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For any physical system satisfying the Einstein’s equations, the comoving curvature perturbations
satisfy an equation involving the momentum-dependent effective sound speed, valid for any system
with a well defined energy-stress tensor, including multi-fields models of inflation. We derive a gen-
eral model-independent formula for the effective sound speed of comoving adiabatic perturbations,
valid for a generic field-space metric, without assuming any approximation to integrate out entropy
perturbations, but expressing the momentum-dependent effective sound speed in terms of the com-
ponents of the total energy-stress tensor. As an application, we study a number of two-field models
with a kinetic coupling between the fields, identifying the single curvature mode of the effective the-
ory and showing that momentum-dependent effective sound speed fully accounts for the predictions
for the power spectrum of curvature perturbations. Our results show that the momentum-dependent
effective sound speed is a convenient scheme for describing all inflationary models that admit a single-
field effective theory, including the effects of entropy perturbations present in multi-fields systems.

I. INTRODUCTION

The study of cosmological perturbations is one of the foundations of modern cosmology, since it allows to
make quantitative predictions for different observables such as the characteristics of the cosmic microwave
background radiation or large scale structure formation. In the simplest models of inflation, with a single scalar
field minimally coupled to gravity, the scalar field is driving the accelerated expansion of the Universe, and its
perturbations induce metric perturbations which, in the comoving gauge, obey an evolution equation containing
a Laplacian whose coefficient is called sound speed. In these models, the sound speed is only a function of time,
but it has been shown [1] that a similar equation, but with a space- or momentum-dependent sound speed, is
satisfied by an adiabatic perturbation in an arbitrary physical system satisfying Einstein’s equations, including
multi-field models and modified gravity models.

In general, a given mode of adiabatic perturbations can receive contributions from different degrees of freedom
coupled to that mode. However, there exist a broad class of models, including models with a strong kinetic
coupling between the adiabatic and entropy perturbations, in which the mode of adiabatic perturbations re-
sponsible for generation of observable CMB anisotropies evolves independently of other modes. There has been
an extensive effort to identify situtations in which complex models of inflation can be effectively derscribed with
a single-field effective theory with possible corrections [2–21].

In this paper, we show that the evolution of that effective adiabatic mode is correctly described within the
formalism of momentum-dependent effective sound speed, discussing the notion of effective single-field theory
for inflationary perturbations and providing a set of numerical calculations corresponding to specific two-field
inflationary models that have attracted considerable attention.

The paper is organized as follows. In Section II, we briefly introduce the formalism of momentum-dependent
sound speed. In Section III, we analyze decoupling of heavy degrees of freedom and calculate the sound speed
in models with a constant turning rate of the inflationary trajectory from the geodesic line. In Section IV,
we discuss the normalization of perturbations and appropriate initial conditions in single-field effective theories
by means of the Liouville formula. Section V is devoted to numerical examples corroborating our analytical
calculations. After a short discussion of the results in Section VI, we conclude in Section VII. Appendices
contain more technical aspects of our derivations: a calculation of the effective sound speed in two-field models
with arbitrary field-space metric, as well as the generalization of the Liouville formula to multi-field models and
the resulting discussion of the initial conditions for the perturbations.
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II. MOMENTUM EFFECTIVE SOUND SPEED

A. Effective equation of motion

It has recently been shown [1] that for any system satisfying Einstein’s equations the evolution of the adiabatic
perturbation ζ can be described by means of a single differential equation

ζ̈ +
∂t(Z

2)

Z2
ζ̇ − v2s

a2
(3)

∆ ζ +
v2s
ε

(3)

∆ Π +
1

3Z2
∂t

(
Z2

Hε

(3)

∆ Π

)
= 0 . (1)

where Z2 ≡ εa3/v2s and an effective space-dependent sound speed (SESS) has been defined as

v2s(t, xi) ≡ δPc(t, x
i)

δρc(t, xi)
, (2)

where δρc and δPc are the energy density and pressure perturbations in the comoving gauge, respectively.
In this picture, the entropy perturbations do not appear explicitly in the equation for adiabatic perturbations,

and are ‘hidden’ in the SESS. This can be understood by comparing (2) with the result of the standard approach
[22], in which entropy perturbations Γ are defined by

