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Abstract

We consider leptogenesis in a left-right-symmetric seesaw scenario in which neutrino mass generation 
and leptogenesis are dominated by the type-II seesaw term. Motivated by grand unification, we assume that 
the neutrino Dirac mass matrix is dominated by a single entry of the order of the top-quark mass, which 
leaves the low-energy phases of the lepton mixing matrix as the only sources of CP violation. Working in a 
regime where the triplet scalar predominantly decays into leptons, this results in a predictive scenario based 
on a minimal number of parameters. We perform a detailed analysis of the flavored Boltzmann equations 
within a revised density matrix framework and demonstrate that the observed baryon asymmetry can be 
successfully generated in this simple model. We point out that the significance of flavor effects is limited, 
and we discuss the implications for low-energy observables such as the Dirac CP phase and neutrinoless 
double beta decay.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The explanation of the observed baryon-to-photon ratio is one of the most fascinating and 
important questions of fundamental physics since it is directly linked to the origin of our exis-
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tence. The underlying conditions for successful baryogenesis formulated by Sakharov [1] allow 
for a wide variety of models, among which leptogenesis [2] is of special interest because it es-
tablishes a connection between the baryon asymmetry of the Universe (BAU) and the generation 
of light active neutrino masses. In leptogenesis scenarios, a particle–antiparticle asymmetry is 
first created in the lepton sector by CP-violating decays of heavy states at temperatures around 
their mass, before it is transferred to the baryon sector by Standard Model (SM) sphaleron pro-
cesses [3–5]. In its standard formulation, leptogenesis proceeds via the decay of right-handed 
neutrinos, the same particles that are at the origin of neutrino mass in the type-I seesaw mech-
anism [6–10]. Remarkably enough, a large number of neutrino mass models in the literature 
allows for successful leptogenesis [11], which assigns neutrinos a special role in the cosmolog-
ical history of our Universe. Moreover, as the option of measuring CP violation in the lepton 
sector becomes more and more realistic, and first hints towards nontrivial values of the CP phase 
δ have emerged [12,13], the question whether there is a connection between low-energy and high-
energy CP violation is imminent. For these reasons, leptogenesis has become a very active field 
in the last decades, and many phenomenological as well as formal aspects have been investigated 
in great detail. For more insights, see the review articles in Refs. [14–17] and references therein. 
Neutrino masses may also be generated by mechanisms beyond the type-I seesaw, in particular, 
the type-II or -III seesaw, which include scalar [10,18–22] or fermionic [23–25] triplets, respec-
tively. In these mechanisms, the BAU can be generated as well. Indeed, leptogenesis through 
decays of scalar [26–30] and fermionic [31–33] triplets has been discussed. Mixed models have 
also been investigated [34–44]. In this case, both neutrino mass and lepton asymmetry receive 
more than one contribution.

Our work deals with a minimal realization of such a mixed model, where the neutrino mass 
arises from a combined type-I and type-II seesaw. Note that one scalar triplet alone is not suf-
ficient to generate a CP asymmetry, as there needs to be an additional particle to generate a 
loop diagram with which the tree-level triplet decay can interfere. In our case, the right-handed 
neutrinos of the type-I seesaw contribution play this role. Leptogenesis within our approach is 
thus generically governed by both seesaw contributions and their underlying couplings, namely, 
the Dirac Yukawa couplings from the type-I sector as well as the triplet Yukawa and trilinear 
scalar couplings from the type-II sector. Working in the parameter region where the type-II 
contribution dominates leptogenesis and neutrino mass, the diagram that generates the lepton 
asymmetry is the decay of the triplet with a vertex correction involving right-handed neutrinos. 
We then make the simplifying assumption that there is “left-right seesaw symmetry” [35,45–47], 
such that the right-handed neutrino mass matrix is proportional to the triplet Yukawa matrix. 
Within type-II dominance, this renders the light- and heavy-neutrino mass matrices proportional 
to each other, thereby fixing the heavy-flavor sector up to a normalization. As a consequence, 
the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lepton mixing matrix diagonalizes both the 
left- and right-handed Majorana mass matrices simultaneously. What remains to be fixed is the 
Yukawa matrix that couples left- and right-handed fermions, i.e., the Dirac mass matrix of the 
type-I seesaw term. Assuming a relation to the up-quark sector as it occurs in grand unified 
theories (GUTs) leads it to be dominated by one single entry, the top-quark mass. Thus, in what 
regards the flavor parameters, only the elements of the PMNS matrix, in particular, the CP phases 
influence the final baryon asymmetry. The special feature of the model under investigation is a 
very small number of free parameters and its direct link between the baryon asymmetry and 
measured, or measurable, low-energy neutrino observables.

In this paper, we discuss the requirements underlying a type-II-dominated light neutrino mass 
and perform a detailed analysis of the relevant Boltzmann equations in the density matrix formal-
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ism. We work in a regime of parameter space where flavor effects are only of minor importance. 
This, in turn, allows for a careful and robust analysis of the dependence of the baryon asymmetry 
on measurable low-energy parameters, in particular, the mass ordering, the CP phase δ, and the 
effective neutrino mass mee that is crucial for neutrinoless double beta decay. Additional param-
eters are the mass of the lightest neutrino and the mass of the scalar triplet. The requirement of 
type-II seesaw dominance provides additional constraints on these quantities.

This paper is structured as follows: Sec. 2 summarizes the generation of neutrino mass in 
the minimal mixed type-(I+II) seesaw model and the simplifications brought about by a dom-
inating triplet contribution. The corresponding leptogenesis scenario is covered in Sec. 3, both 
analytically and numerically. We present our results in Sec. 4 and conclude with Sec. 5. Various 
technical details are collected in a number of appendices.

2. Minimal mixed neutrino mass model with type-II dominance

The model under consideration generates light neutrino masses through Yukawa interactions 
with right-handed (RH) heavy neutrinos possessing a Majorana mass term and through Yukawa 
interactions with a scalar isospin triplet. Consequently, both type-I and type-II seesaw contribu-
tions to the light neutrino mass matrix mν are present:

mν = mII + mI = mII − mT
D m−1

N mD . (1)

In the charged-lepton basis, mν is diagonalized by the PMNS matrix U :

U =
⎛⎝ c12c13 s12c13 s13e

−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

⎞⎠× diag(1, eiσ , eiτ ) ,

(2)

with cij = cos θij and sij = sin θij . In what follows, we will use the recent fit results from 
Ref. [13] for the mixing angles θij , the CP phase δ, and the mass-squared differences δm2 =
m2

2 − m2
1, �m2 = m2

3 − (m2
2 + m2

1)/2, which determine the individual neutrino masses once the 
smallest mass msm is fixed (msm = m1 for the normal mass ordering, msm = m3 for the inverted 
one). The absolute neutrino mass scale is bounded from above by cosmological observations 
to sub-eV values, with the precise upper bound depending on the data sets and cosmological 
assumptions [48]. The Majorana phases σ and τ are unconstrained. We will assume type-II dom-
inance in mν in this paper. That is, we will assume that the main contribution to light neutrino 
masses comes from interactions with the scalar triplet,

mν � mII . (3)

Hence, the PMNS matrix U diagonalizes mII , which fixes the relevant triplet Yukawa matrix; 
see Eq. (12) below. With the additional assumption of a discrete left-right (LR) symmetry, mII ∝
mN , the flavor structure of the heavy RH neutrino mass matrix is fixed. The remaining unknown 
flavor structure comes from the Dirac mass matrix of the type-I seesaw contribution, which will 
be assumed to be strongly hierarchical. Overall, the situation is then quite minimal and predictive. 
Let us now discuss our framework in more detail.

2.1. Mixed type-II-dominated seesaw model

Type II-dominance within our combined seesaw framework generically implies the type-I 
scale to be higher than the type-II one, �I � �II. The assumption that the scalar triplet (type-II) 
3
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contribution to neutrino mass is proportional to the right-handed neutrino mass matrix, mII ∝
mN [35,45–47] could originate, for instance, in left-right-symmetric theories based on SU(2)L ×
SU(2)R × U(1)B−L, in which mN is given by 2 k vR , where vR is the VEV of a scalar SU(2)R
triplet and k a Yukawa matrix. The discrete left-right symmetry in such models then leads to f =
k, where f is the Yukawa matrix of the SU(2)L triplet, cf. Eq. (6). Although we remain agnostic 
about the explicit realization of such a framework, this assumption implies useful relations that 
help us shrink the parameter space down to a few variables, most of which are measurable at low 
energies. Our calculation is assuming that the underlying sector that leads to the discrete left-right 
symmetry has no impact on leptogenesis. Within a left-right-symmetric model, it could easily 
arise when the gauge bosons and right-handed triplets are much heavier than the RH neutrino 
masses and the SU(2)L triplets. Flavor symmetry approaches that could lead to our scenario can 
also be constructed along the line of Ref. [49]. We leave an investigation of an explicit realization 
as well as a study of leptogenesis in other areas of parameter space (i.e., when diagrams other 
than triplet decay dominate leptogenesis) for future work.

Type-I seesaw contribution. Within our model, light neutrino masses are partially generated by 
the interplay of neutrino Dirac mass terms, induced by Yukawa interactions of left-handed (LH) 
and RH neutrinos, and Majorana mass terms of the RH singlet neutrinos. The corresponding 
type-I Lagrangian is given by

LI ⊃ −1

2
(mN)AB (NR)A C† (NR

T
)B − hAj

(
NR

)
A

H̃ †Lj + h.c., (4)

where C represents the charge conjugation matrix, and with the SM Higgs doublet H =(
H+,H 0

)T
, its conjugate H̃ = iσ2H

∗, the RH neutrino singlets NR and the LH lepton dou-
blets L. Combining Dirac and Majorana masses into one mass matrix and diagonalizing it leads 
to the well-known type-I seesaw mass formula

mI � −mT
D m−1

N mD = −MT
D D−1

N MD , (5)

with MD = UT mD and D−1
N = U†m−1

N U∗. The masses of the right-handed neutrinos will be 
denoted M1,2,3, while the Dirac mass matrix in the RH neutrino mass basis is defined as mD =
y vew/

√
2 with the Higgs vacuum expectation value (VEV) vew = √

2 〈H 0〉 = 246 GeV and 
y � U†h being the corresponding Yukawa couplings.

Type-II seesaw contribution. Since we assume type-II dominance, the corresponding seesaw 
contribution will be of main importance in the course of this work. It is given by massive scalar 
isospin triplets coupling to LH leptons and the SM Higgs doublet. For our purposes, we only 
need one massive scalar triplet such that the relevant part of the type-II Lagrangian is of the 
form [31,28,50,30]

LII ⊃ −
(
fαβ LT

α C iσ2 �Lβ + μHT iσ2 �† H + h.c.
)

− M2
� Tr

[
�†�

]
, (6)

where the triplet is given by

� =
(

�+/
√

2 �++
�0 −�+/

√
2

)
. (7)
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Upon symmetry breaking, the neutral component �0 develops a nonzero VEV

vL =
〈
�0
〉
= μv2

ew

2M2
�

, (8)

which depends on the trilinear coupling μ, the triplet mass M�, and the Higgs VEV vew, and 
which induces the following contribution to the light neutrino mass:

mII = 2vLf = μv2
ew

M2
�

f . (9)

For leptogenesis, it is important to note that the triplet has two different decay channels, a leptonic 
and a bosonic one, whose tree-level decay rates, for one triplet degree of freedom, are given by

�
(
�i → LL

)= 1

8π
λ2

L M� , λL ≡
√

Tr(ff †) , (10)

�(�i → HH) = 1

8π
λ2

H M� , λH ≡ |μ|
M�

. (11)

Making use of the couplings λL and λH , one obtains handy expressions for the corresponding 
branching ratios, BL,H = λ2

L,H /(λ2
L + λ2

H ).

