterpart, showing explicitly that the
correspondence would not hold without modification in the
presence of interactions.
As an application of this formalism, we discuss the

simplest nontrivial prototype quantum particle system,
namely, mixing in models of noninteracting bosons—
building upon the study [9] that described how to interpret
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1A detailed description of the PT inner product in quantum
mechanics can be found in Ref. [8].
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the corresponding PT -symmetric Lagrangian.2 These sys-
tems appear in various physical situations of phenomeno-
logical interest, such as coupled pairs of neutral mesons, and
also appear in the PT -symmetric extension of supersym-
metry [14]. Issues arising in the formulation of such theories
include the roles of discrete symmetries, the relationship
between the descriptions of mixing in the PT -symmetric
non-Hermitian case and the standard Hermitian case,3 and
the status of unitarity, which has been questioned in non-
Hermitian theories [19,20]. As an example, we exhibit a
mechanism allowing oscillations between scalar and pseu-
doscalar bosons, which is possible with a mass-mixing
matrix that is anti-Hermitian, but with real eigenvalues, and
we compare with results in the previous literature.
The layout of our paper is as follows. In Sec. II, we

introduce the minimal two-flavor non-Hermitian bosonic
field theory that we study, discussing in Sec. II A its
discrete symmetries P, T , and C0 [21] at the classical level
as well as the similarity transformation relating it to a
Hermitian theory, and mentioning a formal analogy with
(1þ 1)-dimensional special relativity in Sec. II B. We
discuss in Sec. III the second quantization of the theory
in both the flavor and mass bases. Then, in Sec. IV, we
discuss the quantum versions of the discrete symmetries
and various definitions of the inner product in Fock space.
In particular, we discuss in Secs. IVA and IV B the parity
and C0 transformations, and we discuss the similarity
transformation in Sec. IV C, emphasizing that the equiv-
alence between the noninteracting non-Hermitian model
and a Hermitian theory does not in general carry over to an
interacting theory, in the absence of modifications.
(Appendix A compares the similarity transformation dis-
cussed in this paper with a previous proposal [15] in the
literature.) In Sec. IV D, we distinguish the PT and C0PT
inner products from the conventional Dirac inner product,
showing that only the C0PT inner product is orthogonal
and consistent with a positive-definite norm.4 Section IV E
revisits the parity transformation, and, in Sec. IV F, we
discuss time reversal in the light of our approach. As an
illustration, we discuss in Sec. V scalar-pseudoscalar
mixing and oscillations in the non-Hermitian model, which
reflect the fact that the parity operator does not commute
with the Hamiltonian. We compare with oscillations in a
Hermitian model and emphasize that unitarity is respected.
Our conclusions are summarized in Sec. VI.
A summary of notation is provided in Table I, and some

useful expressions are gathered in Appendix B.

II. PROTOTYPE MODEL

For definiteness, we frame the discussions that follow in
the context of a prototype non-Hermitian but PT -sym-
metric noninteracting bosonic field theory, comprising two
flavors of complex spin-zero fields ϕi (i ¼ 1, 2 are flavor
indices) with non-Hermitian mass mixing. The two com-
plex fields have 4 degrees of freedom, the minimal number
needed to realize a non-Hermitian, PT -symmetric field
theory with real Lagrangian parameters. This should be
contrasted with other non-Hermitian quantum field theories
that have been discussed in the literature, which instead
have fewer degrees of freedom but complex Lagrangian
parameters [22–28]. It is understood that we are working in
3þ 1-dimensional Minkowski spacetime throughout.
The Lagrangian of the model is [9]

L ¼ ∂νϕ
�
i ∂νϕi −m2

iϕ
�
iϕi − μ2ðϕ�

1ϕ2 − ϕ�
2ϕ1Þ; ð1Þ

where m2
i > 0 and μ2 are real squared-mass parameters.

The squared mass matrix

m2 ≡
�

m2
1 μ2

−μ2 m2
2

�
ð2Þ

is skew symmetric. The squared eigenmasses are

m2
� ¼ m2

1 þm2
2

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4μ4

q
; ð3Þ

which are real so long as

η≡
���� 2μ2

m2
1 −m2

2

���� ≤ 1; ð4Þ

which defines the PT -symmetric regime we consider here.
For η > 1, PT symmetry is broken by the complex
eigenstates of the mass matrix; the eigenmasses are not
real and time evolution is not unitary. At η ¼ 1, the
eigenvalues merge and the mass matrix becomes defective;
at this exceptional point, the squared-mass matrix only has
a single eigenvector (see, e.g., Ref. [12]). Hereafter, we take
m2

1 > m2
2, without loss of generality, so that we can omit the

TABLE I. Summary of notational conventions used in this paper.

� Complex conjugation
T Operator/matrix transposition
C (Ĉ) Charge conjugation (operator)

C0 (Ĉ) C0 transformation (operator)

P (P̂) Parity transformation (operator)

T (T̂ ) Time-reversal transformation (operator)
†≡ � ∘T Hermitian conjugation
‡≡ PT ∘T PT conjugation
§≡ C0PT ∘T C0PT conjugation

2Self-interactions of these scalar fields were considered in
Ref. [10], their coupling to an Abelian gauge field in Ref. [11]
and to non-Abelian gauge fields in Ref. [12]. See Ref. [13] for a
study of ’t Hooft-Polyakov monopoles in a non-Hermitian model.

3See Refs. [15–18] for an alternative description of these
models in terms of similarity transformations that map to a
Hermitian model.

4For an alternative approach, see Ref. [8].
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absolute value on the definition of the non-Hermitian
parameter η in Eq. (4).
By virtue of the non-Hermiticity of the Lagrangian,

namely, that L� ≠ L, the equations of motion obtained
by varying the corresponding action with respect to ϕ† ≡
ðϕ�

1;ϕ
�
2Þ and ϕ≡ ðϕ1;ϕ2ÞT differ by μ2 → −μ2 and there-

fore differ except for trivial solutions. However, we are free
to choose either of these equations of motion to define the
dynamics of the theory, since physical observables con-
sistent with the PT symmetry of the model depend only on
μ4 [9]. As we show in this paper, the choice of the equations
of motion coincides with the choice of whether to take the
Hamiltonian operator Ĥðμ2Þ or Ĥð−μ2Þ ¼ Ĥ†ðμ2Þ≠ Ĥðμ2Þ
(its Hermitian conjugate) to generate the time evolution.
For definiteness, and throughout this work, the classical
dynamics of this theory will be defined by varying with
respect to ϕ†, leading to the following equations of motion:

□ϕiðxÞ þm2
ijϕjðxÞ ¼ 0; ð5aÞ

□ϕ�
i ðxÞ þm2

ijϕ
�
jðxÞ ¼ 0: ð5bÞ

We reiterate that this choice amounts to no more than fixing
the irrelevant overall sign of the mass-mixing term
in Eq. (1).

A. Discrete symmetries

At the classical level with c-number Klein-Gordon
fields, the Lagrangian in Eq. (1) is PT symmetric under
the naive transformations

P∶ ϕ1ðt;xÞ → ϕ0
1ðt;−xÞ ¼ þϕ1ðt;xÞ;

ϕ2ðt;xÞ → ϕ0
2ðt;−xÞ ¼ −ϕ2ðt;xÞ; ð6aÞ

T ∶ ϕ1ðt;xÞ → ϕ0
1ð−t;xÞ ¼ þϕ�

1ðt;xÞ;
ϕ2ðt;xÞ → ϕ0

2ð−t;xÞ ¼ þϕ�
2ðt;xÞ; ð6bÞ

if one of the fields transforms as a scalar and the other as a
pseudoscalar. As we show in this work, the Lagrangian of
this model is also PT symmetric at the quantum oper-
ator level.
However, it is important to realize that the Lagrangian in

Eq. (1), and the resulting equations of motion, is not
invariant under parity. In fact, the action of parity inter-
changes the two possible choices of equation of motion
obtainable from Eq. (1). Taking this into account, there are
a further two classical Lagrangians that are physically
equivalent to Eq. (1) and for which the parity trans-
formation can be consistently defined,

L̃ ¼ ∂νϕ̃
�
i ∂νϕi −m2

i ϕ̃
�
iϕi − μ2ðϕ̃�

1ϕ2 − ϕ̃�
2ϕ1Þ; ð7aÞ

L̃� ¼ ∂νϕ
�
i ∂νϕ̃i −m2

iϕ
�
i ϕ̃i þ μ2ðϕ�

1ϕ̃2 − ϕ�
2ϕ̃1Þ; ð7bÞ

and their “tilde” conjugates

˜̃L ¼ ∂νϕ
�
i ∂νϕ̃i −m2

iϕ
�
i ϕ̃i − μ2ðϕ�

1ϕ̃2 − ϕ�
2ϕ̃1Þ; ð8aÞ

˜̃L
� ¼ ∂νϕ̃

�
i ∂νϕi −m2

i ϕ̃
�
iϕi þ μ2ðϕ̃�

1ϕ2 − ϕ̃�
2ϕ1Þ; ð8bÞ

differing by μ2 → −μ2, i.e., L̃ðμ2Þ ¼ ˜̃L
�ð−μ2Þ. The fields

indicated by a tilde are defined by the action of parity,
namely,

P∶ ϕ1ðt; xÞ → ϕ0
1ðt;−xÞ ¼ þϕ̃1ðt;xÞ;

ϕ2ðt; xÞ → ϕ0
2ðt;−xÞ ¼ −ϕ̃2ðt;xÞ: ð9Þ

For these Lagrangians, the Euler-Lagrange equations are
self-consistent, and Eq. (7a) yields

□ϕ̃iðxÞ þm2
jiϕ̃jðxÞ ¼ 0; ð10aÞ

□ϕ̃�
i ðxÞ þm2

jiϕ̃
�
jðxÞ ¼ 0: ð10bÞ

Making use of Eq. (9) and the time-reversal transformations
in Eq. (6), we see that the Lagrangians in Eqs. (7) and (8)
remain PT symmetric.
In order to illustrate the flavor structure of this model, it

is convenient to consider a matrix model with non-
Hermitian squared Hamiltonian given by

H2 ¼
�

m2
1 μ2

−μ2 m2
2

�
; ð11Þ

reflecting the squared-mass matrix of the model in Eq. (1).
The Hamiltonian is (up to an overall sign)

H ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1m
2
2 þ μ4

pq

×

 
m2

1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1m
2
2 þ μ4

p
μ2

−μ2 m2
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1m
2
2 þ μ4

p
!
;

ð12Þ

with eigenvectors [9]

eþ ¼ N

�
η

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
; e− ¼ N

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

�
;

ð13Þ

where N is a normalization factor. We remark that it is
necessary to take the positive square root in Eq. (12) in
order for the Hamiltonian to be well defined at the excep-
tional points.
Under a parity transformation, the squared Hamiltonian

transforms as
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P∶ PH2P ¼
�
m2

1 −μ2

μ2 m2
2

�
¼ H2;T; ð14Þ

where the matrix P is a 2 × 2 matrix that reflects the
intrinsic parities of the scalar and pseudoscalar fields in
Eq. (1),