δPc(t, x
i) = cs(t)

2δρc(t, x
i) + Γ(t, xi) , (3)

where cs is interpreted as sound speed and is a function of time only. Combining eqs. (3) and (2) we get the
relation between SESS and entropy perturbations:

v2s = c2s

1 +
Γ

2Hε

(
ζ̇ + 1

3Hε

(3)

∆ Π

)

−1

. (4)

In the momentum space, one can similarly write a single differential equation for the Fourier components of the
adiabatic perturbations:

ζ̈k +

(
3H +

∂t(Z̃
2
k)

Z̃2
k

)
ζ̇k +

ṽ2k
a2
k2ζk −

ṽ2k
ε
k2Πk −

1

3Z̃2
k

∂t

(
Z̃2
k

Hε
k2Πk

)
= 0 , (5)

where the momentum-dependent effective sound speed (MESS) now reads:

ṽ2k(t) ≡ δPc,k(t)

δρc,k(t)
, (6)

and δρc,k(t) and δPc,k(t) are Fourier components of the energy density perturbations and pressure in the

comoving gauge, respectively, and Z̃2
k ≡ ε/ṽ2k. In this paper we will consider scalar fields with isotropic EST,

for which eq. (5) simplifies to

ζ̈k +

(
3H +

∂t(Z̃
2
k)

Z̃2
k

)
ζ̇k +

ṽ2k
a2
k2ζk = 0 . (7)

It can be shown that eq. (7) reduces to the Sasaki-Mukhanov equation when ṽk is a function of time only. It
is important to note that the MESS ṽk(t) defined in eq.(6) is not simply the Fourier transform of the SESS
vs(x

µ) defined in eq. (2), because the product of the Fourier transforms of two functions is the transform of the
convolution of the two functions.

B. Solution of the effective equation of motion

In order to solve eq. (7), one has to know the time evolution of ṽ2k. With a simple phenomenological assumption
that this quantity evolves as a power law of the scale factor, i.e. ṽ2k = V 2

0 a
p, we can solve eq. (7) in the limit

|Ḣ| � H2, obtaining:

ζ = DiA
1
2 (p−3)H

(i)

| p−3
p−2 |

(
A 1

2 (p−2)

1
2 |p− 2|

)
, i = 1, 2 , (8)
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FIG. 1: Evolutions of the amplitude of curvature perturbation ζ given in eq. (8) for different sound speeds ṽ2k ∝ ap with
different values of p is shown as thick lines. Color coding corresponds to late-time behavior: freezing (red), decaying
(blue) and growing (black); the special case of p = 4 is shown in green. Thin green lines indicate the real and imaginary
part of of ζ for p = 4. Normalization of ζ is arbitrary.

where H
(i)
µ are Hankel functions of the first and second kind, respectively. a = κA with κ2−p = V 2

0 k
2/H2 and

V 2
0 > 0; for V 2

0 < 0 the argument of the Hankel function has to be multiplied by the imaginary unit. In the
special case p = 2, the solution is

ζ = D±A
− 1

2±
1
2

√
1− 4V 2

0 k
2

H2 . (9)

The late-time asymptotic behavior of the solution (8) depends on the value of p.

For p < 2, the argument of the Hankel function goes to zero as a increases to infinity and using H
(1)
µ (ξ) ∼

−i(Γ(µ)/π)(2/ξ)µ for small |ξ|, where Γ is the Euler gamma function, we obtain for the positive frequency
solution

ζ ∼ −
iD1(2− p)

3−p
2−pΓ

(
3−p
2−p

)
π

= const . (10)

Thus, for p < 2 there is a freezing mode of the curvature perturbation, irrespective of the sign of V 2
0 .

For p > 2, the argument of the Hankel function goes to infinity as a increases to infinity and the asymptotic
behavior of eq. (7) becomes

ζ ∼ A
p
4−1exp

(
iA 1

2 (p−2)

1
2 (p− 2)

)
(11)

With V 2
0 > 0, we obtain decaying solutions for 2 < p < 4 and growing solutions for p > 4; all solutions oscillate.