Connection between different seesaw sectors . Due to the underlying LR symmetry, LH and 
RH neutrinos are subject to the same coupling matrix,

mN ≡ 2vR f , mII = 2vL f , (12)

where vR is defined here as the overall mass scale of mN , and vL was defined in Eq. (8).
Equations (12) further imply

mN = mII

r
� mν

r
, with r ≡ vL

vR

. (13)

This simple relation illustrates that mN and mν can be diagonalized by the same matrix, which, 
in the charged-lepton basis, is exactly the PMNS matrix U and we immediately see that both 
mass hierarchies are also identical,

DN = diag (M1,M2,M3) � 1

r
diag (m1,m2,m3) = 1

r
Dν , (14)

upon using Dν,N = UT mν,N U . The remaining flavor structure resides in the Dirac mass matrix 
mD . It is natural to assume that it is related to the up-quark mass matrix. This is what can be re-
alized in SO(10) models, which interestingly can be broken down to the SM via an intermediate 
SU(2)L × SU(2)R × U(1)B−L step, see Ref. [51] for a recent analysis. To be more precise, a 
SO(10)-like dominance of the 10 Higgs representation can be used to establish this connection 
between the Dirac neutrino and up-type quark mass matrices [52,53]. We thus assume

mD = c · diag (mu,mc,mt ) � c · diag (0,0,mt ) , (15)

with the factor c being a quantity of O(1) that depends on the underlying explicit model build-
ing. For instance, in a minimal SO(10) framework with 10 and 126 Higgs representations c = 3
[54]. However, since the resulting mixing angles are in conflict with the experimental measure-
ments [55], additional model building is required. At this point, we leave model building aside 
and assume a generic value of c ∼ 1 which is to be adapted for an explicit solution. This is 
5
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also in line with Ref. [44] which simply sets c = 1. Since the up- and charm-quark masses are 
much lighter than the top-quark mass, we neglect them in the following analytical investiga-
tion. All quark masses have been taking into account in the numerical investigation of Sec. 3.3. 
Since the down-type quarks are much less hierarchical than the up-type quarks, we choose to 
ignore CKM mixing effects in mD and assume that the CKM matrix mainly stems from the 
down-quark mass matrix. Anyway, it would be a small effect on our calculations that we can 
safely ignore. In the RH neutrino mass basis, the masses in the type-I sector are fixed by up-type 
quark masses, the ratio between the LH and RH energy scales and low-energy neutrino mixing 
parameters:

mI � −r MT
D D−1

ν MD , where MD = UT mD . (16)

Inserting Eq. (15) implies that (mI )αβ � (mI )ττ � −r c2 m2
t (Uτi)

2/mi .

2.2. Type-II dominance

Before we turn to our leptogenesis analysis, we shall demonstrate the consequences of a type-
II dominance and, further, formulate the conditions that guarantee the validity of our conclusions. 
In order to know when the type-II contribution dominates the light neutrino mass, the individual 
seesaw parts have to be estimated. With our assumptions, the type-I neutrino mass scale is given 
by

mI ≡
√

Tr
(
mI

†mI

)= r c2 m2
t

√√√√∑
i,j

U2
τ iU

2∗
τj

mimj

≡ r c2 m2
t

m̃
, (17)

whereas the type-II neutrino mass scale is

mII ≡
√

Tr
(
mII

†mII

)= 2λL vL , (18)

where λL was defined in Eq. (10). In our framework, Eq. (18) sets the absolute light neutrino 

mass scale m =
√

m2
1 + m2

2 + m2
3. With the above expressions, the type-II dominance condition 

reads

Q = mI

mII

� r c2 m2
t

mm̃
 1 . (19)

Using the parameter Q, the type-II dominance region in the accessible parameter space can be 
identified. Namely, we can rewrite the condition Q  1 in several insightful ways for

• the ratio of SU(2)L triplet VEV and mN mass scale:

r  mm̃

c2 m2
t

∼ 10−26
(

m̃

0.01 eV

)(
m

0.05 eV

)
; (20)

• the SU(2)L triplet VEV vL:

vL  mm̃vR

c2 m2
t

∼ 0.1 eV

(
m̃

0.01 eV

)(
m

0.05 eV

)(
vR

1016 GeV

)
; (21)
6
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• the trilinear scalar coupling:

μ  mm̃M2
�vR

c2 m4
t

∼ 1010 GeV

(
m̃

0.01 eV

)(
m

0.05 eV

)(
M�

1012 GeV

)2(
vR

1016 GeV

)
.

(22)

The philosophy behind these bounds is that if, e.g., the trilinear coupling μ and the triplet VEV 
are kept small, the ratio of vL and the RH neutrino mass scale is small. Note that m̃ defined in 
Eq. (17) contains flavor dependence, so that the conditions for type-II dominance do not only 
depend on mass scales.

Another constraint that needs to be taken into account is that the ratio of vL and the neu-
trino mass scale should not be too large in order to keep the triplet-lepton coupling matrix f
perturbative,

λL = mII

2vL

� m

2vL

�O(1) . (23)

From now on, we set vL = m/2 =
√

m2
1 + m2

2 + m2
3/2, which is close to the smallest possible 

value that is still consistent with perturbative Yukawa couplings. This assumption will lead to 
large Yukawa couplings and triplet decays predominantly into leptons and later on we will see 
that this eliminates flavor effects in the leptogenesis scenario considered. At the same time, it 
fixes the trilinear scalar coupling μ in terms of the triplet mass M�, eliminates a free parameter 
from our analysis and allows to rewrite the parameter λH governing the decay of the triplets into 
the Higgs, cf. Eq. (11):

μ = mM2
�

v2
ew

⇒ λH = μ

M�

= mM�

v2
ew

. (24)

Together with the bound on μ, this results in a lower bound on vR in dependence of m̃:

vR � v2
ew

4m̃
∼ 1.5 · 1015 GeV

(
0.01 eV

m̃

)
. (25)

As expected this lies around the GUT scale and demands m̃ not to be too small, which is in line 
with our observations above.

The behavior of the parameter Q defined in Eq. (19) under assumption of maximally allowed 
couplings f is illustrated in Fig. 1 for certain parameter values and both mass orderings. For 
simplicity, the Dirac and Majorana phases δ and τ are set to 3π/2 and zero, while we gener-
ically fix the RH VEV at the GUT scale, vR = 3 · 1016 GeV. Then, the ratio of LH and RH 
scales is given by r ∼ 10−29 (m/0.05 eV), assuming maximal perturbative Yukawa couplings in 
addition.

A general feature, regardless of mass ordering, is that type-II dominance induces lower limits 
on the lightest neutrino mass, m1 for normal mass ordering (NO) and m3 for inverted mass 
ordering (IO), respectively. For normal mass ordering, type-II dominance is guaranteed for 
m1 � 10−3.5 eV, whereas inverted mass ordering favors slightly higher values, m3 � 10−3.0 eV, 
when the RH VEV is fixed at the GUT scale, vR = 3 · 1016 GeV. Note that we have assumed 
CKM mixing effects to be negligible and, further, c ∼ 1, which might be different in an explicit 
model building realization. However, this simply corresponds to a rescaling of our Q parameter 
which is illustrated in Fig. 1. Large regions of our framework’s parameter space exhibit devia-
tions of a factor of ∼ 10 from the generic left-right-symmetric relation between the VEVs, i.e. 
7
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Fig. 1. Type-II dominance parameter Q defined in Eq. (19) in dependence of the Majorana phase σ and the lightest 
neutrino mass msm for normal (left) and inverted mass ordering (right). In order to compare both mass orderings, the 
two remaining CP phases are set to fixed values: δ = 3π/2 and τ = 0. The RH mass scale is fixed at the GUT scale, 
vR = 3 · 1016 GeV. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

vLvR ∼ v2
ew, which we find acceptable. We do not specify the origin of this factor of 10 and 

leave its explanation in concrete UV completions for future works. Further, the plot shows that 
certain phase configurations can lead to an increased type-II contribution for given values of 
msm. This behavior becomes more complex when the other CP phases are varied in addition. In 
our later numerical analysis, we will make sure that the type-II dominance condition is always 
fulfilled.

3. Type-II-dominated leptogenesis

We will now investigate the capability of the scenario to create the observed BAU via leptoge-
nesis. We rely on a typical thermal scenario, where a heavy particle, here the scalar triplet, decays 
at a temperature around its mass and creates a lepton asymmetry that is later transferred into a 
baryon asymmetry via non-perturbative SM sphaleron processes. Pure type-II leptogenesis with 
only one scalar triplet is not possible because of missing self-energy or vertex diagrams that are 
needed to interfere with the tree-level decay diagram. However, our mixed type-(I+II) framework 
allows for a valid scenario, as the heavy RH neutrinos induce a vertex correction that interferes 
with the tree-level amplitude, cf. Fig. 2, leading to a nonzero CP asymmetry. In principle, also 
these SM singlets decay and could contribute to the creation of a lepton asymmetry, but type-II 
dominance forces them to be much heavier than the scalar triplet, Mi � M�, i = 1, 2, 3. Hence, 
they decay much earlier and the created asymmetries get washed out in the primordial thermal 
bath before the triplets start decaying. The same reasoning applies to potential CP-violating RH 
triplet decays �R , whose masses are assumed to lie around the GUT scale. In the following inves-
tigation, we will assume the scalar triplet to be solely responsible for the creation of the observed 
BAU, which justifies integrating out the RH singlets. We therefore have a situation in analogy to 
the one discussed in Ref. [30]. In our analysis, we will adopt the density matrix formalism devel-
8
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Fig. 2. Relevant Feynman diagrams for type-II-dominated leptogenesis.

oped in Ref. [30] in combination with the conditions for flavor regimes and associated spectator 
corrections of Ref. [50].