P ¼
�
1 0

0 −1

�
: ð15Þ

An important difference from the Hermitian case is that
the eigenvectors (13) are not orthogonal with respect to the
Hermitian inner product, e�− · eþ ≠ 0. Instead, they are
orthogonal with respect to the PT inner product,

e‡þeþ ¼ ePTþ · eþ ¼ −e‡−e− ¼ −ePT− · e− ¼ 1; ð16aÞ

e‡þe− ¼ ePTþ · e− ¼ e‡−eþ ¼ ePT− · eþ ¼ 0; ð16bÞ

where ‡≡ PT ∘T, with T indicating matrix transposition,5

and

ePT� ¼ Pe��; ð17Þ

and we choose the normalization constant [9]

N ¼
�
2η2 − 2þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
−1=2

: ð18Þ

Notice, however, that one of the eigenvectors, viz. e−, has
negative PT norm, as is expected for a non-Hermitian
PT -symmetric theory. Note that the Hamiltonian is PT
symmetric in the sense that ½H; ‡� ¼ 0.
As was first shown in Ref. [21], the PT symmetry of

the Hamiltonian allows the construction of an additional
symmetry transformation, which we denote by C0 and
which can be used to construct a positive-definite norm:
the C0PT norm.6

The C0 matrix for the squared Hamiltonian in Eq. (11) is
given by [10]

C0 ¼ RPR−1 ≡ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
1 −η
η −1

�
; ð19Þ

where

R≡ N

 
η 1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

!
ð20Þ

gives the matrix similarity transformation that diagonalizes
the Hamiltonian, i.e.,

h2 ¼ RH2R−1 ¼
�
m2þ 0

0 m2
−

�
: ð21Þ

We note that this similarity transformation leads to a
Hermitian Hamiltonian. Indeed, it is well established that
for noninteracting non-Hermitian PT -symmetric theories
the C0 transformation is directly related to the similarity
transformation that maps the theory to a Hermitian one.
Specifically, the matrix C0 can be written in the form7

C0 ¼ e−QP; ð22Þ

where the matrix Q has the property that

h2 ¼ e−Q=2H2eQ=2; ð23Þ

leading to the same Hermitian Hamiltonian. Using the
identity

R ¼ PR−1P; ð24Þ

we can confirm that Eq. (23) is consistent with Eq. (21),
i.e.,

e−Q ¼ C0P ¼ RPR−1P ¼ R2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
1 η

η 1

�
; ð25Þ

and it follows that

Q ¼ lnR−2 ¼ −arctanhðηÞQ̄; ð26Þ

where

Q̄≡
�
0 1

1 0

�
: ð27Þ

The C0PT conjugates of the eigenvectors are

eC
0PTþ ¼ C0Peþ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p �

1 η

η 1

�
eþ

¼ N

 
η

1 −
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
!
; ð28aÞ

5The ‡ notation was introduced in Ref. [29] and extended in
Ref. [9].

6As we discuss in Sec. IV B, the C0 transformation in a PT -
symmetric quantum field theory cannot be identified with charge
conjugation.

7There is a relative sign in the definition of the matrix Q
compared with Refs. [23,24], due to differing conventions for the
definition of the C0PT inner product.
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eC
0PT

− ¼ C0Pe− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
1 η

η 1

�
e−

¼ N

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
η

!
; ð28bÞ

and it is easy to check that their C0PT norms are positive
definite,

e§�e� ¼ eC
0PT

� · e� ¼ 1; ð29Þ
where §≡ C0PT ∘T, and that they are orthogonal,

eC
0PT

� · e∓ ¼ 0: ð30Þ
We note that C0 reduces to P in the Hermitian limit η → 0,
so that the C0PT inner product reduces to the Hermitian
inner product.
It will prove helpful to note that we can also write the

mass eigenstates and their C0PT conjugates in the follow-
ing ways:

eþ ¼ R−1e1 ¼ R−1
1j ej; ð31aÞ

e− ¼ R−1e2 ¼ R−1
2j ej; ð31bÞ

C0Peþ ¼ Re1 ¼ R1jej; ð31cÞ

C0Pe− ¼ Re2 ¼ R2jej; ð31dÞ

where

e1 ¼
�
1

0

�
and e2 ¼

�
0

1

�
ð32Þ

are the flavor eigenstates. In addition, we can show that

eTþC0Peþ ¼ eT1R
−1C0PR−1e1 ¼ e1 · e1; ð33aÞ

eT− C0Pe− ¼ eT2R
−1C0PR−1e2 ¼ e2 · e2; ð33bÞ

i.e., the Hermitian inner product of the flavor eigenstates,
which is not problematic, is related to the C0PT inner
product of the mass eigenstates.

B. Analogy with 1 + 1-dimensional special relativity

The similarity transformation (23) between the flavor
and mass eigenbases is not a rotation, since the original
mass-mixing matrix is not Hermitian. Interestingly, how-
ever, it is analogous to a Lorentz boost in the 1þ 1-
dimensional field space ðϕ1;ϕ2Þwith metric P. Indeed, one
can easily check that R can be written in the form

R ¼ γ

�
1 v

v 1

�
; ð34Þ

where

v≡ 1

η

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
and γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p : ð35Þ

The PT -symmetric phase, characterized by 0 ≤ η ≤ 1,
corresponds to the “subluminal regime” 0 ≤ v ≤ 1,
whereas the PT symmetry-breaking phase corresponds
to the “superluminal regime” v > 1.
As is known from special relativity, the Pauli matrix σ1

generates 1þ 1-dimensional Lorentz boosts, and one can
also write

R ¼ expðασ1Þ with α≡ arctanh v; ð36Þ

which is consistent with Eqs. (25)–(27), since Q̄ ¼ σ1 and

arctanh v ¼ 1

2
arctanh η: ð37Þ

The quadratic field invariants under a change of basis are
ϕ†
i Pijϕj and ϕiPijϕj, as well as their complex conjugates.

III. QUANTIZATION

Having understood the flavor structure of this non-
Hermitian model, we now turn our attention to its second
quantization.

A. Flavor basis

For the two-flavor model, the mass matrix is not diagonal
in the flavor basis, and the same is true of the energy, whose
square is given by

E2
ijðpÞ ¼ p2δij þm2

ij: ð38Þ

Since the squared-mass matrix m2 is non-Hermitian, so too
is the energy, i.e., E† ≠ E.
As described earlier, and due to the non-Hermiticity of

the action, we obtain distinct but physically equivalent
equations of motion by varying with respect to ϕ̂†

i or ϕ̂i
(see, e.g., Ref. [9]). Starting from the Lagrangian

L̂ ¼ ∂νϕ̂
†
i ∂νϕ̂i −m2

i ϕ̂
†
i ϕ̂i − μ2ðϕ̂†

1ϕ̂2 − ϕ̂†
2ϕ̂1Þ; ð39Þ

and choosing the equations of motion by varying with
respect to ϕ̂†

i , we have

□ϕ̂i þm2
ijϕ̂j ¼ 0; ð40aÞ

□ϕ̂†
i þm2

ijϕ̂
†
j ¼ 0: ð40bÞ

Since E†
ij ¼ Eji, it follows that the plane-wave decom-

positions of the scalar field operators are
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ϕ̂iðxÞ ¼
Z
p
½2EðpÞ�−1=2ij ½ðe−ip·xÞjkâk;pð0Þþ ðeip·xÞjkĉ†k;pð0Þ�;

ð41aÞ

ϕ̂†
i ðxÞ ¼

Z
p
½2EðpÞ�−1=2ij ½ðe−ip·xÞjkĉk;pð0Þþ ðeip·xÞjkâ†k;pð0Þ�;

ð41bÞ
where we have used the shorthand notationZ

p
≡
Z

d3p
ð2πÞ3 ð42Þ

for the three-momentum integral. Since the energy is a
rank-two tensor in flavor space, it follows that the energy
factor in the phase-space measure and the plane-wave

factors must also be rank-two tensors in flavor space, with
the matrix-valued exponentials being understood in terms
of their series expansions.8

We have normalized the particle and antiparticle creation
operators â† and ĉ†, and the annihilation operators â and ĉ,
such that they have mass dimension −3=2. As a result, their
canonical commutation relations (with respect to Hermitian
conjugation) are isotropic both in the flavor and mass
eigenbases at the initial time surface for the quantization,
viz. t ¼ 0. Specifically, we have

½âi;pð0Þ; â†j;p0 ð0Þ� ¼ ½ĉi;pð0Þ; ĉ†j;p0 ð0Þ� ¼ ð2πÞ3δijδ3ðp − p0Þ:
ð43Þ

However, the nonorthogonality of the Hermitian inner
product becomes manifest at different times,

½âi;pðtÞ; â†j;p0 ðtÞ� ¼ ½ĉi;pðtÞ; ĉ†j;p0 ðtÞ� ¼ ð2πÞ3ðe−iEptÞikðeiE
T
p0 tÞkjδ3ðp−p0Þ

¼ ð2πÞ3δ3ðp−p0Þ

8>>>>>><
>>>>>>:

1þ 4μ4

ðm2
1
−m2

2
Þ2−4μ4

�
1− cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1
−m2

2
Þ2−4μ4

p
tffiffi

2
p

Ēp

�	
; i¼ j

− 2μ2ðm2
1
−m2

2
Þ

ðm2
1
−m2

2
Þ2−4μ4

�
1− cos

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1
−m2

2
Þ2−4μ4

p
tffiffi

2
p

Ēp

�
þð−Þi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 4μ4

ðm2
1
−m2

2
Þ2

q
sin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1
−m2

2
Þ2−4μ4

p
tffiffi

2
p

Ēp

�	
;

i¼ 1ð2Þ; j¼ ð2Þ1

;

ð44Þ

where

Ēp ¼
�
p2 þm2

1 þm2
2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 þm2

1Þðp2 þm2
2Þ þ μ4

q 	
1=2

;

ð45Þ
and it is clear that the canonical-conjugate variables cannot
be related by Hermitian conjugation.
As identified earlier, the non-Hermitian terms of the

Lagrangian in Eq. (1) violate parity. In fact, parity acts to
transform the Lagrangian in Eq. (1) and the corresponding
Hamiltonian into their Hermitian conjugates. As a result,
the field operators and their parity conjugates evolve with
respect to Ĥ and Ĥ†, respectively. To account for this, it is
convenient to introduce a second pair of field operators,
denoted by a check ( ˇ), which satisfy the alternative choice
of equations of motion,

□ϕ̌iðxÞ þ ðm2ÞTijϕ̌jðxÞ ¼ 0; ð46aÞ
□ϕ̌†

i ðxÞ þ ðm2ÞTijϕ̌†
jðxÞ ¼ 0; ð46bÞ

and are related to ϕ̂iðxÞ and ϕ̂†
i ðxÞ by parity,

Pijϕ̌jðPxÞ ¼ P̂ϕ̂iðxÞP̂−1; ð47aÞ
Pijϕ̌

†
jðPxÞ ¼ P̂ϕ̂†

i ðxÞP̂−1; ð47bÞ
cf. Eq. (9). Their plane-wave decompositions are

ϕ̌iðxÞ ¼
Z
p
½2ETðpÞ�−1=2ij ½ðe−ipT·xÞjkǎk;pð0Þ

þ ðeipT·xÞjkč†k;pð0Þ�; ð48aÞ

ϕ̌†
i ðxÞ ¼

Z
p
½2ETðpÞ�−1=2ij ½ðe−ipT·xÞjkčk;pð0Þ

þ ðeipT·xÞjkǎ†k;pð0Þ�; ð48bÞ

where ½pT · x�ij ¼ ET
ij · x

0 − δijp · x, differing from

Eq. (41) by E → ET. We emphasize that ϕ̂i and ϕ̌†
i evolve

with Ĥ, whereas ϕ̂†
i and ϕ̌i evolve with Ĥ†. The relations

between the creation and annihilation operators are analo-
gous to Eq. (47),

Pijǎj;−pðtÞ ¼ P̂âi;pðtÞP̂−1; ð49aÞ
Pijǎ

†
j;−pðtÞ ¼ P̂â†i;pðtÞP̂−1; ð49bÞ

8For a comprehensive discussion of flavor covariance, see
Ref. [30]. For notational simplicity, we do not distinguish in the
present work between covariant and contravariant indices in
flavor space.
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and likewise for ĉi and ĉ
†
i . We emphasize, however, that the

distinction between checked and hatted operators is neces-
sary only away from the initial time surface of the
quantization; namely, we have