For V 2
0 < 0, there is an exponential growth of the solution. These cases do not admit a freezing solution for the

curvature perturbation.
In Figure 1, we show the time evolution of curvature perturbations given by eq. (8).

III. EFFECTIVE EQUATION OF MOTION VS FULL THEORY IN MULTI-FIELD MODELS

As a particular example, we will consider models involving N = 2 scalar fields minimally coupled to Einstein
gravity, and whose action reads:

S =

∫
d4x
√
−g
[
−1

2
GIJ

(
φK
)
∂µφ

I∂µφJ − V
(
φK
)]

. (12)
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In eq. (12), uppercase Latin letters refer to the field space directions and summation over repeated indices is
assumed. It is convenient to project the evolution of homogeneous fields and the perturbations in the field
space onto the adiabatic/entropic basis (eIσ, e

I
s) [23, 24], where eIσ ≡ φ̇I/σ̇ is the unit vector pointing along

the background trajectory in field space, and where eIs is such that the basis (eIσ, e
I
s) is orthonormal and right-

handed for definiteness; the velocity of the system in the field space reads σ̇ = (GIJ φ̇
I φ̇J)1/2. The adiabatic

perturbation Qσ ≡ eσIQ
I is directly proportional to the comoving curvature perturbation ζ = H

σ̇ Qσ, while
the genuine multifield effects are embodied by the entropic fluctuation Qs, perpendicular to the background
trajectory.

In this basis, the equations of motion take the form

Q̈σ + 3HQ̇σ +

(
k2

a2
+m2

σ

)
Qσ = 2Hη⊥Q̇s −

(
Ḣ

H
+
V,σ
σ̇

)
2Hη⊥Qs , (13)

Q̈s + 3HQ̇s +

(
k2

a2
+m2

s

)
Qs = −2σ̇η⊥ζ̇ , (14)

where

η⊥ ≡ −
V,s
Hσ̇

(15)

is the dimensionless parameter, describing the rate (in Hubble times) at which the trajectory in the field space
deviates from a geodesic line [24]. Here V,s ≡ eIsV,I , the adiabatic mass (squared) is given by m2

σ/H
2 = − 3

2ε2+. . .

with the slow-roll parameters given by ε1 ≡ − Ḣ
H2 , ε2 = ε̇1

Hε1
and the dots representing terms of higher order in

the slow-roll parameters, and the entropic mass squared reads m2
s = V;ss − 2(Hη⊥)2.

In order to connect the system of equations of motion (13) and (14) to the effective equation (5), we note
that

δρc,k(t) = − ζ̇

H
σ̇ = −H

2σ̇2

Ḣ

k2

a2H2
Ψ− 2η⊥HQs (16)

δPc,k(t) = δρc,k(t) + 2η⊥HQs = −H
2σ̇2

Ḣ

k2

a2H2
Ψ , (17)

where Ψ is the Bardeen potential. Inserting (16) and (17) into (6), we find that

ṽ−2k = 1− 2η⊥H
2Qs

ζ̇σ̇
. (18)

Plugging (18) into (1), we find that the latter equation, upon setting Π = 0, which is appropriate for the
system of scalar fields, is equivalent to (13), i.e. it describes the evolution of the adiabatic perturbations if it is
supplemented by (14) that dictates the evolution of the entropy perturbations.

A. Momentum-dependent sound speed and effective field theory of inflation

An important comment is now in order. For any classical solution of the equations of motion for the per-
turbations (13) and (14), it is always possible to determine ṽ2k from (18) and then the adiabatic perturbation
ζ satisfies the effective equation of motion (7). Different choices of initial conditions for a multi-field system
would lead to different functions ṽ2k. In order to account for all degrees of freedom in a multi-field system, it
appears necessary to define as many momentum-dependent effective sound speeds as the number of the fields.

However, a considerable simplification arises if the amplitudes of the perturbations other than the final
adiabatic perturbation decay significantly on super-Hubble scales. For concreteness, let us discuss this point for
two-field models.