3.1. Type-II-dominated CP asymmetry

Before we are going to list all ingredients that are necessary for a full numerical investigation, 
we want to focus on the implications of type-II dominance for the CP asymmetry parameter ε. 
The CP asymmetry of a certain reaction channel is defined as the difference between the chan-
nel’s rate and its CP-conjugated one, normalized to the total decay width. For scalar triplet decays 
these quantities are defined as1

εαβ = �(� → LαLβ) − �(� → LαLβ)

�� + ��

(1 + δαβ) ,

εH = 2
�(� → HH) − �(� → HH)

�� + ��

,

(26)

where �� = �� = �(� → LL) + �(� → HH). The resulting CP asymmetry corresponding to 
the diagrams in Fig. 2, cf. Ref. [28], is then given by

ε� = − 1

8π

∑
i

Mi

Im
[
μ
(
y∗ f y†

)
ii

]
M2

�Tr
[
ff †

]+ |μ|2 ln

(
1 +

(
M�

Mi

)2
)

, (27)

where we recall that μ is the trilinear triplet-Higgs-Higgs coupling, y the Dirac Yukawa and 
f the triplet Yukawa coupling. Using the mass hierarchy related to type-II dominance implies 
Mi � M�, and applying the expressions of the individual seesaw contributions, see Eqs. (5) and 
(9), as well as Refs. [56,44], we can further simplify, which leads us to the compact formula2

ε� =
∑
α

εαα = 1

4π

M�

v2
ew mII

√
BLBH Im

[
Tr
[
mIImI

†
]]

= εH . (28)

The advantage of type-II dominance is that, in this expression, mII equals the neutrino mass 
matrix mν . Furthermore, using a discrete left-right symmetry and hierarchical Dirac Yukawa 
couplings means that mI = −mT

D m−1
N mD simplifies because of mN ∝ mII and mD � (0, 0, mt), 

1 We follow the convention of Ref. [30], which includes in particular the factor 2 in εH .
2 The equality of both CP asymmetry parameters can be understood by comparing the interference parts of both reaction 

channels, which are similar in couplings up to operations due to different time order. The corresponding bosonic diagrams 
are obtained by replacing lepton with Higgs lines (and vice versa) in Fig. 2.
9
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cf. Eq. (5). Evaluating the trace as well as the geometric mean of the branching ratios for vL =
m/2, cf. Eq. (23), allows us to re-express ε in a form that factorizes nicely into low- and high-
energy quantities:

ε� = −A · B , with (29a)

A =
∑
i,j

mi

mj

Im

[(
UτiU

∗
τj

)2
]

, B = λH

1 + λ2
H

M�

4πvR

, (29b)

where we used Eq. (23). We see that A only contains low-energy flavor and CP parameters, 
whereas B only contains high-energy quantities.

Actually the CP asymmetry in Eq. (28) is the unflavored one, ε� = Tr εαβ . The flavored asym-
metries read in general [30]

εαβ = − 1

8πi

M�

v2
ew

√
BLBH

mII

(
mImII

† − mIImI
†
)

αβ
. (30)

As it turns out, for our purposes, flavor effects (to be discussed in what follows Sec. 3.2) play 
only a minor role. Hence the unflavored formalism discussed here allows a straightforward in-
vestigation of the available parameter space.

First, note that A and hence the BAU depend on the low-energy CP phases δ, σ and τ . To 
obtain a better understanding of the dependence on low-energy observables, we further simplify 
A. We introduce two dimensionless auxiliary quantities R and η to take into account various 
possible mass orderings and hierarchies: δm2 = R |�m2| and m2

sm = η |�m2|. By fixing the 
remaining mixing angles3 and keeping terms up to first order in R and θ2

13, we obtain compact 
expressions that allow a qualitative understanding of how accessible low-energy observables 
influence the creation of a CP asymmetry:

A = S1 + T S2

96
√

η(η + 1)3

+ (η(η + 1))−3/2

192

{
2(η(T − R) − 2R) sin 2(σ + τ) + η(T + R) sin 2τ , NO ,

2η(T + R) sin 2(σ + τ) + η(T − R) sin 2τ , IO ,

(31)

where the full dependence on δ is incorporated in the parameters S1,2 = S1,2(δ, σ, τ, θ13, θ 2
13), 

while T = T (η) only depends on the introduced auxiliary parameters η. The full expressions 
for both terms are given in Eqs. (C.4) in Appendix C.4 Using these expressions together with 
Eqs. (31), one can deduce that the leading dependence on the Dirac phase goes with sinδ, and 
with sin 2α and higher periodicities for the Majorana phases α = σ, τ . Finally, we can approxi-
mate R � 1

30 and θ13 � 1
7 , which leaves us with the following approximation of the parameter A

in case of normal neutrino mass ordering and a lightest neutrino mass around 10−2 eV (in this 
case R and η are of similar magnitude)

A(m1 = 10−2 eV|σ, τ = 0) = θ2
13

96

[
16 − 3

√
2 +

√
2 + 4√

R

]
sin 2δ

+ θ13

288

[(
33 − 21

√
2
)√

R + 4
(

2
√

2 − 3
)

− 12√
R

(√
2 − 1

)]
sin δ ,

(32a)

3 Here, we set θ23 = π
4 and sin2 θ12 = 1

3 .
4 The analytical calculations throughout this work are done with the computer algebra system Mathematica [57].
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A(m1 = 10−2 eV|δ = π) = Ã1

576
+ θ2

13

96

[
− 3

√
2 sin 2σ + 8 sin 4σ − 12 sin 4τ

−
√

2√
R

sin 2(σ + τ) + 2√
R

sin 2τ

]
+ θ13

288

[
12 sin 2σ − 16

√
2 sin 4σ

+ 3
√

2(7R + 4)√
R

sin 2τ − 3(11R + 4)√
R

sin 2(σ + τ)

]
,

(32b)

A(m1 = 10−2 eV|δ = 3
π

2
) = Ã1

576
+ θ2

13

96

[
− 3√

R

(√
2 sin 2(σ + τ) + 2 sin 2τ

)
+ 3

√
2 sin 2σ − 8 sin 4σ − 12 sin 4τ

]
+ θ13

288

[
3
√

R
(

7
√

2 cos 2τ − 11 cos 2(σ+τ)
)

+ 12 cos 2σ + 8
√

2(1 − 2 cos 4σ) + 12√
R

(√
2 cos 2τ − cos 2(σ + τ)

)]
,

(32c)

with Ã1 =
[

3
√

2(11R+4)√
R

sin 2(σ + τ) + 3(7R+4)√
R

sin 2τ + 12
√

2 sin 2σ + 16 sin 4σ + 36 sin 4τ

]
.

An approximation for smaller msm values and corresponding expressions for the inverted 
neutrino mass ordering are listed in Appendix C. More complicated expressions in matrix form 
are obtained when flavor effects are present. Here, we stay brief as we will demonstrate in the 
next section that flavor effects are insignificant.

3.2. Importance of flavor

Since we later want to scan over several temperature regimes in the early Universe, we have 
to consider the individual processes that are in equilibrium, as they may influence the genera-
tion of the B − L asymmetry and hence the final BAU. For instance, lepton Yukawa interactions 
that reach equilibrium at characteristic temperatures, Tτ ∼ 1012 GeV and Tμ ∼ 109 GeV respec-
tively [58,59], will have an impact on the structure of the Boltzmann equations. Correspondingly, 
the form of the flavored asymmetries εαβ is affected, too.5 Leptons produced in decay pro-
cesses propagate as coherent superpositions of lepton flavors as long as the corresponding lepton 
Yukawa interaction rates are slower than the expansion of the Universe. In this sense the unfla-
vored CP asymmetry ε� in Eq. (28) is only valid at high temperatures when all lepton Yukawa 
interactions are out of equilibrium. The decoherence induced by these interactions reaching 
equilibrium, i.e. when �τ,μ(T ) � H(T ), effectively splits the lepton flavor superposition and 
separates the evolution of the corresponding lepton number asymmetries, which are then gov-
erned by individual Boltzmann equations. Within the density matrix formalism, which we will 
use in this work, these decoherence effects drive the corresponding off-diagonal elements in the 
B − L asymmetry matrix to zero, cf. Eq. (B.2), such that the (3 × 3)-matrix of B − L asymme-
tries �αβ at highest temperatures is gradually shrunk, via a ((2 × 2) + 1) description, to three 

5 The individual temperature regimes can be deduced from the temperature-dependent rate of the muon and tau Yukawa 
interactions, cf. Eq. (B.1). The electron Yukawa, reaching equilibrium at Te ∼ 105 GeV, does not affect the system of 
Boltzmann equations as the coherence among the three lepton families has already been broken.
11
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individual quantities accounting for the asymmetry produced in the three individual lepton fla-
vors.6

While the previous statements are generally valid for both type-I and type-II leptogenesis sce-
narios, the situation within a type-II framework is more complicated since the scalar SU(2)L
triplet exhibits two decay channels and, in addition, undergoes gauge scatterings. If the triplet’s 
leptonic inverse decay (ID) rate, i.e. the rate of two leptons fusing into a scalar triplet, is much 
faster than any lepton Yukawa interaction rate, �ID � �f , the triplet inversely decays before 
Yukawa interactions can take place, which effectively suppresses flavor effects until both inter-
action rates are of comparable size, �ID ∼ �f . The appearance of decoherence is then delayed 
until inverse decays into leptons are slower than the lepton Yukawa interactions [50]:

�f ≥ BL ��

Y
eq
�

Y
eq
L

, for f = τ,μ . (33)

Here Y eq
� and Y eq

L denote the triplet and lepton equilibrium abundances Y eq
x = n

eq
x /s, respectively. 

This condition can be translated into triplet mass bounds indicating what flavor treatment is to be 
applied [50]:

M� � 4

(
10−3 eV

m̃eff
�

)
· 1011 GeV, 2-flavor-regime ,

M� � 1

(
10−3 eV

m̃eff
�

)
· 109 GeV , 3-flavor-regime ,

(34)

with the effective triplet mass parameter m̃eff
� = mII

√
(1 − BH )/BH = (λL/λH )mII . So in fact, 

two conditions have to be fulfilled for flavor effects to be relevant: first, the necessary condition 
that a certain lepton Yukawa interaction reaches equilibrium, �f � H , and second, the sufficient 
condition that it is faster than inverse triplet decays given by Eq. (33). Our previous assumptions 
of type-II dominance and perturbativity of λL lead to a characteristic expression of the effec-
tive triplet mass parameter, m̃eff

� � v2
ew/M�, such that the upper mass bounds in Eqs. (34) are 

shifted towards energies that are irrelevant within a thermal leptogenesis scenario like it is as-
sumed in this paper. In particular, for a typical triplet mass of M� ∼ 1010−13 GeV we obtain 
m̃eff

� � 6 · 103−0 eV, which indicates that flavor effects will play a minor role in the following 
investigations.

Finally, we want to comment on the gauge interactions related to the weak charge carried 
by the scalar SU(2)L triplet. These fast gauge boson scatterings inhibit sufficient asymmetry 
production until the associated rate drops below the usual triplet decay rate, �A < �D . Thus, ef-
fective BAU generation is restricted to times when gauge scatterings proceed sufficiently slower 
than triplet decays. Since these bounds from gauge scatterings are generally assumed to be 
weaker than the ones from Eq. (33), cf. Ref. [50], we only apply the previous flavor condition, 
cf. Eq. (33), and shift a detailed discussion of these “weak” flavor conditions for the interested 
reader to Appendix B.

In summary, the fact that for our set of parameters the triplet couples more strongly to leptons, 
λH  λL = 1, leads to a fast inverse-decay rate �ID, which implies that flavor effects are not very 
significant. Nevertheless, in the course of this work we will carefully consider the different flavor 

6 It is to be noted that this is just an approximate procedure as the transition regions require a quantum-mechanical 
treatment that also takes into account effects of partial decoherence, which is beyond the scope of this work.
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regimes that are related to flavor effects and spectator processes, which is an interesting analysis 
in its own right. Note that the notion of “unflavored leptogenesis” is not as easy to define as in 
the type-I seesaw case. We return to this point in Sec. 4.1.1.