ǎð†Þi;pð0Þ ¼ âð†Þi;pð0Þ ð50Þ
and likewise for the antiparticle operators. Making use of
this identification, it is more illustrative to write the various
field operators in the following forms:

ϕ̂iðxÞ ¼
Z
p
½2EðpÞ�−1=2ij ½ðe−ip·xÞjkâk;pð0Þþ ðeip·xÞjkč†k;pð0Þ�;

ð51aÞ

ϕ̂†
i ðxÞ ¼

Z
p
½2EðpÞ�−1=2ij ½ðe−ip·xÞjkčk;pð0Þþ ðeip·xÞjkâ†k;pð0Þ�;

ð51bÞ

ϕ̌iðxÞ ¼
Z
p
½2ETðpÞ�−1=2ij

× ½ðe−ipT·xÞjkǎk;pð0Þ þ ðeipT·xÞjkĉ†k;pð0Þ�; ð51cÞ

ϕ̌†
i ðxÞ ¼

Z
p
½2ETðpÞ�−1=2ij

× ½ðe−ipT·xÞjkĉk;pð0Þ þ ðeipT·xÞjkǎ†k;pð0Þ�; ð51dÞ
where we draw attention to the fact that particle and
antiparticle operators appear with opposing hats and checks.
This convention makes manifest the necessity for both the
particle annihilation operator â and the antiparticle creation
operator č†, which appear in the field operator ϕ̂, to evolve
with the Hamiltonian Ĥ, and not with Ĥ and Ĥ†, respec-
tively, as one might have expected naively.
A canonical-conjugate pair of variables, e.g., ϕ̂i and π̂i,

must evolve subject to the same Hamiltonian, i.e., they
must both evolve according to Ĥ or both according to Ĥ†.
The conjugate momentum operators are therefore

π̂iðxÞ ¼ ∂tϕ̌
†
i ðxÞ ¼ −i

Z
p
½2ETðpÞ�1=2ij ½ðe−ipT·xÞjkĉk;pð0Þ

− ðeipT·xÞjkǎ†k;pð0Þ�; ð52aÞ

π̂†i ðxÞ ¼ ∂tϕ̌iðxÞ ¼ −i
Z
p
½2ETðpÞ�1=2ij ½ðe−ipT·xÞjkǎk;pð0Þ

− ðeipT·xÞjkĉ†k;pð0Þ�: ð52bÞ

Were we instead to insist on the usual relationship between
the conjugate momentum operator and the time derivative
of the field operator, i.e., π̂i ¼ ∂tϕ̂

†
i , we would force ϕ̂i and

π̂i to evolve with respect to Ĥ and Ĥ†, respectively, and
they would therefore not be canonical-conjugate variables.
We recover the usual relationship between the field and
conjugate momentum only in the Hermitian limit μ → 0. It

may readily be confirmed that Eqs. (43), (51), and (52) lead
to canonical equal-time commutation relations

½ϕ̂iðt;xÞ; ϕ̂†
jðt; yÞ� ¼ 0; ð53aÞ

½ϕ̂iðt;xÞ; π̂jðt; yÞ� ¼ iδijδ3ðx − yÞ; ð53bÞ

½ϕ̂†
i ðt;xÞ; π̂†jðt; yÞ� ¼ iδijδ3ðx − yÞ: ð53cÞ

In addition, we have that

½ϕ̂iðt;xÞ; ϕ̌†
jðt; yÞ� ¼ 0; ð54aÞ

½ϕ̌iðt;xÞ; ϕ̌†
jðt; yÞ� ¼ 0; ð54bÞ

½ϕ̌iðt;xÞ; π̌jðt; yÞ� ¼ iδijδ3ðx − yÞ; ð54cÞ

½ϕ̌†
i ðt;xÞ; π̌†jðt; yÞ� ¼ iδijδ3ðx − yÞ; ð54dÞ

where

π̌iðxÞ ¼ ∂tϕ̂
†
i ðxÞ ¼ −i

Z
p
½2EðpÞ�1=2ij ½ðe−ip·xÞjkčk;pð0Þ

− ðeip·xÞjkâ†k;pð0Þ�; ð55aÞ

π̌†i ðxÞ ¼ ∂tϕ̂iðxÞ ¼ −i
Z
p
½2EðpÞ�1=2ij ½ðe−ip·xÞjkâk;pð0Þ

− ðeip·xÞjkč†k;pð0Þ�: ð55bÞ

We can now write down the Hamiltonian (density)
operator that generates the time evolution consistent with
the equations of motion in Eqs. (40) and (46),

Ĥ ¼ π̌†i ðxÞπ̂iðxÞ þ ∇ϕ̌†
i ðxÞ · ∇ϕ̂iðxÞ þ ϕ̌†

i ðxÞm2
ijϕ̂jðxÞ:

ð56Þ
The corresponding Lagrangian density is

L̂ ¼ ∂νϕ̌
†
i ðxÞ∂νϕ̂iðxÞ − ϕ̌†

i ðxÞm2
ijϕ̂jðxÞ: ð57Þ

Had we made the alternative choice for the equations of
motion, i.e., varying the Lagrangian in Eq. (39) with respect
to ϕ̂i, the time evolution would instead be generated by

Ĥ† ¼ π̂†i ðxÞπ̌iðxÞ þ ∇ϕ̂†
i ðxÞ · ∇ϕ̌iðxÞ þ ϕ̂†

i ðxÞm2
jiϕ̌jðxÞ;

ð58Þ
but the physical results would be identical.

B. Mass basis

The transformation to the mass eigenbasis is effected by
the similarity transformation

ξ̂iðxÞ ¼ Rijϕ̂jðxÞ; ð59aÞ
ξ̌§i ðxÞ ¼ ϕ̌†

jðxÞR−1
ji : ð59bÞ
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By virtue of Eq. (31), or making use of the transformations
defined in the next section, we can readily convince
ourselves that the variables ξ̂i and ξ̌§i are the C0PT -
conjugate variables of the mass eigenbasis.
We infer from Eq. (59) that particle annihilation and

antiparticle creation operators have to transform in the same
way, under both the similarity transformation to the mass
eigenbasis and C0 (see Sec. IIA).

IV. DISCRETE TRANSFORMATIONS
IN FOCK SPACE

We now turn our attention in this section to the definition
of the discrete symmetry transformations of these non-
Hermitian quantum field theories in Fock space. In par-
ticular, we define the Ĉ0 operator, and show that the parity
and time-reversal operators are uniquely defined, irrespec-
tive of the choice of inner product.

A. Parity

We begin with the parity transformation, under which the
spatial coordinates x change sign, i.e., x → x0 ¼ −x, but
not the time coordinate t, so that

xμ ≡ ðt;xÞ → Pxμ ¼ x0μ ¼ ðt0;x0Þ ¼ ðt;−xÞ: ð60Þ

A c-number complex scalar field transforms under parity as

P∶ ϕðxÞ → ϕ0ðx0Þ ¼ ϕ0ðt;−xÞ ¼ ηPϕðt;xÞ; ð61Þ

where ηP satisfies jηPj2 ¼ 1. If ϕ ¼ ϕ� is real, then ηP is
equal to þ1 if ϕ transforms as a scalar and equal to −1 if ϕ
transforms as a pseudoscalar.9

Requiring that the matrix elements of the quantum field
operator ϕ̂i transform as in Eq. (9) [see also Eq. (61)], we
obtain

P̂ϕ̂iðxÞP̂−1 ¼ Pijϕ̌jðPxÞ; ð62aÞ

P̂ϕ̂†
i ðxÞP̂−1 ¼ Pijϕ̌

†
jðPxÞ; ð62bÞ

which are consistent with Eq. (47). As we show below, the
definition of P̂ and its action on the field operators do not
depend on the choice of inner product that defines the
matrix elements. In terms of these creation and annihilation
operators, the parity operator has the following explicit
form [31]:

P̂ ¼ exp



iπ
2

Z
p
½â†i;pð0Þâi;−pð0Þ þ ĉ†i;pð0Þĉi;−pð0Þ − â†i;pð0ÞPijâj;pð0Þ − ĉ†i;pð0ÞPijĉi;pð0Þ�

�
: ð63Þ

We note that this operator is time independent and can therefore be written in terms of Hermitian-conjugate creation and
annihilation operators at the time t ¼ 0.

B. C0 transformation

Using the Q matrix of the simplified model in Sec. II, it is straightforward to construct the Ĉ0 operator for the model,
which is given by

Ĉ0 ¼ exp

�
arctanh η

Z
p
ðâ†i;pð0ÞQ̄ijâj;pð0Þ − ĉ†i;pð0ÞQ̄ijĉj;pð0ÞÞ

	
P̂þP̂; ð64Þ

where the matrix Q̄ is given in the flavor basis in Eq. (27). The relative sign between the bracketed particle and antiparticle
operator terms in the exponent of Eq. (64) ensures that the field operators transform appropriately and reflects the fact that
particle and antiparticle states must transform in the opposite sense (see below). We point out that the Ĉ0 operator is ill-
defined at the exceptional point η ¼ 1, as is expected for this operator. Comparing with Eq. (22), we note the necessity of
including an additional operator

P̂þ ¼ exp


iπ
2

Z
p
½â†i;pð0Þâi;−pð0Þ þ ĉ†i;pð0Þĉi;−pð0Þ − â†i;pð0Þâi;pð0Þ − ĉ†i;pð0Þĉi;pð0Þ�

�
; ð65Þ

which implements the correct change of sign of the momentum in the C0PT inner product. For transformations in Fock
space, the Ĉ0 operator can be written in the form

9It is always possible to rephase the parity operator such that spin-0 fields transform up to a real-valued phase of �1, as we
assume here.
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Ĉ0 ¼ e−Q̂P̂þP̂; ð66Þ

where the operator Q̂ is discussed below.
In terms of the canonically conjugate field variables, the Ĉ0 operator can be written in the form

Ĉ0 ¼ exp

�
−iarctanh η

Z
x
ðπ̂iðt;xÞQ̄ijϕ̂jðt;xÞ − π̌†i ðt;xÞQ̄ijϕ̌

†
jðt;xÞÞ

	
P̂þP̂: ð67Þ

We draw attention to the appearance of both hatted and checked operators, cf. Sec. III A, and the canonical algebra in
Eqs. (53) and (54).

We emphasize that the Ĉ0 operator does not coincide with the usual charge-conjugation operator, which is [31]

Ĉ ¼ exp



iπ
2

Z
p
½ĉ†i;pð0Þâi;−pð0Þ þ â†i;pð0Þĉi;−pð0Þ − ðâ†i;pð0ÞCijâj;pð0Þ þ ĉ†i;pð0ÞCijĉj;pð0ÞÞ�

�
: ð68Þ

The charge matrix Cij must be chosen such that Cij ¼
Pij in order for the Lagrangian to be C symmetric, as a

result of which Ĉ and Ĉ0 do not commute. We note
that the Ĉ0 operator depends on the non-Hermitian
parameter η, whereas the usual charge-conjugation oper-
ator Ĉ does not.
The action of Ĉ0 is as follows:

Ĉ0â†i;qð0ÞĈ0;−1 ¼ C0
ijâ

†
j;qð0Þ; ð69aÞ

Ĉ0âi;qð0ÞĈ0;−1 ¼ C0T
ij âj;qð0Þ; ð69bÞ

Ĉ0ĉ†i;qð0ÞĈ0;−1 ¼ C0T
ij ĉ

†
j;qð0Þ; ð69cÞ

Ĉ0ĉi;qð0ÞĈ0;−1 ¼ C0
ijĉj;qð0Þ; ð69dÞ

with the fields transforming as

Ĉ0ϕ̂iðxÞĈ0;−1 ¼ C0T
ij ϕ̂jðxÞ; ð70aÞ

Ĉ0ϕ̌†
i ðxÞĈ0;−1 ¼ C0

ijϕ̌
†
jðxÞ; ð70bÞ

such that

ϕ̂1ðxÞ →
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p ðϕ̂1ðxÞ þ ηϕ̂2ðxÞÞ;

ϕ̂2ðxÞ → −
1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p ðϕ̂2ðxÞ þ ηϕ̂1ðxÞÞ; ð71aÞ

ϕ̌†
1ðxÞ →

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p ðϕ̌†
1ðxÞ − ηϕ̌†

2ðxÞÞ;

ϕ̌†
2ðxÞ → −

1ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p ðϕ̌†
2ðxÞ − ηϕ̌†

1ðxÞÞ: ð71bÞ

That â and ĉ transform differently follows directly from
the fact that Ĉ0 and the usual charge conjugation operator Ĉ
do not commute. It is easy to confirm that Ĉ02 ¼ I and that
C0- and PT -conjugation commute.10 To see this, consider
the superposition of single-particle momentum states

jΨi ¼
Z
p
Ap;ijpii; ð72Þ

where the Ap;i are complex c-number coefficients. Acting

first with ‡ and then with Ĉ0, and making use of Eq. (69), we
have

jΨi‡Ĉ0 ¼
Z
p
hpjjPjiA�

p;iĈ
0 ¼

Z
p
hpkjC0

kjPjiA�
p;i: ð73Þ

Conversely, we have

ðĈ0jΨiÞ‡ ¼
Z
p
ðAp;iC0

ijjpjiÞ‡ ¼
Z
p
hpkjPkjC0T

ji A
�
p;i: ð74Þ

Using the fact that

P:C0:P ¼ C0T; ð75Þ

we see that C0- and PT -conjugation commute, as required.
Moreover, the Hamiltonian given by Eq. (56) (and the
corresponding Lagrangian) is C0 symmetric, such that
½Ĉ0; Ĥ� ¼ 0. Since the C0 transformation mixes the scalar
and pseudoscalar operators, we find that Ĉ0 does not
commute with P̂. This is, in fact, a necessary consequence
of the relation P̂ Q̂ P̂ ¼ −Q̂, as we discuss in the next
section.

10We reiterate that PT conjugation, denoted here by
‡ ¼ PT ∘T, includes operator/matrix transposition.
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C. The similarity transformation

The Q̂ operator in Eq. (66) is given by

Q̂ ¼ −arctanh η
Z
p
ðâ†1;pð0Þâ2;pð0Þ þ â†2;pð0Þâ1;pð0Þ

− ĉ†1;pð0Þĉ2;pð0Þ − ĉ†2;pð0Þĉ1;pð0ÞÞ: ð76Þ

The similarity transformation Ô → e−Q̂=2ÔeQ̂=2 has the
following effects on the particle and antiparticle annihila-
tion and creation operators:

âi;qð0Þ → âi;qð0Þ cosh
arctanh η

2
− â=i;qð0Þ sinh

arctanh η
2

;

ð77aÞ

â†i;qð0Þ → â†i;qð0Þ cosh
arctanh η

2
þ â†=i;qð0Þ sinh

arctanh η
2

;

ð77bÞ

ĉi;qð0Þ → ĉi;qð0Þ cosh
arctanh η

2
þ ĉ=i;qð0Þ sinh

arctanh η
2

;

ð77cÞ

ĉ†i;qð0Þ → ĉ†i;qð0Þ cosh
arctanh η

2
− ĉ†=i;qð0Þ sinh

arctanh η
2

;

ð77dÞ

so that the fields transform as

ϕ̂iðxÞ → ξ̂iðxÞ cosh
arctanh η

2
− ξ̂=iðxÞ sinh

arctanh η
2

; ð78aÞ

ϕ̌†
i ðxÞ → ξ̂†i ðxÞ cosh

arctanh η
2

þ ξ̂†=i ðxÞ sinh
arctanh η

2
;

ð78bÞ

where ξ̂i are the field operators in the mass eigenbasis.
Herein, =i ¼ 2 for i ¼ 1, and =i ¼ 1 for i ¼ 2. Using

cosh
arctanh η

2
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p

s
; ð79aÞ

sinh
arctanh η

2
¼ 1ffiffiffi

2
p ηffiffiffiffiffiffiffiffiffiffiffiffi

1 − η2
p 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1ffiffiffiffiffiffiffi
1−η2

pq ; ð79bÞ

one can show with some algebra that this indeed gives the
correct transformation to the Hermitian theory whose
Lagrangian is11

L̂0 ¼ ∂νξ̂
†
1ðxÞ∂νξ̂1ðxÞ þ ∂νξ̂

†
2ðxÞ∂νξ̂2ðxÞ −m2þξ̂

†
1ðxÞξ̂1ðxÞ

−m2
−ξ̂

†
2ðxÞξ̂2ðxÞ: ð80Þ

Note that the similarity-transformed Lagrangian is isospec-
tral to the original Lagrangian. Hence, the noninteracting
non-Hermitian bosonic model is equivalent to a Hermitian
theory.
We draw attention to the fact that we have used the form

of the Q̂ operator extracted from Eq. (64) in terms of the
creation and annihilation operators evaluated at the initial
time surface and not from Eq. (67) in terms of the field
operators at the finite time t. While both forms of the Q̂
operator give valid Ĉ0 transformations, only the former
choice, in terms of the creation and annihilation operators,
gives a similarity transformation that both maps the
Lagrangian to the Hermitian one and transforms the field
operators to those of the mass eigenbasis. Were we to take a
Q̂ operator based on Eq. (67), it would map the Lagrangian
to the Hermitian one, but leave the field operators them-
selves unchanged. This would therefore not represent a
consistent similarity transformation to the Hermitian
“frame.” The reason for this discrepancy is the fact that,
by virtue of the non-Hermitian nature of the evolution, the
Ĉ0 operators in Eqs. (64) and (67) are actually distinct.
We have constructed a similarity transformation that

maps the non-Hermitian free theory to a Hermitian one. If
we include interactions, however, it is not in general the
case that this similarity transformation will map the full
interacting Hamiltonian to a Hermitian one, even if those
interactions respect the PT symmetry. For example, if one
adds a Hermitian quartic interaction term λðϕ†

1ϕ1Þ2 to the
non-Hermitian bosonic model, as discussed in the context
of spontaneous symmetry breaking in Refs. [10–12], the
similarity transformation converts it into a non-Hermitian
combination of ξ1, ξ2, ξ

†
1, and ξ†2,

λ

4
ðϕ̌†

1ϕ̂1Þ2 →
λ

16

��
m2

1 −m2
2

2

�
ðm2þ −m2

2Þ − μ4
	−2

× ½ðm2þ −m2
2Þξ̂†1 þ μ2ξ̂†2�2

× ½ðm2þ −m2
2Þξ̂1 − μ2ξ̂2�2: ð81Þ

Hence, this interacting non-Hermitian bosonic model is not
equivalent to a Hermitian theory according to the above
similarity transformation. Instead, it exhibits soft breaking
of Hermiticity. On the other hand, were we to build
interaction terms out of the quadratic field invariants
discussed in Sec. II B, or powers of the mass term, the
above similarity transformation would map these to
Hermitian interactions.
This observation does not necessarily indicate that the

eigenvalues of the interacting Hamiltonian are complex
or preclude the possibility that there exists a different

11Note that both the kinetic terms have positive signs, unlike in
Ref. [15] (see also the Appendices).
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similarity transformation that maps the full interacting
Hamiltonian to a Hermitian one. It does, however, present
a challenge for the perturbative treatment of non-Hermitian
theories, since the interaction pictures of the non-Hermitian
and corresponding Hermitian theories would necessarily
have to be related by a similarity transformation that would
involve a resummation of a series in the coupling constant
that may be nontrivial. We leave further study of this
interesting point to future work.
Finally, we comment on the connection of this similarity

transformation to the V norm considered in Ref. [8] at the
level of the free theory. The V norm is constructed from the
operator V̂ ¼ e−Q̂, which maps the Hamiltonian to its
Hermitian conjugate, i.e., Ĥ† ¼ V̂ Ĥ V̂−1. Since we also
have that Ĥ† ¼ P̂ Ĥ P̂−1 and P̂þĤP̂−1

þ ¼ Ĥ, it follows that
½V̂P̂þP̂; Ĥ� ¼ 0, and we can identify Ĉ0 ¼ V̂P̂þP̂, so long
as ðV̂P̂þP̂Þ2 ¼ I. This is indeed the case, since P̂þQ̂P̂þ ¼
Q̂ and P̂ Q̂ P̂ ¼ −Q̂. The latter identity follows immedi-
ately from Eq. (76), upon realizing that Q̂ is bilinear in the
scalar and pseudoscalar operators. (We recall that P̂ and P̂þ
are involutary). Since the V̂ norm of Ref. [8] is positive
definite by construction, the same follows for the Ĉ0 P̂ T̂
norm constructed in this work, since they coincide, as we
will show below. An explicit comparison of the C0PT and
V norms in the case of interacting theories warrants further
investigation beyond the scope of this paper.