3.3. Numerical investigation

We are now going to perform a full numerical analysis7 within a refined framework that ap-
plies a density matrix approach [70,30] in combination with the flavor transition conditions of 
Ref. [50]. Further, both modified spectator corrections that come along with this flavor transi-
tion conditions and washout effects up to (2 → 2) scatterings are incorporated. Contributions of 
lighter quark masses in the Dirac neutrino mass, cf. Eq. (15), are taken into account as well.

3.3.1. Boltzmann equations
The dynamical quantities of scalar triplet leptogenesis are the abundances of triplets, �� ≡

(n� + n�̄)/s, Higgs and lepton doublets, �X ≡ (nX + nX̄)/s for X = H, L, and the B − L

charge asymmetry matrix �αβ . Here s is the entropy density. Since the triplet is not its own 
antiparticle, the difference between triplets and antitriplets is assigned a separate quantity, 
�� ≡ (n� − n�̄)/s. The evolution of each quantity is governed by a Boltzmann equation, but 
because of hypercharge conservation only three of them are independent, 2 �� +�H −�L = 0. 
Following the convention in the literature, e.g. Refs. [28,56,11,50,30], we eliminate the Higgs 
doublet abundance, such that leptogenesis is described by8

sHz
d��

dz
= −

(
��

�
eq
�

− 1

)
γD − 2

⎛⎝(��

�
eq
�

)2

− 1

⎞⎠γA , (35a)

sHz
d�αβ

dz
= −

(
��

�
eq
�

− 1

)
γD εαβ + WD

αβ + WlH
αβ + W 4l

αβ + Wl�
αβ − Cτ − Cμ , (35b)

sHz
d��

dz
= −1

2

(
Tr
(
WD

αβ

)
− WD

H

)
γD , (35c)

with Hubble rate H and time variable z ≡ M�/T ; εαβ corresponds to the flavored CP asymme-
tries in Eq. (30), γD to the (inverse) decay reaction rate, γA to the reaction rate induced by gauge 
scatterings of the triplet, and �eq

� to the triplet equilibrium density.
We list the explicit forms of these expressions in Appendix A. The washout is split into dif-

ferent terms according to their origin and given as matrices in flavor space:

• WD : inverse lepton decays, Eq. (A.9);
• WH : inverse Higgs decays, Eq. (A.10);
• WlH : lepton–Higgs scatterings, Eq. (A.11);
• W 4l : 2-lepton–2-lepton scatterings, Eq. (A.12);
• Wl�: lepton–triplet scatterings, Eq. (A.13).

7 The numerical investigation is performed within the SciPy framework [60–67], while MPI for Python [68,69] is used 
for cluster computations.

8 We follow the conventions of Ref. [30] with minor modifications regarding lepton Yukawa interactions reaching 
equilibrium as the temperature decreases, cf. Ref. [50]. The appropriate spectator corrections are listed in Table B.3.
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While the first three terms already arise within an unflavored description, the latter two only 
occur in a flavored treatment when the explicit flavor change of triplet interactions is tracked. 
The C terms account for flavor effects due to charged-lepton Yukawa interactions [70]. They 
correct the effect of lepton Yukawa interactions reaching equilibrium as already mentioned in 
Sec. 3.2 and allow a transition between different flavor regimes.9

3.3.2. Spectator corrections
In addition to lepton Yukawa interactions, many other reactions reach equilibrium as the Uni-

verse cools down and are in principle able to influence the evolution of the created B − L

asymmetry. Although they do not directly affect the densities relevant for leptogenesis, they 
influence quantities that the considered washout terms rely on, i.e., the asymmetries in Higgs 
and lepton doublets, �L and �H , respectively. Such kind of reactions are, e.g., quark Yukawa 
interactions as well as electroweak and strong sphalerons, which become relevant at different 
temperatures. This property in combination with their connection to washout explains why they 
are referred to as “spectator processes” [71,72]. In general, their impact is quantified by chemical 
equilibrium conditions when a certain reaction becomes relevant, i.e., faster than the Universe’s 
expansion rate, � � H . As temperature drops, more and more interactions enter equilibrium 
and contribute new or modify existing conditions. These chemical equilibrium conditions can 
be linked to particle–antiparticle asymmetries of the corresponding particle species. For small 
chemical potentials, μi  T , we can write

�f = Yf − Yf = giT
2

6s
μi , �b = Yb − Yb = giT

2

3s
μi , (36)

where gi are the degrees of freedom of particle species i, and the difference between fermions 
f and bosons b is responsible for a factor 1/2. All relevant asymmetry densities can then be 
expressed as linear combinations of B −L charge densities, �αβ = 1/3 �Bδαβ − (�L)αβ . In 
this way, the equilibrium conditions can be used to re-express asymmetries in lepton and Higgs 
doublets, �L and �H respectively, in terms of quantities that are relevant in a certain tem-
perature regime. We apply these spectator corrections by closely following the convention of 
Ref. [30], while we take into account that the modified flavor regimes of Eq. (33) also affect 
the formulation of chemical equilibrium conditions, see e.g. Ref. [50]. The modified spectator 
corrections applied in our framework can be found in Table B.3 of Appendix B. By considering 
delayed flavor effects also in spectator corrections and embedding everything in a density matrix 
formalism we are able to perform a state-of-the-art analysis of our leptogenesis framework.

Our whole discussion about delayed flavor transitions due to fast (leptonic) inverse decays 
relies on the assumption that the corresponding rate is the same for all lepton flavors. A more 
precise treatment would be to explicitly distinguish lepton flavor in the triplet’s leptonic inverse 
decays of Eq. (33) as well. The procedure would be similar to the one presented in Sec. 3.2
and might also affect the spectator corrections of Table B.3. However, as we emphasized the 
insignificance of flavor under the assumptions mentioned above, this would be beyond the scope 
of this work.

9 In doing so, effects of partial decoherence before and after the transition are neglected. Instead of implementing a 
sharp cut, we use a smooth transition with characteristic temperatures according to the flavor regimes set by Eq. (33).
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3.3.3. Assumptions and final baryon asymmetry
For our numerical investigation, we shall assume thermal initial conditions for the isospin 

triplet density ��, while the B − L abundance and residual abundance �� are set to zero. The 
zero net asymmetry of the thermal plasma is justified by the fact that the separation between the 
type-I and type-II mass scales is assumed to be large, such that a potential asymmetry emerging 
from RH neutrino decays is washed out in the primordial plasma. To guarantee this, we fix the 
RH neutrino mass scale around the GUT scale, vR = 3 · 1016 GeV, which is also in concordance 
with our discussion of type-II dominance, i.e., Eq. (25). Recall that our choice vL � m/2 is 
motivated by perturbativity of the Yukawa coupling fαβ , cf. Eq. (23), such that the space of 
unknown parameters is only spanned by the triplet mass M�, the smallest neutrino mass msm, 
the neutrino mass ordering and the three leptonic CP phases δ, σ and τ . The triplet mass M� is 
the only quantity related to high-energy scales, while the remaining quantities can in principle 
be determined, or at least constrained, at low energies in current or future experiments. The 
Boltzmann equations in Eqs. (35) incorporate a treatment of flavor effects in terms of density 
matrices that is valid at different temperature regimes. Further, washout effects up to (2 → 2) 
scatterings, cf. Eqs. (A.11), (A.12) and (A.13), are taken into account with spectator corrections 
applied for the relevant temperature regimes, cf. Table B.3. The system of differential equations 
is solved, and the final baryon asymmetry at z � 100 is converted into the observable baryon-to-
photon ratio [73,74],

ηB = 7.04 �B = 7.04 · 12

37
�B−L = 7.04 · 12

37
Tr
(
�αβ

)
. (37)

This value is then compared to the observed value, ηobs
B = (6.13 ± 0.04) ·10−10, according to the 

2018 data release by the Planck collaboration [48].

4. Results

After setting up our framework, we are now going to present our investigation in several steps. 
First, our assumed type-II-dominated leptogenesis scenario is illustrated at a certain parameter 
point to confirm our conclusions about flavor effects. Then, we will investigate the influence of 
selected parameters and check the robustness of our results under variations of the experimental 
data. Finally, we will use the observed baryon-to-photon ratio as an additional constraint to link 
the triplet mass M� to low-energy observables.

4.1. Time evolution for specific parameter sets

We begin with an example scenario to understand the underlying dynamics. Choosing certain 
parameter values that reproduce the observed baryon-to-photon ratio, cf. Table 1, we explicitly 
show the difference between flavored and unflavored asymmetry generation and discuss the con-
tribution of the different washout terms given in Eqs. (35).

4.1.1. One-flavor versus three-flavor treatment
First, let us discuss the differences between our three-flavor framework and the single-flavor 

approximation. The latter is only valid at highest energies, T > 1012 GeV, when all lepton 
Yukawas are out of equilibrium and the asymmetry generated in lepton doublets can be de-
scribed by one quantity, �L. Our three-flavor framework, by contrast, incorporates these flavor 
effects, as well as spectator effects, and is designed to work at all temperatures. As mentioned in 
15



Table 1
Model parameters relevant for the evolution of particle abundances and the quantification of the individual washout terms, 
see Fig. 3 and Table 2. We also refer to these values as default when individual parameters are varied in the following 
discussion. For comparison, the resulting neutrino mass parameters are listed as well.

parameter default value neutrino mass parameter value (NO/IO)
Smallest neutrino mass msm 1 meV Q parameter 0.09 / 0.22
Dirac phase δ 6

5 π (NO) / 8
5 π (IO) mass scale m 50.0 / 70.2 meV

Majorana phase σ π/2, eff. Majorana mass mee 2.48 / 18.8 meV
Majorana phase τ π/2, eff. el. neutrino mass mνe 8.88 / 49.0 meV
triplet mass M� 1.2 (NO) / 0.64 (IO) [1013 GeV]

∑
i mi 59.9 / 100.3 meV

Sec. 3.2, the naive temperature regimes for tau and muon Yukawa interactions, T ∼ 1012 GeV 
and T ∼ 109 GeV, do not apply since the triplets may undergo fast inverse decays. Thus, the 
appearance of flavor effects is generally delayed until inverse triplet decays proceed slower than 
lepton Yukawa interactions, cf. Eq. (33). The applied density matrix formalism keeps track of 
all flavor correlations, and the introduced correction terms, cf. Eqs. (B.2), usually eliminate cor-
responding off-diagonal entries when a lepton Yukawa interaction reaches equilibrium. A first 
look at Fig. 3 already confirms that flavor effects are not contributing since off-diagonal ele-
ments are not driven to zero. This is in line with our findings of Sec. 3.2 that flavor effects are 
of minor importance. Another difference between the flavored and unflavored frameworks is re-
lated to washout. As the one-flavor framework does not differentiate among flavors, processes 
that change lepton flavor and eventually the corresponding asymmetry are irrelevant. The oppo-
site applies to the three-flavor framework, where two additional contributions, four-lepton and 
lepton-triplet scatterings, occur. These terms are able to redistribute the asymmetries stored in 
the different flavors and potentially protect them from further washout. Since this opportunity 
heavily relies on an interplay between certain flavors, it is rather insignificant for our model.