D. Inner products

Before we can consider the definition of the time-
reversal operator in Fock space, we must first describe
the various inner products with respect to which it can be
defined. For this purpose, it is convenient to define a
variation of Dirac’s bra-ket notation in which the bra and
ket states are related by transposition rather than Hermitian
conjugation. Specifically, we define

hαj≡ ðjαiÞT; ð82Þ

where T denotes transposition. Hermitian conjugation is
indicated in the usual way by a superscript † denoting
the combination †≡ � ∘T, where � indicates complex
conjugation.
We can now distinguish the following inner products in

Fock space:
Dirac inner product: In this notation, the usual Dirac

inner product, which is defined via Hermitian conjugation,
is written as

ðjαiÞ†jβi ¼ hα�jβi ¼ hK̂Tαjβi ¼ hαjK̂jβi ¼ hαjK̂βi; ð83Þ

where the antilinear operator K̂ is ∝ T̂ and effects complex
conjugation. For a spin-zero field, single-particle states of
momentum q and q0 have the usual Dirac normalization

ðjqiÞ†jq0i ¼ hqjq0i ¼ ð2πÞ3δ3ðq − q0Þ: ð84Þ

PT inner product: This indefinite inner product is defined
via PT conjugation, which we denote by ‡≡ PT ∘T, and
is written as

ðjαiÞ‡jβi ¼ hαPT jβi ¼ hT̂ TP̂Tαjβi ¼ hαjP̂ T̂ jβi
¼ hαjP̂ T̂ βi: ð85Þ

For a scalar field, the PT inner product of single-particle
momentum eigenstates is

ðjqiÞ‡jq0i ¼ hT̂ TP̂Tqjq0i ¼ ηPhqjqi ¼ ηPð2πÞ3δ3ðq−q0Þ;
ð86Þ

which is negative definite in the case of a pseudoscalar
(ηP ¼ −1), cf. the approach of Ref. [8].
C0PT inner product: This positive-definite inner product

is defined via C0PT conjugation, which we denote by
§≡ C0PT ∘T, and is written as

ðjαiÞ§jβi ¼ hαC0PT jβi ¼ hT̂ TP̂TĈ0Tαjβi ¼ hαjĈ0P̂ T̂ jβi
¼ hαjĈ0P̂ T̂ βi: ð87Þ

With respect to this inner product, the norm of the single-
particle momentum state is positive definite for both the
scalar and pseudoscalar,

ðjqiÞ§jqi ¼ hT̂ TP̂TĈ0Tqjqi ¼ ηPhT̂ TP̂Tqjqi
¼ η2Phqjqi ¼ 1: ð88Þ

Here, we have simply taken η → 0 in Eqs. (64) and (69) in
order to decouple the flavors. In this case, ϕ̂§ðxÞ ¼ ϕ̂†ðxÞ,
trivially, i.e., in the Hermitian limit η → 0, C0PT con-
jugation of the field operator coincides with Hermitian
conjugation.
Returning to the two-flavor case, we can take the single-

particle mass eigenstate

jpþi ¼ N



ηjp1i þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
jp2i

�
ð89Þ

as an example. By our notation in Eq. (82), we have

hpþj ¼ N


ηhp1j þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
hp2j

�
: ð90Þ

In addition, it follows from the action of the Ĉ0 and P̂ T̂
operators that

Ĉ0P̂ T̂ jpþi ¼ N



ηjp1i −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
jp2i

�
: ð91Þ
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It is then easily verified that

hpþjĈ0P̂ T̂ jpþi ¼ 1 > 0; ð92Þ

as required. Moreover, we have that

P̂þT̂ jpþi ¼ N



ηjp1i þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
jp2i

�
¼ jpþi:

ð93Þ

We can then confirm, as highlighted earlier, that the C0PT
and V norms coincide for the free theory,

hpþjĈ0P̂ T̂ jpþi ¼ hpþjV̂P̂þP̂
2T̂ jpþi ¼ hpþjV̂P̂þT̂ jpþi

¼ hpþjV̂jpþi: ð94Þ

E. Parity revisited

Having defined the various inner products, we can now
return to the parity operator and show explicitly that its
definition does not depend on which inner product we use
to construct the matrix elements of the theory.
Dirac inner product: In this case, the transformation

rules for the ket and bra states are

jP̂αi ¼ P̂jαi ⇔ ðjP̂αiÞ† ¼ ðP̂jαiÞ† ¼ hα�jP̂† ¼ hα�jP̂−1:

ð95Þ

We note that parity and Hermitian conjugation commute,
so that

hðP̂TαÞ�jϕ̌iðPxÞjP̂βi ¼ hα�jP̂−1ϕ̌iðPxÞP̂jβi
¼! Pijhα�jϕ̂jðxÞjβi; ð96Þ

and we recover the results in Eq. (62).
PT inner product: The situation is similar in this

case, because P̂ and T̂ commute (so long as ηP ∈ R).
Specifically, the transformation rules for the ket and bra
states are

jP̂αi¼ P̂jαi⇔ ðjP̂αiÞ‡¼ðP̂jαiÞ‡¼hαPT jP̂‡¼hαPT jP̂−1;

ð97Þ

where P̂‡ ¼ ðP̂ T̂ ÞP̂TðT̂ −1P̂−1Þ. We therefore recover the
same transformation rules (62) for the field operators as in
the Hermitian case. This is perhaps not surprising, since
Hermitian conjugation is substituted by PT conjugation in
non-Hermitian theories.
C0PT inner product: This case is rather different, since

the C0 and P transformations do not commute. The trans-
formation rules for the ket and bra states are therefore

jP̂αi ¼ P̂jαi ⇔ ðjP̂αiÞ§ ¼ ðP̂jαiÞ§ ¼ hαC0PT jP̂§

¼ hαC0PT jĈ0P̂Ĉ0 ð98aÞ

⇔ ðjαiÞ§P̂T ¼ ðP̂jαC0PT iÞT ¼ hαC0PT jP̂−1: ð98bÞ

It is the matrix element involving the latter that leads to a
definition of the parity operator consistent with Eq. (63),
and we then have

hP̂TðαC0PT Þjϕ̌iðPxÞjP̂βi ¼ hαC0PT jP̂−1ϕ̌iðPxÞP̂jβi
¼! PijhαC0PT jϕ̂jðxÞjβi; ð99Þ

giving the same transformation rules (62).

F. Time reversal

Under a time-reversal transformation, the time coordi-
nate t → t0 ¼ −t, and

xμ ≡ ðt;xÞ → T xμ ¼ x0μ ¼ ðt0;x0Þ ¼ ð−t;xÞ: ð100Þ

In this case, a c-number complex Klein-Gordon field
transforms as

T ∶ ϕðxÞ → ϕ0ðx0Þ ¼ ϕ0ð−t;xÞ ¼ ηT ϕ
�ðt;xÞ; ð101Þ

where jηT j2 ¼ 1. When translating this transformation to
the corresponding q-number field operator, we need to take
into account the fact that time reversal interchanges the
initial and final states. It is for this reason that the action of
the time-reversal operator on field operators depends on the
inner product used to determine the matrix elements.
However, as we see below, the time-reversal operator
remains uniquely defined.
Dirac inner product: In the case of the Dirac inner

product, the transformation rules for the ket and bra states
are

jT̂ αi ¼ T̂ jαi ⇔ ðjT̂ αiÞ† ¼ ðT̂ jαiÞ† ¼ hα�jT̂ † ¼ hα�jT̂ −1:

ð102Þ

We note that time-reversal and Hermitian conjugation
commute (for Tij ∈ R), so that

hðT TαÞ�jϕ̂iðT xÞjT̂ βi ¼ hα�jT̂ −1ϕ̂iðT xÞT̂ jβi
¼! Tijhβ�jϕ̂†

jðxÞjαi: ð103Þ

Making use of the following identity that holds for an
antilinear operator:

hα�jT̂ −1ϕ̂iðT xÞT̂ jβi ¼ hβ�jðT̂ −1ϕ̂iðT xÞT̂ Þ†jαi; ð104Þ

we arrive at the familiar transformations
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T̂ ϕ̂iðxÞT̂ −1 ¼ Tijϕ̂jðT xÞ; ð105aÞ

T̂ ϕ̂†
i ðxÞT̂ −1 ¼ T�

ijϕ̂
†
jðT xÞ: ð105bÞ

Choosing both the scalar and pseudoscalar of our
prototype model to transform with a phase of þ1 under
time reversal, the explicit form of the time-reversal
operator is (see, e.g., Ref. [32])

T̂ ¼ K̂P̂þ; ð106Þ

where K̂ is the operator that effects complex conju-
gation on c-numbers and P̂þ is the operator defined
in Eq. (65).
PT inner product: For the PT -conjugate states, the

transformation rules for the ket and bra states are

jT̂ αi ¼ T̂ jαi ⇔ ðjT̂ αiÞ‡ ¼ ðT̂ jαiÞ‡
¼ hαPT jT̂ ‡ ¼ hαPT jT̂ −1; ð107Þ

where we have used T̂ T̂ TT̂ −1 ¼ T̂ †. In this case, we
have12

hðT̂ TαÞPT jϕ̂iðT xÞjT̂ βi ¼ hαPT jT̂ −1ϕ̂iðT xÞT̂ jβi
¼! TijhβPT jϕ̂‡

jðxÞjαi: ð108Þ

Making use of the identity

hαPT jT̂ −1ϕ̂iðT xÞT̂ jβi ¼ hβPT jðT̂ −1ϕ̂iðT xÞT̂ Þ‡jαi;
ð109Þ

we quickly recover the transformations in Eq. (105).
C0PT inner product:Without making any assumption as

to whether the C0 and T transformations commute, the
transformation rules for the ket and bra states for the C0PT
inner product are

jT̂ αi ¼ T̂ jαi ⇔ ðjT̂ αiÞ§ ¼ ðT̂ jαiÞ§ ¼ hαC0PT jT̂ §

¼ hαC0PT jĈ0T̂ Ĉ0; ð110aÞ

⇔ ðjαiÞ§T̂ T ¼ ðT̂ jαC0PT iÞT ¼ hαC0PT jT̂ −1: ð110bÞ

Taking matrix elements involving the latter, we require13

hT̂ TðαC0PT Þjϕ̂iðT xÞjT̂ βi ¼ hαC0PT jT̂ −1ϕ̂iðT xÞT̂ jβi
¼! TijhβC0PT jϕ̂§

jðxÞjαi: ð111Þ

Making use of the identity

hαC0PT jT̂ −1ϕ̂iðT xÞT̂ jβi ¼ hβC0PT jðT̂ −1ϕ̂iðT xÞT̂ Þ§jαi;
ð112Þ

and we again recover the transformations in Eq. (105). We
see that Ĉ0 and T̂ commute such that Eqs. (110a) and (110b)
are identical statements.

G. PT conjugation

Given the definitions of the parity and time-reversal
operators, we have

P̂ T̂ ϕ̂iðxÞT̂ −1P̂−1 ¼ TijPjkϕ̌kðPT xÞ; ð113aÞ

P̂ T̂ ϕ̂†
i ðxÞT̂ −1P̂−1 ¼ TijPjkϕ̌

†
kðPT xÞ; ð113bÞ

and, taking Tij ¼ δij, it follows that

ϕ̂‡
i ðxÞ ¼ Pijϕ̌

†
jðxÞ; ð114Þ

since ϕ̌TðPT xÞ ¼ ϕ̌†ðxÞ. The PT symmetry of the
Hamiltonians in Eqs. (56) and (58) is now readily con-
firmed. Note that, in Fock space, the requirement of PT
symmetry is that ½Ĥ; ‡� ¼ 0, superseding the constraint of
Hermiticity, i.e., ½Ĥ; †� ¼ 0. This should be compared with
the classical, and quantum-mechanical requirement, that
½Ĥ; P̂ T̂ � ¼ 0. We can also easily check that ½Ĉ0; ‡� ¼ 0, as
required.

V. SCALAR-PSEUDOSCALAR MIXING
AND OSCILLATIONS

We now illustrate the discussion in the previous sections
by studying mixing and oscillations in the model with two
spin-zero fields. As mentioned earlier, the Lagrangian (1)
and the corresponding Hamiltonian do not conserve parity.
We therefore anticipate the possibility of scalar-pseudo-
scalar mixing and oscillations, but issues of interpretation
arise (see Ref. [19,20]), as we now discuss in detail.

12Taking Tij ¼ δij for simplicity, the action of an antilinear
operator on the PT inner product is

hαPT jT̂ −1ϕ̂iðT xÞT̂ jβi ¼ hβ�jϕ̂†
i ðxÞjαPT �i

¼ hβPT jK̂ P̂ T̂ ϕ̂†
i ðxÞK̂ P̂ T̂ jαi

¼ hβPT jϕ̂‡
i ðxÞjαi:

13Taking Tij ¼ δij for simplicity, the action of an antilinear
operator on the C0PT inner product is

hαC0PT jT̂ −1ϕ̂iðT xÞT̂ jβi ¼ hβ�jϕ̂†
i ðxÞjαC0PT �i

¼ hβC0PT jK̂C0P̂ T̂ ϕ̂†
i ðxÞK̂C0P̂ T̂ jαi

¼ hβC0PT jϕ̂§
i ðxÞjαi:
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A. Issues in flavor oscillations in the
PT -symmetric model

In the mass eigenbasis (see Sec. II A), the classical
equations of motion take the form

□ξ� þm2
�ξ� ¼ 0; ð115Þ

which have the plane-wave solutions

ξ� ¼ A�ei½E�;pt−p·x� with E�;p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

�
q

; ð116Þ

where A� are constants.
The single-particle flavor eigenstates can be written in

terms of the mass eigenstates as follows:

jp̌; 1ð2Þ; ti ¼ ǎ†
1ð2Þ;pðtÞj0i ¼ N



ηjp;þð−Þ; ti

−
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
jp;−ðþÞ; ti

�
: ð117Þ

As per the discussions of Secs. II A and IV D, the mass
eigenstates are orthonormal with respect to the C0PT inner
product. The conjugate flavor state is

hp̂; 1ð2Þ; tj≡ h0jâ1ð2Þ;pðtÞ ¼ N



ηðjp;þð−Þ; tiÞ§

þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q 	
ðjp;−ðþÞ; tiÞ§

�
; ð118Þ

which has been expressed in terms of the C0PT -conjugate
mass eigenstates by appealing to Eqs. (31) and (59). The
flavor and mass eigenstates obey the following orthonor-
mality relations:

hp̌; i; tjp̂0; j; ti ¼ ð2πÞ3δijδ3ðp − p0Þ ð119Þ

and

ðjp;�; tiÞ§jp0;�; ti ¼ ð2πÞ3δ3ðp − p0Þ; ð120aÞ

ðjp;�; tiÞ§jp0;∓; ti ¼ 0: ð120bÞ

Assuming for simplicity a localized initial state, the
probability for the scalar with flavor i at t ¼ 0 to transition
to the pseudoscalar with flavor j at t > 0 is given naively by

Πi→jðtÞ ¼
1

V

Z
p0
hp̌; i; tjp̂0; j; 0ihp̌0; j; 0jp̂; i; ti; ð121Þ

where V ¼ ð2πÞ3δ3ð0Þ is a three-volume. We draw atten-
tion to the fact that this “probability” is not obtained from
the usual squared modulus with respect to Hermitian
conjugation—were we to use this, we would find that

the total probability is not conserved—instead it involves
the amplitude and its C0PT conjugate. A straightforward
calculation then leads to

Πi→=iðtÞ ¼ −
η2

1 − η2
sin2

�
1

2
ðEþðpÞ − E−ðpÞÞt

�
: ð122Þ

Alarmingly, this probability is negative, and the corre-
sponding survival probability is given by

Πi→iðtÞ ¼
1

V

Z
p0
hp̌; i; tjp̂0; i; 0ihp̌0; i; 0jp̂; i; ti

¼ 1þ η2

1 − η2
sin2

�
1

2
ðEþðpÞ − E−ðpÞÞt

�
; ð123Þ

which can be larger than unity. Notice, however, that
Πi→i þ Πi→=i ¼ 1, such that the total probability is

conserved.
It is interesting to note that the oscillation period

obtained from the probability (122) diverges at the excep-
tional points η2 → 1, where

T ¼ 2π

EþðpÞ − E−ðpÞ
≃

2π

E0ðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p with

E0ðpÞ≡ m2
1 −m2

2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ðm2

1 þm2
2Þ=2

p ; ð124Þ

since the eigenmasses become degenerate. Another way to
understand this limit is to consider the similarity trans-
formation (21) when η → ϵ ¼ �1,

lim
η→ϵ



R
N

�
¼
�
ϵ 1

1 ϵ

�
with N → ∞: ð125Þ

We see that the eigenstates defined in Eq. (115) are parallel
in these limits. Therefore, in addition to having infinite
normalization, the similarity transformation is not invert-
ible at the exceptional points, and one cannot define a map
back to the flavor states.
It is illustrative to compare this oscillation probability for

the non-Hermitian theory to the corresponding probability
for the Hermitian theory with the Lagrangian

L̂Herm ¼ ∂νϕ̂
†
i ∂νϕ̂i −m2

i ϕ̂
†
i ϕ̂i − μ2ðϕ̂†

1ϕ̂2 þ ϕ̂†
2ϕ̂1Þ;

ð126Þ

where m2
i and μ2 are positive real-valued squared-mass

parameters, and we assume m2
1 > m2

2 as before. For this
theory, the oscillation probability is

ΠHerm
i→j ðtÞ ¼ sin2ð2αÞ sin2

�
1

2
ðEþðpÞ − E−ðpÞÞt

�
; ð127Þ
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where α is the mixing angle, which is given by

sin2ðαÞ ¼ 1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4μ4

ðm2
1 −m2

2Þ2 þ 4μ4

s
: ð128Þ

We see that the probability (122) has the same form as in
the Hermitian case, provided one makes the identification
sinð2αÞ ¼ iη=

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
. With this identification, we have

sin2ðαÞ ¼ 1

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4μ4

ðm2
1 −m2

2Þ2 − 4μ4

s
; ð129Þ

which is simply the analytic continuation μ2 → iμ2 of the
Hermitian expression, and it is for this reason that the non-
Hermitian transition probability is negative in the PT -
symmetric regime. As we show in the next subsection, this
problem has arisen because of an attempt to treat the flavor
states as external states.

B. Flavor mixing in scattering matrix elements

The resolution of the above issues can be found by
recalling that experimental observables are scattering
matrix elements, for which we now give a simplified
treatment. For this purpose, we introduce two complex
sources JA and JB, coupled to the fields ϕ1 and ϕ2 as

Lint ¼ JAϕ̌
†
1 þ J†Aϕ̂1 − JBϕ̌

†
2 þ J†Bϕ̂2: ð130Þ

We draw attention to the important fact that Lint must be
PT symmetric, giving rise to the relative minus sign
between the last two terms [10,11]. The source terms are
therefore not Hermitian.
The matrix element for the process A → B is given by

iMA→B ¼ ð2πÞ4δ4ðpA − pBÞΔF;21ðqÞ; ð131Þ

with q ¼ pA ¼ pB, and the conjugate matrix element is

−iMC0PT
A→B ¼ −ð2πÞ4δ4ðpA − pBÞΔD;12ðqÞ: ð132Þ

We note the overall sign, which stems from the relative sign
in Eq. (130). The Feynman and Dyson propagatorsΔF;ijðqÞ
and ΔD;ijðqÞ are defined by

ΔF;ijðx−yÞ≡hT½ϕ̌†
i ðxÞϕ̂jðyÞ�i¼

Z
d4q
ð2πÞ4e

−iq:ðx−yÞΔF;ijðqÞ;

ΔD;ijðx−yÞ≡hT̄½ϕ̌†
i ðxÞϕ̂jðyÞ�i¼

Z
d4q
ð2πÞ4e

−iq:ðx−yÞΔD;ijðqÞ;

where T and T̄ denote time and antitime ordering, respec-
tively. They can be calculated directly by inverting the non-
HermitianKlein-Gordon operator inmomentum space, or by
expressing the fields ϕ1 and ϕ2 in the mass eigenbasis, i.e.,

ϕ̂1 ¼ N

�
ηξ̂1 −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
ξ̂2

	
; ð133aÞ

ϕ̌†
1 ¼ N

�
ηξ̂†1 þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
ξ̂†2

	
; ð133bÞ

ϕ̂2 ¼ N

�
ηξ̂2 −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
ξ̂1

	
; ð133cÞ

ϕ̌†
2 ¼ N

�
ηξ̂†2 þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
ξ̂†1

	
; ð133dÞ

giving

ΔF;21ðqÞ ¼ N2η
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
×

�
i

q2 −M2þ þ iϵ
−

i
q2 −M2

− þ iϵ

	

¼ iμ2

ðq2 −M2þ þ iϵÞðq2 −M2
− þ iϵÞ ; ð134aÞ

ΔD;12ðqÞ ¼ N2η
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
×

�
i

q2 −M2þ − iϵ
−

i
q2 −M2

− − iϵ

	

¼ iμ2

ðq2 −M2þ − iϵÞðq2 −M2
− − iϵÞ : ð134bÞ

Notice that, by virtue of the non-Hermiticity, we have

ΔF;21ðqÞ ¼ −Δ�
D;12ðqÞ: ð135Þ

If the mass mixing were Hermitian, the Feynman and

Dyson propagators would instead satisfy ΔðHermÞ
F;21 ðqÞ ¼

ΔðHermÞ�
D;12 ðqÞ. The sign appearing in Eq. (135) is due to

the skew symmetry of the squared-mass matrix.
We therefore have

iMA→B ¼ ð2πÞ4δ4ðpA − pBÞN2η
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
×
�

i
s −M2þ

−
i

s −M2
−

	
; ð136aÞ

−iMC0PT
A→B ¼ −ð2πÞ4δ4ðpA − pBÞN2η

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
×

�
i

s −M2þ
−

i
s −M2

−

	
; ð136bÞ

where s ¼ p2
A ¼ p2

B is the usual Mandelstam variable and
we have suppressed the pole prescription in the propaga-
tors. The squared matrix element is then
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MC0PT
A→BMA→B ¼ VTð2πÞ4δ4ðpA − pBÞN4η2

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �2� 1

s −M2þ
−

1

s −M2
−

	
2

¼ 1

4
VTð2πÞ4δ4ðpA − pBÞ

η2

1 − η2

�
1

s −M2þ
−

1

s −M2
−

	
2

; ð137Þ

where VT ≡ ð2πÞ4δ4ð0Þ is a four-volume factor.
We observe that this result is positive for η2 < 1. However, it would seem naively that there is an issue with perturbative

unitarity in the limit η2 → 1, due to the factor of 1=ð1 − η2Þ in (137), but this is not the case, since

�
1

s −M2þ
−

1

s −M2
−

	
2

¼ ðM2þ −M2
−Þ2

ðs −M2þÞ2ðs −M2
−Þ2

¼ ð1 − η2Þ ðm2
1 −m2

2Þ2
ðs −M2þÞ2ðs −M2

−Þ2
ð138Þ

is proportional to 1 − η2. The final expression for the squared matrix element is

MC0PT
A→BMA→B ¼ VTð2πÞ4δ4ðpA − pBÞ

μ4

ðs −M2þÞ2ðs −M2
−Þ2

; ð139Þ

which is positive, vanishes in the limit μ → 0 (as it should),
and remains real and perturbatively valid all the way up to
the exceptional point η2 ¼ 1.
The matrix element for the corresponding flavor-con-

serving process A → A is

iMA→A ¼ ð2πÞδ4ðpA − p0
AÞΔF;11ðqÞ; ð140Þ

with q ¼ pa ¼ p0
A, and the conjugate matrix element is

−iMC0PT
A→A ¼ ð2πÞδ4ðpA − p0

AÞΔD;11ðqÞ; ð141Þ

where

ΔD;11ðqÞ ¼ Δ�
F;11ðqÞ; ð142Þ

with

ΔF;11ðqÞ ¼ N2

�
iη2

q2 −M2þ þ iϵ
−
ið1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p
Þ2

q2 −M2
− þ iϵ

	

¼ iðq2 −m2
2Þ

ðq2 −M2þ þ iϵÞðq2 −M2
− þ iϵÞ : ð143Þ

We therefore obtain

MC0PT
A→AMA→A ¼ VTð2πÞ4δ4ðpA − p0

AÞ

×
ðs −m2

2Þ2
ðs −M2þÞ2ðs −M2

−Þ2
; ð144Þ

which is again real, positive, and physically meaningful for
all 0 ≤ η2 ≤ 1.
It is clear from these results that there is a subtlety arising

from the factorization of the source-to-source probability
into production, oscillation, and detection probabilities.