The full evolution of the three quantities of interest, ��, �αβ , and ��, for both frameworks 
is shown in Fig. 3 for normal neutrino mass ordering and the parameter set is summarized in 
Table 1. Dashed lines generally represent the absolute value of the quantities of interest. Naively, 
we do not expect any large difference in the evolution of the triplet abundances �� and ��, 
apart from spectator corrections in the three-flavor framework (which are in general small). This 
is confirmed by the upper plots of Fig. 3. The main difference occurs in the generation of the 
B−L asymmetry �, which is a single number in the one-flavor treatment and a (3 × 3) density 
matrix in the three-flavor case. Especially, the density matrix � allows inference of correlations 
between lepton flavors as this is encoded in its off-diagonal elements. Since � is Hermitian by 
construction, only the six independent entries are shown and, in the case of the diagonal en-
tries, compared to the simple one-flavor treatment. The individual diagonal entries are generally 
smaller since the final asymmetry is distributed among these quantities and additional washout 
processes are at work. As already mentioned above, our choice of Yukawa couplings, λL � 1, 
renders flavor decoherence unimportant and thus flavor correlations encoded in the off-diagonal 
elements sustain. By weakening this assumption, we expect leptonic triplet decays to be less 
dominant, such that off-diagonal terms are dynamically driven to zero by the action of the in-
troduced counter-terms. To estimate the impact of flavor correlation in the creation of a lepton 
asymmetry, we also listed in Table 2 the BAU values in the one-flavor approximation (denoted by 
1F) and, in addition, plotted the corresponding evolution in Fig. 3 for illustrative purposes. Note 
that in triplet decays the final states are always a pair of leptons Lα and Lβ , and there is no linear 
combination that can be defined as a single flavor final state. This is unlike the case of type-I 
seesaw, where the decay relevant for leptogenesis is Ni → LH , with L being some combination 
T. Rink, W. Rodejohann and K. Schmitz Nuclear Physics B 972 (2021) 115552
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Fig. 3. Evolution of scalar triplet abundances, �� (top left) and �� (top right), as well as B − L asymmetry � as func-
tions of z = M�/T . All quantities are shown within a flavored (3F) and an unflavored (1F) framework, respectively. For 
both cases, we distinguish between an evolution taking into account all allowed tree-level washout terms (full washout) 
and an evolution neglecting washout due to (2 → 2) scattering processes (no 2-2 washout). In the case of the unflavored 
B−L asymmetry, the obtained value is compared to the corresponding diagonal entries of the density matrix �αα for 
α = e, μ, τ . Since the off-diagonal entries are allowed to develop an imaginary component, we visualize them in the 
corresponding plots as well. Dashed lines generally indicate the absolute value of the quantities listed in the legends. We 
assume normal neutrino mass ordering with the parameter values listed in Table 1.
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Table 2
Impact of different (�L = 2) washout contributions in the one-flavor 
and three-flavor frameworks, respectively. The values are computed for 
the parameter set given in Table 1. Normal neutrino mass ordering is 
assumed and the strong flavor condition is applied, cf. Eq. (33). Val-
ues in brackets represent final BAU values obtained without any flavor 
correlation.

2 → 2 washout Baryon-to-photon ratio ηB [10−10]
none 6.224 (6.236)
4-lepton and lepton-triplet 6.224 (6.236)
only lepton-Higgs 6.137 (6.148)
all 6.137 (6.148)

none (1F) 7.610
lepton-Higgs (1F) 7.344

of lepton flavor states. Following Ref. [30], we assume that only one flavor exists, and solve 
the Boltzmann equations that ignore flavor and spectator effects, see also Ref. [56]. Multiplying 
with a factor of 3 to account for the presence of three (equally contributing) flavors then gives 
the approximate one-flavor result for the baryon asymmetry in Table 2. Here the factor of 3 is 
necessary because triplet decays in the one-flavor approximation (unlike RH neutrino decays in 
the one-flavor approximation) can only be described in a toy model with one fermion species. 
Compared to the exact three-flavor result, the effect is, within our model, less than 15 %.

4.1.2. Contributions from different washout terms
Let us now discuss the contributions of different scattering processes to washout, i.e., con-

tributions from (2 → 2) reactions. Besides the usual inverse decays, there is just one additional 
contribution in the single-flavor approximation, which originates from lepton-Higgs scatterings. 
The mediating particle can be either the SU(2)L triplet or the particle related to the type-I con-
tribution, i.e., in our case, the much heavier RH singlet fermion. In the three-flavor framework, 
two additional contributions exist, since triplet interactions can shift a produced asymmetry into 
different lepton flavors. These contributions are four-lepton scatterings with the triplet in the in-
termediate state, W 4l , and lepton-triplet scatterings with a lepton mediator, Wl�. The impact 
of these processes is displayed in Fig. 3 and quantified in Table 2, while the dynamical evolu-
tion of the associated reaction densities is depicted in Fig. A.7 of Appendix A. The parameters 
have been chosen in such a way that the correct BAU is approximately reproduced when all 
washout components are at work. The negligible impact of washout related to flavor-changing 
(2 → 2) processes, W 4l and Wl�, respectively, is in line with our previous argumentation, cf. 
Sec. 3.2, that flavor does not play a significant role in our framework. Thus, also in the three-
flavor treatment, (2 → 2) lepton-Higgs interactions are the major contribution to washout in 
our leptogenesis scenario. Again, the situation might change, if one loosens our requirement of 
maximal perturbative Yukawa couplings, cf. Eq. (23).

4.2. Dimensional parameters and robustness of results

Next, let us investigate how the final BAU depends on the low-energy parameters. Of partic-
ular interest are the three CP phases δ, σ and τ . Since the latter two realistically show up only in 
the effective mass for neutrinoless double beta decay [75],
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Fig. 4. Left: Variation of the baryon-to-photon ratio ηB in dependence of the Dirac phase δ and the Majorana phases σ , 
τ for normal mass ordering. The contours reflect the variation of the mixing parameters sin2 θ12, sin2 θ23, sin2 θ13, δm2, 
�m2 within their experimental uncertainties according to Ref. [13]. Right: Baryon-to-photon ratio ηB in dependence of 
dimensional parameters, i.e., the lightest neutrino mass msm and the triplet mass M� . Normal mass ordering is assumed 
and the CP phases take the values listed in Table 1.

mee =
∣∣∣∣ ∑
i=1,2,3

U2
ei mi

∣∣∣∣ , (38)

we will also plot this quantity instead of σ and τ in the next section. Before doing so, we want 
to highlight their individual influence on the resulting BAU. Hence, we vary them, while fixing 
all other parameters at the values indicated in Table 1. Depending on the domain of the varying 
CP phase, ηB changes its sign with a clear difference in periodicity between Dirac and Majo-
rana phases, as discussed above. Even more important is that experimental uncertainties on the 
oscillation parameters can have an effect of up to 25 %. The right panel of Fig. 4 shows ηB in 
dependence of the lightest active neutrino mass msm and the scalar triplet mass M� in case of 
normal mass ordering; then msm =̂ m1. A general trend is that, with lighter neutrino mass lighter 
scalar triplets are needed to obtain the observed BAU. As indicated by Fig. 1, type-II dominance 
also depends explicitly on the CP phases. Thus, the connection between both dimensional quan-
tities change when the CP phases have other values then the ones assumed on Table 1. Since 
the effective Majorana mass mee is strongly altered by the CP phases, the relations between this 
low-energy observable and the triplet mass M� are more complex and depend on the explicit 
values, as we will see in the following section.

4.3. Parameter space scan assuming correct baryon asymmetry

Thus far, we have studied the sensitivity of the final BAU on flavor effects and its dependence 
on the input parameters of our model. In what follows, we now want to turn this around and use 
the “condition of successful baryogenesis” as an additional constraint to make more quantitative 
statements about our model’s parameter space. Hence, by fixing two parameters and scanning the 
remaining ones for their capability to reproduce the observed BAU, we can eliminate unphysical 
points and establish a connection between some (currently unknown) low-energy observables 
and physical high-energy model parameters.

In a first step, we relate the effective neutrino mass mee and the smallest neutrino mass msm
to the Dirac CP phase δ and the triplet mass M�, cf. Fig. 5. The latter one is varied up to ∼ 1014

GeV ensuring M�  MNi
and therefore a valid application of Eq. (28) is realized. Parameter 

values that are not able to reproduce the right baryon-to-photon ratio are shaded in blue, while 
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unphysical points or points that do not fulfill type-II dominance, cf. Eq. (19), are left white. 
Recent limits on the Dirac CP phase from global fits, cf. Ref. [13], are indicated by white hashed 
regions.

A first insight of this investigation is that Majorana CP phases need to be non-zero. In case of 
IO, we can confirm that the Dirac CP phase δ alone is incapable of producing the right amount of 
baryon asymmetry for almost all of the remaining parameter space. For NO, successful leptogen-
esis is indeed possible but only for δ < π , which is in tension with recent global fits that indicate 
δ > π . Thus, our model needs non-zero Majorana phases to contribute additional CP violation 
in case of IO, whereas only a phase shift in the δ-dependence of CP asymmetry is needed for 
NO. To confirm this, we set both Majorana phase is set to a generic value of π/2, Fig. 5. We 
immediately recognize that the valid parameter space opens up for IO. Further, NO populates 
a parameter space that is now consistent with recent experimental indications for δ. The lead-
ing behavior (in θ13) of A explains the periodicity in the Dirac CP phase δ, cf. Eq. (C.6) and 
Eq. (C.18) respectively, indicating the need for at least one non-zero Majorana phases to achieve 
positive BAU values for δ > π . The expected periodicity visible for IO, again induced by the 
leading behavior of A, cf. Eq. (C.14), can be confirmed as well.

Note the generic behavior of the effective Majorana mass mee being much higher for IO, cf. 
the upper plots of Fig. 5. In addition, leptogenesis for IO is only possible within a very narrow 
mass range setting a minimal value that might be reachable with future experiments. On the 
contrary, reproducing the correct BAU implies upper limits on the light neutrino mass parameters 
mee for NO. Of course, these features are expected to change and possibly more involved when 
other Majorana phases are assumed.

For a fixed triplet mass, the condition of successful leptogenesis allows us to deduce rela-
tions among low-energy parameters that are difficult to access experimentally, e.g., the Majorana 
phases σ, τ . In Fig. 6, the triplet mass is fixed, M� = 1.2 ·1013 GeV for NO and M� = 0.64 ·1013

GeV for IO respectively, and the parameter space ensuring the correct value of the BAU is dis-
played in terms of pure low-energy parameters: the two CP-violating phases δ and σ as well as 
the neutrino mass parameters mee and msm, respectively. The remaining Majorana phase τ is 
again fixed to π/2. For both mass orderings, distinct patterns can be identified and the general 
dependence on the Dirac and Majorana CP phases can be identified: a 2π -periodicity for the 
Dirac CP phase δ and a π -periodicity for the Majorana phase σ . For IO, the viable range of mee

and msm values is nearly independent of the Dirac CP phase δ, while the contours strongly vary 
with δ in the NO case.