This offers a resolution of the problematic behavior in the
naive calculation of the oscillation probability presented in
Sec. VA. Comforted by the example presented in this
subsection, we leave for future work the further detailed
study of this point.

VI. CONCLUSIONS

We have addressed in this paper some basic issues in the
formulation of non-Hermitian bosonic quantum field the-
ories, discussing in particular the treatment of discrete
symmetries and the definition of the inner product in Fock
space. We have focused on PT -symmetric non-Hermitian
theories, commenting also on features at the exceptional
points at the boundary between theories with PT sym-
metry and those in which it is broken.
As we have discussed, there is ambiguity in the formu-

lation of the inner product in aPT -symmetric theory. In this
case, the conventional Dirac inner product ðjαiÞ†jβi ¼
hα�jβi is not positive definite for the mass eigenstates, and
is therefore deprecated, and the same is true of thePT inner
product ðjαiÞ‡jβi ¼ hαPT jβi, where ‡≡ PT ∘T with T
denoting transposition. The appropriate positive-definite
norm for the mass eigenstates is defined via C0PT con-
jugation: ðjαiÞ§jβi¼hαC0PT jβi, where §≡ C0PT ∘T, where
the C0 operator was defined in Sec. IV B. As was explained
there, the C0 transformation in a PT -symmetric quantum
field theory cannot be identified with charge conjugation.
We have formulated in Sec. IV C a suitable similarity

transformation between a PT -symmetric non-Hermitian
theory with two flavors of spin-zero fields and its Hermitian
counterpart. The equivalence between the noninteracting
PT -symmetric and Hermitian theories cannot, in general,
be carried over to interacting theories with the same
similarity transformation. The Appendices contrast the
similarity transformation we propose with the previous
literature.
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As an illustration of this Fock-space discussion, we have
considered mixing and oscillations in this specific model
with two boson flavors, which is free apart from non-
Hermitian PT -symmetric mixing terms. The unmixed
bosons are taken to be a scalar and a pseudoscalar, which
mix via a non-Hermitian bilinear term. We have shown that
the resulting mass eigenvectors are not orthogonal with
respect to the Dirac inner product, but are orthogonal with
positive norm when the C0PT inner product is used. We
have emphasized that the parity operator in this two-boson
model does not commute with the Hamiltonian, leading to
the appearance of scalar-pseudoscalar mixing and flavor
oscillations, which we have studied in Sec. V. These are of
similar form to the mixing between bosons in a Hermitian
theory, respecting unitarity but presenting issues of inter-
pretation, which we show can be resolved by considering
physical scattering matrix elements, wherein flavor states
only appear internally.
The analysis in this paper has clarified the description of

PT -symmetric non-Hermitian bosonic quantum field the-
ories and provides a framework for formulating them off-
shell. Many of the features discussed here are expected to
carry over to PT -symmetric non-Hermitian field theories
of fermions [33], as we shall discuss in a following paper.
This programme constitutes an important step toward
addressing deeper issues in field theory such as quantum
loop corrections and renormalization, to which we also plan
to return in future work.
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APPENDIX A: AN ALTERNATIVE SIMILARITY
TRANSFORMATION

A different similarity transformation [15] has previously
been applied to the boson model considered in this work. In
this appendix, we review it for completeness and make a
comparison with the transformation detailed in Sec. IV C.
The Hamiltonian Ĥ of the two-flavor scalar theory can

also be mapped to a Hermitian one ĥS (and similarly for the
Lagrangian) via the similarity transformation [15]

ĥS ¼ Ŝ Ĥ Ŝ−1; ðA1Þ

with

Ŝ ¼ exp

�
π

2

Z
x
ðπ̂2ðt;xÞϕ̂2ðt;xÞ þ ϕ̂†

2ðt;xÞπ̂†2ðt;xÞÞ
	
:

ðA2Þ
Here, we have written the operator Ŝ in a manifestly
Hermitian form. We note, however, that the similarity
transformation is defined only up to a constant complex
phase, such that one is free to reorder the operators in the
exponent by making use of the canonical equal-time
commutation relations. We note that, unlike the similarity
transformation we propose in the main text, the trans-
formation (A2) does not depend on the non-Hermitian
parameter η.
The similarity transformation (A2) has the following

action on the field operators:

Ŝϕ̂2ðt;xÞŜ−1 ¼ −iϕ̂2ðt;xÞ; ðA3aÞ
Ŝϕ̂†

2ðt;xÞŜ−1 ¼ −iϕ̂†
2ðt;xÞ; ðA3bÞ

and the transformed version of the Lagrangian (39) for the
free scalar theory is therefore

L̂S ¼ ∂νϕ̂
†
1∂νϕ̂1 − ∂νϕ̂

†
2∂νϕ̂2 −m2

1ϕ̂
†
1ϕ̂1 þm2

2ϕ̂
†
2ϕ̂2

− iμ2ðϕ̂†
1ϕ̂2 − ϕ̂†

2ϕ̂1Þ: ðA4Þ
While this Lagrangian is Hermitian, we draw attention to
the opposite relative signs of the kinetic and mass terms for
the fields ϕ̂1;2, which imply that ϕ̂2 is a negative-norm
ghost and is tachyonic. One should therefore suspect that
the similarity transformation in Eq. (A2) is not directly
related to the Ĉ0 operator needed to construct a positive
norm for these states. Moreover, one can readily confirm
that this similarity transformation, unlike the one defined
in Sec. IVC, does not leave the Fock vacuum invariant.
The latter issue is most easily illustrated by decoupling

the two flavors, i.e., taking the Hermitian limit η → 0. The
plane-wave decomposition of the field ϕ̂2 then takes a
simple form, and we can immediately write

Ŝjη→0 ≡ Ŝ0 ¼ exp

�
i
π

2

Z
p
ðâ†2;pð0Þĉ†2;−pð0Þe2iE2;pt

− ĉ2;pð0Þâ2;−pð0Þe−2iE2;ptÞ
	
: ðA5Þ

The creation and annihilation operators transform as
follows:

Ŝ0â2;qð0ÞŜ−1
0 ¼ −ie2iE2;qtĉ†2;−qð0Þ; ðA6aÞ

Ŝ0â
†
2;qð0ÞŜ−1

0 ¼ −ie−2iE2;qtĉ2;−qð0Þ; ðA6bÞ
Ŝ0ĉ2;qð0ÞŜ−1

0 ¼ −ie2iE2;qtâ†2;−qð0Þ; ðA6cÞ

Ŝ0ĉ
†
2;qð0ÞŜ−1

0 ¼ −ie−2iEqtâ2;−qð0Þ; ðA6dÞ
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which are consistent with the transformations of the fields in Eq. (A3). This transformation would lead to the following
candidate Ĉ0 operator:

Ĉ?
0 ¼ exp

�
iπ
Z
p
ðâ†2;pð0Þĉ†2;−pð0Þe2iEpt − ĉ2;pð0Þâ2;−pð0Þe−2iE2;ptÞ

	
P̂: ðA7Þ

However, we see immediately that this operator does not leave the Fock vacuum invariant. Instead, it is transformed to an
infinite series of time-dependent multiparticle states,

Ĉ0?j0i ¼
�
1þ π2

2!
þ � � �

��
j0i þ iπ

Z
p
jp; 2; t; p̄; 2; tiþ ðiπÞ2

2!

Z
p;q

jp; 2; t; p̄; 2; t;q; 2; t; q̄; 2; ti þ � � �
�
; ðA8Þ

wherein antiparticle states are indicated by a bar over the
three-momentum with, e.g., p̄ ¼ −p.

APPENDIX B: SOME USEFUL EXPRESSIONS

In this Appendix, we collect useful expressions for the
various mass and flavor states. The ket states are as follows:

jp̌; 1; ti ¼ N



ηjp;þ; ti −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
jp;−; ti

�
;

ðB1aÞ

jp̌; 2; ti ¼ N



ηjp;−; ti −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
jp;þ; ti

�
;

ðB1bÞ

jp;þ;0i¼N



ηjp;1;0iþ

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1−η2

q �
jp;2;0i

�
; ðB1cÞ

jp;−;0i¼N



ηjp;2;0iþ

�
1−

ffiffiffiffiffiffiffiffiffiffiffi
1−η2

q �
jp;1;0i

�
: ðB1dÞ

We also have that

jp;þ; ti ¼ NeiEþt


ηjp; 1; 0i þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
jp; 2; 0i

�
;

ðB2aÞ

jp;−; ti ¼ NeiE−t



ηjp; 2; 0i þ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
jp; 1; 0i

�
:

ðB2bÞ

The distinction between checked and hatted operators is
not needed for the flavor eigenstates at the initial time or
mass eigenstates for all times. The conjugate states are

hp̂;1; tj ¼N



ηhp;þ; tj þ

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

q �
hp;−; tj

�
;

ðB3aÞ

hp̂;2; tj ¼N



ηhp;−; tj þ

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

q �
hp;þ; tj

�
;

ðB3bÞ

hp;þ;0jĈ0P̂ T̂ ¼N



ηhp;1;0j−

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

q �
hp;2;0j

�
;

ðB3cÞ

hp;−;0jĈ0P̂ T̂ ¼N



ηhp;2;0j−

�
1−

ffiffiffiffiffiffiffiffiffiffiffiffi
1− η2

q �
hp;1;0j

�
;

ðB3dÞ
with

hp;þ; tjĈ0P̂ T̂

¼ Ne−iEþt


ηhp; 1; 0j −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
hp; 2; 0j

�
;

ðB4aÞ
hp;−; tjĈ0P̂ T̂

¼ Ne−iE−t



ηhp; 2; 0j −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

q �
hp; 1; 0j

�
:

ðB4bÞ
The orthogonality relations for the mass eigenstates are

therefore

hp;�; tjĈ0P̂ T̂ jp0;�; ti ¼ ð2πÞ3δ3ðp − p0Þ; ðB5aÞ

hp;�; tjĈ0P̂ T̂ jp0;∓; ti ¼ 0; ðB5bÞ

since

hp; i; 0jp0; j; 0i ¼ ð2πÞ3δijδ3ðp − p0Þ ðB6aÞ

ALEXANDRE, ELLIS, and MILLINGTON PHYS. REV. D 102, 125030 (2020)

125030-18



by virtue of the algebra in Sec. III. Moreover, we have that

jp̌; 1; ti ¼ ðeiETtÞ1ijp̌; i; 0i

¼ ðeiETtÞ1iN

0
B@ ηjp;þ; 0i −

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
jp;−; 0i

ηjp;−; 0i −
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − η2

p �
jp;þ; 0i

1
CA

i

¼ ðeiETtÞ1iR−1
ij

� jp;þ; 0i
jp;−; 0i

�
j

¼ R−1
1i ðeiE

diagtÞijRjkR−1
kl

� jp;þ; 0i
jp;−; 0i

�
l

¼ R−1
1i

�
eiEþtjp;þ; 0i
eiE−tjp;−; 0i

�
i

; ðB7Þ

which is consistent with Eq. (B3a).