This is a special feature for IO, since a given value for mee can be directly cast into a constraint 
on the Majorana phase σ and τ (the latter being fixed here), while guaranteeing at the same time 
the successful generation of the observed BAU with a triplet mass at the fixed value above. 
Again, we recognize that IO generally allows for a larger effective Majorana masses than NO, 
with largest values obtained for σ ∼ 0, π . As mentioned before, the allowed region of type-II 
dominance explicitly depends on the CP phases. Thus, we expect the situation to be changed 
when we allow the Majorana phase τ to vary as well.

Our assumptions of type-II dominance drives our model into parameter regions that are cur-
rently inaccessible by experiments that aim at measuring the effective electron neutrino mass 
mνe [76,77] or the effective Majorana mass mee, cf. Table 2 in Ref. [78]. On the other hand, the 
Dirac CP phase δ is expected to be tackled soon by future experiments [79–81], which promises 
to result in further constraints on the parameter space of our model.
T. Rink, W. Rodejohann and K. Schmitz Nuclear Physics B 972 (2021) 115552
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Fig. 5. The triplet mass M� as functions of the Dirac CP phase δ and neutrino mass parameters mee (top) and msm
(bottom), respectively. We plot all viable points that result in the correct value of the BAU. The Majorana phases σ and 
τ have been set to π/2, cf. Table 1. Distinct features are observable for normal (left) and inverted (right) neutrino mass 
ordering. The current best-fit range for the Dirac phase δ is indicated by the white-shaded band. Parameter space regions 
incapable of producing the observed BAU value are shaded in blue. White areas represent parameter space where the 
effective Majorana mass mee is too small or our assumption of type-II dominance is not fulfilled.
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Fig. 6. Neutrino mass parameters mee (top) and msm (bottom) as functions of the CP-violating phases δ and σ . As before, 
we plot all viable points that result in the correct value of the BAU. The triplet mass is fixed, M� = 1.2 · 1013 GeV for 
NO and M� = 0.64 · 1013 GeV for IO respectively, and the remaining Majorana phase τ is set to π/2, cf. Table 1. Note 
the distinct features for normal (left) and inverted (right) neutrino mass ordering. The current best-fit range for the Dirac 
phase δ is indicated by the white-shaded band. Parameter space regions incapable of producing the observed BAU value 
are shaded in blue.
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5. Conclusions

In this work, we investigated leptogenesis and low-energy CP violation in the context of a 
left-right-symmetric seesaw model. While we left an explicit realization aside, the assumption 
of related model features in combination with type-II-dominated neutrino masses allowed us to 
establish a direct connection between high-energy and low-energy CP violation, which is the 
main focus of the present work, cf. Eq. (29). If we further approximate the Dirac mass matrix to 
have the same structure as the up-type quark mass matrix, which is motivated by SO(10) GUTs, 
CP violation in our model can be fully parametrized by the phases of the PMNS lepton mixing 
matrix. As a side effect, LH and RH neutrinos exhibit the same mass orderings, which are linked 
only by the ratio of corresponding scalar VEVs, cf. Eq. (14), and the available parameter space is 
only spanned by a few variables, most of them accessible at low energies. The combination with 
a perturbativity bound on the lepton-triplet coupling f , cf. Eq. (23), helps to reduce the parameter 
space further and gives our model predictive power in the context of our study. The separation of 
LH and RH scales renders the RH neutrinos irrelevant for the investigation of leptogenesis, such 
that the baryon asymmetry of the Universe is solely generated by decays of one scalar SU(2)L
triplet, cf. Fig. 2. Before that, the requirements for type-II dominance are investigated analytically 
and numerically as well as the consequences for the CP asymmetry ε generated by such decays 
are discussed, see Sec. 2.1 and 3.1. An updated scalar triplet leptogenesis framework based on 
density matrices including flavor and spectator corrections is introduced, cf. Eqs. (35), while 
special care has been taken in the discussion of flavor effects within a scalar triplet framework, cf. 
Sec. 3.2. The discussed delay of flavor effects to due fast inverse triplet scatterings, cf. Eq. (33), 
also affects the consideration of spectator processes. Thus, the corresponding corrections have 
been refined and listed in Table B.3.

It turned out that our choice of maximal, perturbatively allowed Yukawa couplings, cf. 
Eq. (23), demands the triplet to decay dominantly into leptons. This assumption in combination 
with the applied flavor criterion, cf. Eq. (33), renders flavor effects to be of minor significance 
for leptogenesis. In the following numerical investigation, the differences between our fully fla-
vored treatment and a single-flavor approximation have been discussed and the impact of several 
(2 → 2) washout processes is shown for a specific set of parameters, see Fig. 3 and Table 2. In 
addition, the influence of some parameters is discussed in more detail, while the robustness our 
results under varying experimental quantities has been checked, cf. Fig. 4. Finally, we use the 
observed value of the baryon-to-photon ratio as an experimental constraint to establish further 
relations among the remaining model parameters. In such way, we are able to link low-energy 
observables like the effective neutrino mass mee to high-energy quantities such as the triplet mass 
M�, see Fig. 5. Complementary to this, relations among low-energy parameters can be deduced 
by assuming successful leptogenesis at a certain scale, cf. Fig. 6. Here, the full predictive power 
of our model becomes noticeable: Based on our assumptions, it is possible to shrink the generic 
parameter space of type-I and type-II seesaw models, and together with consistency bounds like 
perturbativity and the observed baryon-to-photon ratio ηB , the remaining parameter space col-
lapses down to a handful of parameters (msm, the mass ordering, δ, σ , τ , M�). Knowledge 
of the four low-energy parameters would then allow us to infer (at least) bounds on the triplet 
mass M� that lead to successful leptogenesis. This is a remarkable result for a minimal scenario 
that manages to successfully explain neutrino oscillations as well as the baryon asymmetry of 
the Universe based on only a handful of parameters most of which will likely be measured or 
constrained further by experiments in the near future.
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Of course, this minimal scenario relies on some strong assumptions and further studies have 
to show how to preserve this strong connection between high-energy and low-energy parameters 
when these assumptions are relaxed. For example, open question are how to guarantee the mod-
el’s predictive power if a smaller lepton-triplet coupling was used, or type-I and type-II seesaw 
scales are of the same order. The first one will come along with an increasing impact of flavor ef-
fects since flavor transition bounds, cf. Eq. (33), get weaker when the triplet does not only decay 
into leptons. Here, a detailed treatment of flavored inverse triplet decays would be in order. The 
second aspect would rely on a more general treatment taking into account all heavy particles in-
volved, which includes further decay processes that contribute to the baryon asymmetry. Further, 
the renormalization group running of all relevant quantities might be crucial for a detailed com-
parison with experimental measurements as well as more precise statements at highest energy. 
When low-energy quantities are pinned further down by next-generation experiments, one will, 
within this framework, be able to establish further connections between low-energy observables 
and high-energy parameters, i.e. the triplet mass M�, rendering leptogenesis a predictive tool for 
additional low-energy parameters such as the remaining CP phases.
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Appendix A. Important formulas

Let us summarize the ingredients that are necessary to solve the set of Boltzmann equations 
in Eqs. (35). The Hubble parameter is given by

H(z) =
√

π2

3M2
Pl

gSM

30

(
M�

z

)2

, (A.1)

with gSM = 106.75 the number of degrees of freedom at high temperatures and the reduced 
Planck mass MPl = 2.435 · 1018 GeV. The entropy density is given as
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s(z) = 2π2g∗
SM

45

(
M�

z

)3

(A.2)

with g∗
SM = 106.75. Regarding number densities, we use the non-relativistic one for the descrip-

tion of triplet dynamics,

n
eq
MB(z, g) = gM3

�

2π2

K2(z)

z
, (A.3)

with g representing the number of internal degrees of freedom and Kn(z) the modified Bessel 
function of the second kind. The relativistic number densities are used especially for leptonic and 
scalar particle densities,

neq(z, g) = ζ(3)g

π2

(
M�

z

)3

×
{

1 , for bosons ,
3
4 for fermions ,

(A.4)

where g is the number of internal degrees of freedom of the particle. The equilibrium densities 
Y eq follow from number densities neq by dividing them by the entropy density s; in particular, 
for scalar triplets this yields:

�
eq
� (z) = 2

n
eq
MB(z,3)

s(z)
. (A.5)

For fermions and bosons (lepton and Higgs doublets in our case), we apply Y
eq
L,H(z) =

n
eq
F,B(z, 2)/s(z).

A.1. Reaction densities

In order to solve the Boltzmann equation given by Eqs. (35), we need the reaction densities, 
which describe the number of reaction events per spacetime volume, that is, per spatial and 
temporal volume. In the following, we list all quantities that are needed in the context of our 
investigation

The reaction density for decays and inverse decays is obtained via

γD(z) = γ (� ↔ HH)+
∑
α,β

γ
(
� ↔ LαLβ

)
+ CP-conj. = s(z)�

eq
� (z)

K1(z)

K2(z)
�� . (A.6)

The scalar SU(2)L triplet undergoes gauge scatterings and other (2 → 2) reactions. The corre-
sponding reaction densities are calculated via

γS(z) = M4
�

64zπ4

∞∫
xmin

dx
√

xK1(z
√

x)σ̂S(x) , (A.7)

with x = smin/M
2
� and the reduced cross section σ̂S (summed over internal degrees of freedom of 

initial and final particles) of the corresponding reaction. For example, the reduced cross section 
for gauge scatterings is given by [56,11]

σ̂A = 2

72

{
(15C1 − 3C2)r + (5C2 − 11C1)r

3

+ 3(r2 − 1)
[
2C1 + C2(r

2 − 1)
]

log
1 + r

1 − r

}
+
(

50g4 + 41g4
Y

48

)
r3/2 ,

(A.8)
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Fig. A.7. Reaction densities of decay and scattering processes applied in our framework with parameters according to 
Table 1. The behavior for normal mass ordering is shown and all densities are normalized to Hnγ .

with A =
√

1 − 4
x

, C1 = 12g4 + 3g4
Y + 12g2g2

Y , C2 = 6g4 + 3g4
Y + 12g2g2

Y . Other reduced cross 
sections relevant for (2 → 2) washout processes can be found in the appendix of Ref. [30]. An 
illustration of reaction densities relevant for the following washout contributions can be seen in 
Fig. A.7 for NO with the parameters listed in Table 1.