[1] For a recent review, see Y. Ashida, Z. Gong, and M. Ueda,
Non-Hermitian physics, arXiv:2006.01837 [Advances in
Physics].

[2] C. M. Bender, Introduction to PT -symmetric quantum
theory, Contemp. Phys. 46, 277 (2005).

[3] C. M. Bender and S. Boettcher, Real Spectra in Non-
Hermitian Hamiltonians Having PT Symmetry, Phys.
Rev. Lett. 80, 5243 (1998).

[4] S. Longhi, Optical Realization of Relativistic Non-
Hermitian Quantum Mechanics, Phys. Rev. Lett. 105,
013903 (2010); S. Longhi, Parity-time symmetry meets
photonics: A new twist in non-Hermitian optics, Europhys
Lett. 120, 64001 (2018).

[5] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Mussli-
mani, S. Rotter, and D. N. Christodoulides, Non-Hermitian
physics and PT symmetry, Nat. Phys. 14, 11 (2018).

[6] Y. Ashida, S. Furukawa, and M. Ueda, Parity-time-
symmetric quantum critical phenomena, Nat. Commun. 8,
15791 (2017).

[7] N. Matsumoto, K. Kawabata, Y. Ashida, S. Furukawa, and
M. Ueda, Continuous phase transition without gap closing
in non-Hermitian quantum many-body systems, arXiv:
1912.09045 [Phys. Rev. Lett.].

[8] P. D. Mannheim, Appropriate inner product for PT -
symmetric Hamiltonians, Phys. Rev. D 97, 045001 (2018).

[9] J. Alexandre, P. Millington, and D. Seynaeve, Symmetries
and conservation laws in non-Hermitian field theories, Phys.
Rev. D 96, 065027 (2017).

[10] J. Alexandre, J. Ellis, P. Millington, and D. Seynaeve,
Spontaneous symmetry breaking and the Goldstone theorem
in non-Hermitian field theories, Phys. Rev. D 98, 045001
(2018).

[11] J. Alexandre, J. Ellis, P. Millington, and D. Seynaeve, Gauge
invariance and the Englert-Brout-Higgs mechanism in non-
Hermitian field theories, Phys. Rev. D 99, 075024 (2019).

[12] J. Alexandre, J. Ellis, P. Millington, and D. Seynaeve,
Spontaneously breaking non-Abelian gauge symmetry in
non-Hermitian field theories, Phys. Rev. D 101, 035008
(2020).

[13] A. Fring and T. Taira, ’t Hooft-Polyakov monopoles in non-
Hermitian quantum field theory, Phys. Lett. B 807, 135583
(2020).

[14] J. Alexandre, J. Ellis, and P. Millington, PT -symmetric
non-Hermitian quantum field theories with supersymmetry,
Phys. Rev. D 101, 085015 (2020).

[15] P. D. Mannheim, Goldstone bosons and the Englert-Brout-
Higgs mechanism in non-Hermitian theories, Phys. Rev. D
99, 045006 (2019).

[16] A. Fring and T. Taira, Goldstone bosons in different PT -
regimes of non-Hermitian scalar quantum field theories,
Nucl. Phys. B950, 114834 (2020).

[17] A. Fring and T. Taira, Pseudo-Hermitian approach to
Goldstone’s theorem in non-Abelian non-Hermitian quan-
tum field theories, Phys. Rev. D 101, 045014 (2020).

[18] A. Fring and T. Taira, Massive gauge particles versus
Goldstone bosons in non-Hermitian non-Abelian gauge
theory, arXiv:2004.00723.

[19] T. Ohlsson and S. Zhou, Transition probabilities in the
two-level quantum system with PT -symmetric non-
Hermitian Hamiltonians, J. Math. Phys. (N.Y.) 61, 052104
(2020).

[20] T. Ohlsson and S. Zhou, Density matrix formalism for PT -
symmetric non-Hermitian Hamiltonians with the Lindblad
equation, arXiv:2006.02445.

[21] C. M. Bender, D. C. Brody, and H. F. Jones, Complex
Extension of Quantum Mechanics, Phys. Rev. Lett. 89,
270401 (2002); Erratum, Phys. Rev. Lett. 92, 119902 (2004).

[22] M. Blencowe, H. Jones, and A. Korte, Applying the linear δ
expansion to the iφ3 interaction, Phys. Rev. D 57, 5092
(1998).

DISCRETE SPACETIME SYMMETRIES AND PARTICLE MIXING … PHYS. REV. D 102, 125030 (2020)

125030-19

https://arXiv.org/abs/2006.01837
https://doi.org/10.1080/00107500072632
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.80.5243
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1103/PhysRevLett.105.013903
https://doi.org/10.1209/0295-5075/120/64001
https://doi.org/10.1209/0295-5075/120/64001
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/ncomms15791
https://doi.org/10.1038/ncomms15791
https://arXiv.org/abs/1912.09045
https://arXiv.org/abs/1912.09045
https://doi.org/10.1103/PhysRevD.97.045001
https://doi.org/10.1103/PhysRevD.96.065027
https://doi.org/10.1103/PhysRevD.96.065027
https://doi.org/10.1103/PhysRevD.98.045001
https://doi.org/10.1103/PhysRevD.98.045001
https://doi.org/10.1103/PhysRevD.99.075024
https://doi.org/10.1103/PhysRevD.101.035008
https://doi.org/10.1103/PhysRevD.101.035008
https://doi.org/10.1016/j.physletb.2020.135583
https://doi.org/10.1016/j.physletb.2020.135583
https://doi.org/10.1103/PhysRevD.101.085015
https://doi.org/10.1103/PhysRevD.99.045006
https://doi.org/10.1103/PhysRevD.99.045006
https://doi.org/10.1016/j.nuclphysb.2019.114834
https://doi.org/10.1103/PhysRevD.101.045014
https://arXiv.org/abs/2004.00723
https://doi.org/10.1063/5.0002958
https://doi.org/10.1063/5.0002958
https://arXiv.org/abs/2006.02445
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.89.270401
https://doi.org/10.1103/PhysRevLett.92.119902
https://doi.org/10.1103/PhysRevD.57.5092
https://doi.org/10.1103/PhysRevD.57.5092


[23] C. M. Bender, D. C. Brody, and H. F. Jones, Scalar Quantum
Field Theory with Cubic Interaction, Phys. Rev. Lett. 93,
251601 (2004).

[24] C. M. Bender, D. C. Brody, and H. F. Jones, Extension of
PT -symmetric quantum mechanics to quantum field theory
with cubic interaction, Phys. Rev. D 71, 049901 (2005).

[25] A. M. Shalaby, Non-perturbative calculations for the effec-
tive potential of the PT symmetric and non-Hermitian
(−gφ4) field theoretic model, Eur. Phys. J. C 50, 999 (2007).

[26] C. M. Bender, V. Branchina, and E. Messina, Ordinary
versus PT -symmetric ϕ3 quantum field theory, Phys. Rev.
D 85, 085001 (2012).

[27] C. M. Bender, V. Branchina, and E. Messina, Critical
behavior of the PT -symmetric iϕ3 quantum field theory,
Phys. Rev. D 87, 085029 (2013).

[28] A. Shalaby and S. S. Al-Thoyaib, Nonperturbative tests for
asymptotic freedom in the PT -symmetric ð−ϕ4Þ3þ1 theory,
Phys. Rev. D 82, 085013 (2010).

[29] C. M. Bender, S. Boettcher, and P. Meisinger, PT -
symmetric quantum mechanics, J. Math. Phys. (N.Y.) 40,
2201 (1999).

[30] P. Bhupal Dev, P. Millington, A. Pilaftsis, and D. Teresi,
Flavour covariant transport equations: An application to
resonant leptogenesis, Nucl. Phys. B886, 569 (2014).

[31] W. Greiner and J. Reinhardt, Field Quantization (Springer-
Verlag, Heidelberg, 1996).

[32] J. D. Bjorken and S. D. Drell, in Relativistic Quantum Fields
(McGraw-Hill, New York, 1965), pp. 118–123.

[33] See, e. g., J. Alexandre, C. M. Bender, and P. Millington,
Non-Hermitian extension of gauge theories and implications
for neutrino physics, J. High Energy Phys. 11 (2015) 111; T.
Ohlsson, Non-Hermitian neutrino oscillations in matter with
PT symmetric Hamiltonians, Europhys. Lett. 113, 61001
(2016); A. Beygi, S. P. Klevansky, and C. M. Bender,
Relativistic PT -symmetric fermionic theories in 1þ 1
and 3þ 1 dimensions, Phys. Rev. A 99, 062117 (2019);
J. Alexandre and N. E. Mavromatos, On the consistency of a
non-Hermitian Yukawa interaction, Phys. Lett. B 807,
135562 (2020); J. Alexandre, N. E. Mavromatos, and A.
Soto, Dynamical Majorana neutrino masses and axions,
Nucl. Phys. B961, 115212 (2020).

ALEXANDRE, ELLIS, and MILLINGTON PHYS. REV. D 102, 125030 (2020)

125030-20

https://doi.org/10.1103/PhysRevLett.93.251601
https://doi.org/10.1103/PhysRevLett.93.251601
https://doi.org/10.1103/PhysRevD.71.049901
https://doi.org/10.1140/epjc/s10052-007-0236-4
https://doi.org/10.1103/PhysRevD.85.085001
https://doi.org/10.1103/PhysRevD.85.085001
https://doi.org/10.1103/PhysRevD.87.085029
https://doi.org/10.1103/PhysRevD.82.085013
https://doi.org/10.1063/1.532860
https://doi.org/10.1063/1.532860
https://doi.org/10.1016/j.nuclphysb.2014.06.020
https://doi.org/10.1007/JHEP11(2015)111
https://doi.org/10.1209/0295-5075/113/61001
https://doi.org/10.1209/0295-5075/113/61001
https://doi.org/10.1103/PhysRevA.99.062117
https://doi.org/10.1016/j.physletb.2020.135562
https://doi.org/10.1016/j.physletb.2020.135562
https://doi.org/10.1016/j.nuclphysb.2020.115212