Now we list all washout terms that are used in our investigation, cf. Ref. [30]. The most 
important ones are washout due to inverse lepton decays described by

WD = 2BL

λ2
L

[
��

�
eq
�

ff † + 2f �T
Lf † + ff †�L + �Lff †

4Y
eq
L

]
γD , (A.9)

and washout induced by inverse Higgs decays (HH → �, HH → �) given by

WH = 2BH

(
�H

Y
eq
H

− ��

�
eq
�

)
γD . (A.10)

Further, we include several (�L = 2) processes in our investigation. For our model, the most 
important contribution comes from lepton-Higgs scatterings WlH (LL ↔ HH and LH ↔ LH ), 
given by

WlH

2
= γ �

lH

λ2
L

[
2f �T

Lf †+ff †�L+�Lff †

4Y
eq
L

+ �H

Y
eq
H

ff †
]

+γH
lH

λ2

[
2κ�T

Lκ†+κκ†�L+�Lκκ†

4Y
eq +

�H

Y
eq κκ†

]

κ L H
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+ γ I
lH

Re
[
Tr
[
f κ†

]] (A.11)

×
[

2f �T
Lκ†+κ�T

Lf †+(f κ†+κf †)�L+�L(f κ†+κf †)

4Y
eq
L

+
�H

Y
eq
H

(f κ†+κf †)

]
,

with κ � 2vR/v2
EWmI in the context of our model. Further, contributions are coming from flavor-

changing 2-lepton–2-lepton scatterings W 4l (LαLβ ↔ Lγ Lδ and LαLγ ↔ LβLδ),

W 4l = 2γ4l

λ4
LY

eq
L

[
λ2

L

4
(2f �T

Lf † + ff †�L + �Lff †) − Tr(�ff †)ff †

]
, (A.12)

and flavor-changing lepton-triplet scatterings Wl� (Lα� ↔ Lβ�, Lα� ↔ Lβ� and LαLβ ↔
��),

Wl� =
[
ff †ff †�L − 2ff †�Lff † + �Lff †ff †

]
2Y

eq
L Tr

[
ff †ff †

] γL� . (A.13)

Appendix B. Flavor and spectator corrections

Throughout this work we apply the following formula for the interaction rate of lepton 
Yukawa interactions [82,83],

�f (T ) � 5 · 10−3y2
f T , with f = τ,μ . (B.1)

Demanding it to be equal to the Hubble rates, � � H , leads to the characteristic equilibrium 
temperatures T μ ∼ 109 GeV and T τ ∼ 1012 GeV, respectively.

Further, we have introduced counter-terms in the Boltzmann equations (35) that take into 
account potential effects of the above processes. Once they reach equilibrium, the following 
expressions drive the corresponding off-diagonal terms in �αβ to zero,

Cμ(z,M�) = sig(z, z
μ
dec)s(z,M�)

⎛⎝ 0 �eμ 0
�μe 0 �μτ

0 �τμ 0

⎞⎠ ,

Cτ (z,M�) = sig(z, zτ
dec)s(z,M�)

⎛⎝ 0 0 �eτ

0 0 �μτ

�τe �τμ 0

⎞⎠ ,

(B.2)

where the sigmoid function sig(z, zx
dec) activates the above counter-terms, at times zx

dec when the 
lepton Yukawa interactions x = μ, τ fall into equilibrium.10 The times zx

dec are obtained by the 
modified flavor condition Eq. (33). Note that the temperatures obtained from Eq. (B.1) are still 
necessary requirements.

10 Conventionally, the evolution of dynamical quantities is described in terms of the dimensionless variable z = M�/T , 
where T denotes the temperature of the Universe and M� the mass of the decaying particle, here the scalar triplet. The 
advantage is that a lepton asymmetry is typically generated when the particle of interest becomes non-relativistic, thus, 
when z ∼ 1. When carrying an index x, zx refers to a characteristic time, or equivalently, temperature Tx , when a certain 
reaction becomes relevant/irrelevant.
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Fig. B.8. Schematic illustration of different flavor regimes in dependence of the time zA ∝ 1/T , when gauge scatterings 
become slower than triplet decays. Within a flavored type-II framework, an asymmetry is efficiently produced for z > zA

(necessary), while the explicit regime depends on the interplay between zτ,μ
dec and zA (sufficient).

B.1. Weak flavor effects

In Sec. 3.2, we mentioned that fast gauge boson scattering, due to the triplet’s weak charge, 
may influence the effects of appearing flavor decoherence. From the viewpoint of these gauge 
interactions, sufficient asymmetry production is inhibited until the corresponding rate drops be-
low the usual decay rate, �A < �D . Hence, the time of effective BAU production is restricted 
to z > zA, where zA is the time when gauge scatterings become slower than triplet decays. Tak-
ing into account lepton Yukawa interactions, this implies that, if zx

dec � zA for x = τ, μ, any 
asymmetry-generating interaction occurring at z < zx

dec is of minor importance, and we can di-
rectly switch to the framework in which the corresponding flavor is already projected out. By 
contrast, the symmetry production is dominated by the coherent regime if lepton Yukawa inter-
actions reach equilibrium long after gauge interactions, zdec � zA. In addition, this is supported 
by the fact that for z > zdec the triplet abundance is already expected to be Boltzmann sup-
pressed, which directly affects the asymmetry production. Therefore, a necessary condition for 
the generation of an asymmetry is z > zA, while for the transition of flavor regimes, the condition 
z
τ,μ
dec � zA is sufficient. The whole picture including both relevant lepton Yukawa interactions is 

illustrated in Fig. B.8. In general, the transition conditions induced by gauge scattering are as-
sumed to be weaker than the ones from Eq. (33). A detailed investigation of this condition has 
been performed in Ref. [50].

B.2. Modified spectator corrections

The modification of flavor transitions according to Eq. (33) has consequences for the spectator 
corrections as well. Although the equilibrium temperature of the individual processes is indepen-
dent of any triplet interaction, from the viewpoint of successful creation of a lepton asymmetry, 
triplet interactions and their timescale become crucial. As stated in Sec. 3.2, triplet inverse de-
cays may proceed faster than lepton Yukawa interactions, such that the latter effectively remain 
out of equilibrium. This treatment has to be considered in the formulation of chemical equilib-
rium conditions and leads to modifications in the spectator corrections. This modified spectator 
corrections (in the convention of Ref. [30]) are listed in Table B.3.
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 column show the flavor regime that has to be applied 
orrections are listed for the corresponding temperature 
es i, j represent the flavor subspace orthogonal to the 

2��

)− 4

3
��

β )− 28

23
��

αβ)− 8

13
��

8

89
��

)
δij −�ij

0

0

30

589
Tr
(
�ij

)− 390

589
�33− 52

589
��

⎞⎟⎟⎟⎟⎟⎟⎠
��

(continued on next page)
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Table B.3
Temperature ranges in the early Universe with corresponding reactions in thermal equilibrium. The third and fourth
and the global symmetries of the early Universe effective Lagrangian. In the fifth column, the individual spectator c
regimes. These corrections incorporate the modifications due to fast inverse triplet decays, cf. Eq. (33). The indic
τ -direction, thus i, j = 1, 2.

T [GeV] In equilibrium Flavor(s) Global symmetries of epoch spectator correction

� 1015 Hyp. 1

U(1)Y ×U(1)B×U(1)eR

×U(1)PQ×SU(3)Q×SU(3)u

×SU(3)d×SU(3)e

(�L)αβ = −�αβ , �H = −Tr(�αβ )−

[1013,1015] Hyp., t 1

U(1)Y ×U(1)B×U(1)PQ

×U(1)eR ×SU(2)Q×SU(2)u

×SU(3)d×SU(3)e

(�L)αβ = −�αβ , �H = − 2

3
Tr(�αβ

[1012,1013] Hyp., Sphal., t 1

U(1)Y ×U(1)B×U(1)eR

×SU(2)Q×SU(2)u

×SU(3)d×SU(3)e

(�L)αβ = −�αβ , �H = − 14

23
Tr(�α

[109,1012]:

[T τ
dec,1012] Hyp., Sphal.,t, b, c, 1

U(1)Y ×U(1)Q×U(1)u

×SU(2)d×SU(3)e

(�L)αβ = − 3

5
�αβ , �H = − 4

13
Tr(�

[109, T τ
dec] Hyp., Sphal.,t, b, c, τ 2

U(1)Y ×U(1)Q×U(1)u

×SU(2)d×SU(2)e

(�L)αβ=

⎛⎜⎜⎜⎜⎜⎜⎝
(

86

589
Tr
(
�ij

)+ 60

589
�33+

5

0 0

�H = − 164

589
Tr(�ij )− 224

589
�τ − 344

589
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(�αβ)− 1

2
��

+ 4

359
��

)
δij −�ij

0

0

0 21

359
Tr
(
�ij

)− 234

359
�33− 26

359
��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
172

359
��

22+ 20

179
�33+ 4

179
�� ,

+ 14

537
�33− 11

179
�� ,

− 344

537
�33− 11

179
��

]
2

9
�33− 82

179
��

r(�αβ)− 4

11
��
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Table B.3 (continued)

T [GeV] In equilibrium Flavor(s) Global symmetries of epoch spectator correction

[105,109]:

[T τ
dec,109] Hyp., Sphal.,t, b, c, s 1

U(1)Y ×U(1)Q×U(1)u

×SU(2)d×SU(3)e

(�L)αβ = − 3

5
�αβ , �H = − 1

4
Tr

[T μ
dec, T

τ
dec] Hyp., Sphal.,t, b, c, s, τ 2

U(1)Y ×U(1)Q×U(1)u

×SU(2)d×SU(2)e

(�L)αβ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
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Table B.3 (continued)

T [GeV] In equilibrium Flavor(s) Global symmetries of epoch spectator correction

[T μ
dec, T

τ
dec] Hyp., Sphal.,t, b, c, s, u, d, τ 2 U(1)Y ×SU(2)e

(�L)αβ=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
35

244
Tr
(
�ij

)+ 6

61
�

0

�H = − 41

244
Tr(�ij )− 14

61
�τ

[T e
dec, T

μ
dec] Hyp., Sphal.,t, b, c, s, u, d, τ,μ 3 U(1)Y ×U(1)e

(�L)αβ = Diag

[
− 11

13
�11+ 4

37
�

1

13
�11− 70

111
�

1

13
�11+ 4

111
�

�H = − 2

13
�11− 8

37
�22− 8

3

� T e
dec Hyp., Sphal.,t, b, c, s, τ,μ, e 3 U(1)Y

(�L)αβ = Diag

[
− 422

711
�11+ 32

711

32

711
�11− 442

711

32

711
�11+ 32

711

�H = − 16

79
�11− 16

79
�22− 1

7



T. Rink, W. Rodejohann and K. Schmitz Nuclear Physics B 972 (2021) 115552
Fig. C.9. Contour plots of Amax for normal (left) and inverted (right) mass ordering, respectively. Horizontal lines indicate 
the 1σ range of the Dirac CP phase from a recent global fit [13].

Appendix C. Explicit expressions for type-II-dominated CP asymmetry

In Section 3.1 we have seen that, in our framework, the CP asymmetry (28) can be separated 
into quantities that only contain low-energy and high-energy parameters, respectively. These are 
obtained by assuming type-II dominance, which simplifies the type-I and type-II light neutrino 
mass contributions. Further, application of the perturbativity condition in Eq. (23) leads to the 
final separation of parameter space. The low-energy function A from Eq. (29) depends on the 
lightest active-neutrino mass msm as well as on the CP-violating phases δ, σ and τ , such that it 
can, in principle, obtain arbitrarily small absolute values. In the following, we will be interested 
in its maximally possible values by maximizing it over the Majorana CP phases σ and τ ,

Amax(msm, δ) = max
σ,τ

|A(msm, δ, σ, τ )| . (C.1)

As evident from Fig. C.9, Amax is always of O(1) as long as msm ∼ 0.01 eV. In this part of 
parameter space, the parameter B , cf. Eq. (29), can therefore be regarded as a good estimate for 
the maximal possible CP parameter |ε�|.
C.1. Benchmark value for scalar triplet mass

Setting λH = 1 results in an important benchmark value for the scalar triplet mass, namely

M0
� ≡ v2

ew

m
� 6 · 1014 GeV

(
0.05 eV

m

)
. (C.2)

This mass scale allows to distinguish between two different regimes regarding B in Eq. (29),

B �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

mM�

8π v2
ew vR

� 3 · 10−9
(

m

0.05 eV

)(
1016 GeV

vR

)(
M�

1012 GeV

)2

for M�  M0
� ,

v2
ew

8π mvR

� 5 · 10−3
(

0.05 eV

m

)(
1016 GeV

vR

)
for M� � M0

� .

(C.3)
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Thus, the function B saturates at a value of O(10−3) once M� is larger than M0
�.

C.2. Explicit dependence on CP phases

Expression (31) is found by introducing the auxiliary parameters R = δm2/|�m2| and η =
m2

sm/|�m2|, while setting θ23 → π
4 and sin2 θ12 → 1

3 . Linearization in terms of magnitude, in 
particular R � 1

30 and θ2
13 � 1

49 leads to the compact expression shown in Sec. 3.1, where the 
following terms have been introduced

S1 = 1

576

[
16 sin 2σ + 16 sin 4σ + 36 sin 4τ

]
−

√
2

36
θ13
[

sin(δ + 2σ) − 2 sin(δ + 4σ) + sin δ
]

+ θ2
13

24

[
2 sin 2δ − sin 2(δ + σ) + 2 sin 2(δ + 2σ) − 3 sin 4τ

]
,

S2 = √
2θ13

[
sin(δ + 2(σ + τ)) − sin(δ + 2τ)

]
+ θ2

13

2

[
sin 2(δ + σ + τ) + 2 sin 2(δ + τ) − 2 sin 2(σ + τ) − sin 2τ

]
,

T = 4(1 + η)(1 + 2η) .

(C.4)

Note that the full dependence on the CP phase δ has been cast into S1,2.
More simplified formulas can be obtained by also taking into account η, while the result-

ing expressions depend on the value of the smallest neutrino mass, m1 for NO and m3 for IO 
respectively. Independent of the light mass ordering, η is approximately

η �
{

R , for msm = 10−2 eV ,

0 , for msm = 10−4 eV .
(C.5)

In the context of leptogenesis, it must not be zero due to arising divergences in A, cf. Eq. (31). For 
this reason, we only state the leading divergent terms for msm ∼ 10−4 eV. Furthermore, we give 
terms for specific CP phase configurations to highlight the characteristic dependence of Dirac 
and Majorana phases: ε ∝ sin δ in leading order θ13 for δ and ε ∝ sin 2α and higher periodicities 
for α = σ, τ .

Normal ordering: m1 = 10−2 eV

576 · A(m1 = 10−2 eV) = Ã1 + 6θ2
13√
R

[√
2(sin 2(δ + σ + τ) − 2 sin 2(σ + τ))

+4 sin 2(δ+τ)+√
R
(
(16 cos 2σ − 3

√
2) sin 2(δ+σ) − 12 sin 4τ

)
− 2 sin 2τ

]
+2θ13

[
12√
R

(
sin(δ+2(σ+τ)) − √

2 sin(δ+2τ)
)

+33
√

R sin(δ+2(σ+τ))

+4
(
−3 sin(δ+2σ)+4

√
2 sin(δ+4σ) − 2

√
2 sin δ

)
− 21

√
2R sin(δ+2τ)

]
,

(C.6)
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576 · A(m1 = 10−2 eV|σ, τ = 0) = 6θ2
13

[
16 − 3

√
2 +

√
2 + 4√

R

]
sin 2δ

+ 2θ13

[(
33 − 21

√
2
)√

R + 4
(

2
√

2 − 3
)

− 12√
R

(√
2 − 1

)]
sin δ ,

(C.7)

576 · A(m1 = 10−2 eV|δ = π) = Ã1 + 6θ2
13

[
− 3

√
2 sin 2σ + 8 sin 4σ − 12 sin 4τ

−
√

2√
R

sin 2(σ + τ) + 2√
R

sin 2τ

]
+ 2θ13

[
12 sin 2σ − 16

√
2 sin 4σ

+ 3
√

2(7R + 4)√
R

sin 2τ − 3(11R + 4)√
R

sin 2(σ + τ)

]
,

(C.8)

576 · A(m1 = 10−2 eV|δ = 3
π

2
) = Ã1 + 6θ2

13

[
− 3√

R

(√
2 sin 2(σ + τ) + 2 sin 2τ

)
+ 3

√
2 sin 2σ − 8 sin 4σ − 12 sin 4τ

]
+ 2θ13

[
12 cos 2σ + 8

√
2(1 − 2 cos 4σ)

+3
√

R
(

7
√

2 cos 2τ − 11 cos 2(σ+τ)
)

+ 12√
R

(√
2 cos 2τ − cos 2(σ+τ)

)]
,

(C.9)

with Ã1 =
[

3
√

2(11R+4)√
R

sin 2(σ + τ) + 3(7R+4)√
R

sin 2τ + 12
√

2 sin 2σ + 16 sin 4σ + 36 sin 4τ

]
.

Normal ordering: m1 ∼ 10−4 eV

576 · A(m1 ∼ 10−4 eV) � Ã2+12
θ2

13√
η

[
2
√

η((4 cos 2σ − 1) sin 2(δ+σ) − 3 sin 4τ)

+3(3η+2) sin δ cosσ cos(δ+σ+2τ) − (3η+2) cos δ sinσ cos(δ+σ+2τ)

]
+16

θ13 sinσ√
2η

[
3(3η+2) cos(δ+σ+2τ)+4

√
η(cos(δ+σ)+2 cos(δ+3σ))

]
,

(C.10)

576 · A(m1 ∼ 10−4 eV|σ, τ = 0) � 18θ2
13

[
2√
η

+ 4 + 3
√

η

]
sin 2δ , (C.11)

576 · A(m1 ∼ 10−4 eV|δ = π) � Ã2 + 6θ2
13

[
3
√

η sin 2τ − 4 sin 2σ + 8 sin 4σ − 12 sin 4τ

− 3
√

η sin 2(σ + τ) − 4√
η

sinσ cos(σ + 2τ)

]
− 16

θ13√
2η

sinσ

[
3(3η + 2) cos(σ + 2τ) + 4

√
η(cosσ + 2 cos 3σ)

]
(C.12)
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576 · A(m1 ∼ 10−4 eV|δ = 3
π

2
) � Ã2 + 6θ2

13

[
4 sin 2σ − 8 sin 4σ

− 3√
η

(
(3η + 2) sin 2(σ + τ) + (3η + 2) sin 2τ + 4

√
η sin 4τ

)]
+ 16

θ13√
2η

sinσ

[
3(3η + 2) sin(σ + 2τ) + 4

√
η(sinσ + 2 sin 3σ)

]
,

(C.13)

with Ã2 =
[

16 sin 2σ + 16 sin 4σ + 36 sin 4τ + 3(8η(3η+2)+((8−9η)η−8)R)

2
√

η3
sin 2(σ + τ)

+ 3(12η+(2−3η)R+8)
2
√

η
sin 2τ

]
.

Inverted ordering: m3 = 10−2 eV

576 · A(m3 = 10−2 eV) = Ã3 + θ2
13

24

[
cos(δ + σ + 2τ)√

R
(2 sin(δ − σ) + sin(δ + σ))

− 3 sin 4τ + (4 cos 2σ − 1) sin 2(δ + σ)

]
+ 4θ13√

2R

[
24 sinσ cos(δ + σ + 2τ)

− 15R sin(δ + 2τ)

+ 21R sin(δ + 2(σ + τ)) + 16
√

R sinσ(cos(δ + σ) + 2 cos(δ + 3σ))

]
,

(C.14)

576 · A(m3 = 10−2 eV|σ, τ = 0) = 36θ2
13

(
1√
R

+ 2

)
sin 2δ + 24θ13

√
R

2
sin δ , (C.15)

576 · A(m3 = 10−2 eV|δ = π) = Ã3 + 24θ2
13

[
− 1√

R
sinσ cos(σ + 2τ) − sin 2σ

+ 2 sin 4σ − 3 sin 4τ

]
+ 4θ13√

2R

[
− 3(7R + 4) sin 2(σ + τ) + 8

√
R sin 2σ

− 16
√

R sin 4σ + 3(5R + 4) sin 2τ

]
,

(C.16)

576 · A(m3 = 10−2 eV|δ = 3
π

2
) = Ã3 + 24θ2

13

[
− 3√

R
cosσ sin(σ + 2τ) + sin 2σ

− 2 sin 4σ − 3 sin 4τ

]
+ 4θ13√

2R

[
− 3(7R + 4) cos 2(σ + τ)

+ 8
√

R(1 + cos 2σ) − 16
√

R cos 4σ + 15R cos 2τ + 12 cos 2τ

]
,

(C.17)

with Ã3 =
[

16 sin 2σ + 16 sin 4σ + 36 sin 4τ + 6(7R+4)√
R

sin 2(σ + τ) + 3(5R+4)√
R

sin 2τ

]
.
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Inverted ordering: m3 ∼ 10−4 eV:

576 · A(m3 ∼ 10−4 eV) � Ã4 + 24θ2
13√
η

[
(2 sin(δ − σ) + sin(δ + σ)) cos(δ + σ + 2τ)

+ √
η(4 cos 2σ − 1) sin 2(δ + σ) − 3

√
η sin 4τ

]
+ 32θ13 sinσ

[
cos(δ + σ) + 2 cos(δ + 3σ) + 3√

2η
cos(δ + σ + 2τ)

]
,

(C.18)

576 · A(m3 ∼ 10−4 eV|σ, τ = 0) � 36θ2
13 sin 2δ

(
2 + 1√

η

)
, (C.19)

576 · A(m3 ∼ 10−4 eV|δ = π) � Ã4 + 24θ2
13

[
− 1√

η
sinσ cos(σ + 2τ) − sin 2σ

+2 sin 4σ − 3 sin 4τ

]
− 32θ13 sinσ

[
2
√

η cosσ+2 cos 3σ+ 3√
2η

cos(σ+2τ)

]
(C.20)

576 · A(m3 ∼ 10−4 eV|δ = 3
π

2
) � Ã4 + 24θ2

13

[
− 3√

η
cosσ sin(σ + 2τ) + sin 2σ

− 2 sin 4σ − 3 sin 4τ

]
+ 32θ13 sinσ

[
sinσ + 2 sin 3σ + 3√

2η
sin(σ + 2τ)

]
,

(C.21)

with Ã4 =
[

16 sin 2σ + 16 sin 4σ + 36 sin 4τ + 6(R+4)√
η

sin 2(σ + τ) − 3(R−4)√
η

sin 2τ

]
.
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