Equations of motion (13) and (14) have to be supplemented with initial conditions for the fields. (One often
adopts initial conditions with vanishing either entropic or adiabatic perturbations, but we argue in Appendix C
that other choices may be more natural.) As a result, one obtains two solutions, ζ1 and ζ2, corresponding to
different, orthogonal initial conditions. Because they correspond to different quantum degrees of freedom, for
calculation of the power spectrum they should be added in quadratures, |ζ|2 = |ζ1|2 + |ζ2|2. However, if the
late-time super-Hubble behavior of the modes is dominated by a single degree of freedom, one can perform a
unitary transformation U , such that: (

ζ̃1
ζ̃2

)
= U

(
ζ1
ζ2

)
(19)
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with ζ̃2 → 0 at late times; then |ζ|2 = |ζ̃1|2 fully accounts for the adiabatic power spectrum. An identical
transformation can then be performed for entropy modes. In such a case, we define the momentum-dependent
effective sound speed as one obtained for ζ̃1 and the associated entropy perturbation.

While applying the procedure described above guarantees reproducing the full time evolution of ζ̃1, specifying
ṽ2k is not equivalent to formulating an effective single-field theory of perturbations. This is because the matrix
U is defined in terms of the late-time behavior of adiabatic perturbations and this does not ensure a proper
single-field normalization of perturbations at early times, in sub-Hubble regime. It can readily be seen for initial
conditions ζ̃2,i = 0 and |U11| < 1.

We can conclude that the usefulness of introducing MESS consists in the possibility to account fully for time
dependence of the adiabatic perturbations, even in cases in which a single-field effective theory does not exist On
the other hand, if it does, then introducing MESS is equivalent to formulating the effective theory to calculate
the power spectrum of the adiabatic perturbations.

There are several examples discussed in the literature, which admit an effective single-field description and
for which the predictions for the power spectrum of adiabatic perturbation was calculated. These examples
are obtained in a two-field inflationary model, in which, to make discussion easier, the inflationary trajectory
exhibits a constant turning rate in the field space. Depending on that rate and on the mass parameters of the
fields, several interesting cases in which the evolution of the perturbations differs significantly from the single-
field scenario have been discussed over last decade. Later in section V, we shall demonstrate the usefulness of
MESS beyond those examples.

B. Examples

1. Geodesic trajectory

If the trajectory in the field space follows a geodesic line, the entropy perturbations do not affect the adiabatic
perturbations, which evolve as if the entropy perturbations were entirely absent. We can, therefore, set Qs = 0
in eq. (18) and conclude that the speed of adiabatic perturbations is that of light, ṽ2k = 1.

2. Sourcing on super-Hubble scales

If the amplitude of the entropy modes are not significantly smaller than those of after the adiabatic ones
after Hubble-radius crossing and the trajectory in the field space does not follow a geodesic line, adiadiabatic
perturbations are sourced by the entropy ones. The rate of this sourcing can be read from eq. (16); as the

first term on the r.h.s. is negligible on super-Hubble scales, we arrive at ζ̇σ̇ ≈ 2η⊥H
2Q2

s and the two terms in
eq. (18) practically cancel. This can be interpreted as infinite sound speed. This should not come as a surprise,
because on super-Hubble scales, the amplitude of the adiabatic perturbations grows coherently over distances
exceeding the size of the horizon.

3. Strongly coupled perturbations and sub-Hubble freeze-in

If the turn rate is large, η⊥ � 1 and slowly varying, the adiabatic and entropy perturbations exhibit inter-
esting dynamics, leading to the adiabatic perturbations freezing in before the Hubble radius crossing and to
enhancement of the power spectrum compared to the predictions of a single-field scenario with the same Hubble
and slow-roll parameters [25–29]. This happens after the amplitude of the more massive of the solutions of
the system of eqs. (13) and (14) becomes negligible and the lighter and more slowly changing mode becomes
dominant. The relation between the adiabatic and entropy component of that mode can be read from (14):(

k2

a2
+m2

s

)
Qs = −2σ̇η⊥ζ̇ . (20)

Substituting eq. (20) to (18), we obtain:

ṽ−2k = 1 +
4η2⊥

k2

a2H2 +
m2
s

H2

. (21)
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If the sound speed of perturbations deviates significantly from one, the second term in eq. (21) must dominate;
depending on the relative size of the two terms in the denominator, we arrive at:

ṽ2k ≈
m2
s

4η2⊥H
2

for k/a� ms (22)

or

ṽ2k ≈
k2

4η2⊥a
2H2

≈ k2η2

4η2⊥
for k/a� ms . (23)

The first limit shown in eq. (22) corresponds to constant reduced sound speed and has been extensively studied
in the literature. The positive and negative frequency solutions of eq. (5) read:

ζ = A±e
∓iṽkkη

(
1∓ i

ṽkkη

)
, (24)

where A is a normalization constant and the symbol ± refers to positive- and negative-frequency solutions.
The second limit shown in eq. (23) was first studied in [26] and later in [27]; because of the explicit dependence

of ṽk on k, we shall refer to these models as models with modified dispersion relations. They correspond to our
solution (8) with p = −2 and V 2

0 = k2/4η2⊥H
2.

The examples discussed in this subsection offer a route to a consistent interpretation of eq. (18) in a class of
multi-field models that allow an effective field theory with just one field. If the amplitudes of all the perturbations
except for the freezing-in adiabatic perturbations decay quickly, either because they are massive or, according
to eq. (20), the entropy perturbations are suppressed after freeze-in of curvature perturbations, we can describe
the evolution of the adiabatic perturbations in the single-field model with an effective sound spped vk, which
depends both on time and the wavenumber of the mode.

In Section V, we shall present a set of numerical examples, corroborating the assertion above and show that
the predictions of the effective theory are consistent with those of the full theory for all times. But before we
start comparing the full and the effective theory, we shall need a tool to translate the evoultion of the effective
sound speed to the normalization of the power spectrum. This tool will be provided by the Liouville formula
described in the following Section.

IV. LIOUVILLE FORMULA

The Liouville formula states that for a function y(η), which solves the equation:

d2u

dη2
+ b1(η)

du

dη
+ b0(η)u = 0 , (25)

where b1 and b0 are real-values functions, the Wronskian defined as:

W (η) ≡ u∗ du

dη
−
(

du

dη

)∗
u (26)

satisfies:

W (η) = W (η0) exp

(
−
∫ η

η0

b1(η′) dη′
)
. (27)

In order to apply eq. (27) to (7), we substitute u = aζ and take the independent variable to be conformal time.
Eq. (7) becomes:

u′′ +

(
d

dη
log Z̃2

k

)(
u′ +

1

η
u

)
+

(
ṽ2kk

2 − 2

η2

)
u = 0 , (28)

where we used de Sitter approximation a ≈ −1/Hη with constant H. We obtain

W (η) = W (η0) exp

(
−
∫ η

η0

(
d

dη′
log Z̃2

k

)
dη′
)

= W (η0)
Z̃2
k(η0)

Z̃2
k(η)

. (29)
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Remembering that Z̃2
k = ε/ṽ2k and assuming that the slow-roll parameter ε does not change significantly in the

time interval between the time when the observed adiabatic modes are deep inside the Hubble radius and the
time of freeze-in, we obtain:

W (η) = W (η0)
ṽ2k(η)

ṽ2k(η0)
. (30)

Perturbations deep inside the Hubble radius have ṽk = 1. If this value was constant throughout the entire
inflationary evolution, the solution to eq. (7) would have a familar form corresponding to standard single-field
inflation:

ζ0 =
C

a
e−ikη

(
1− i

kη

)
. (31)

If this solution was true throughout the entire inflationary dynamics, at late times, η → 0− we would have

|ζ0|2 ∼ |C|2 ·
κ2H2

k2
(32)

However, with ṽ2k ∝ ap, the true solution is (8), whose late-time limit for p < 2 leads to:

|ζ|2 ∼ |D1|2
Γ

(
3−p
2−p

)
π

2

(2− p)
6−2p
2−p . (33)

Using the Wronskian condition (30) with W (η0) calculated with the solution (31), valid in the sub-Hubble limit,
we obtain:

|C|2 =
(2− p)κ1−pH

πV 2
0 k

|D1|2 . (34)

Hence the enhancement factor for power spectrum of the curvature perturbations P (in comparison to the power
spectrum for a slow-roll single-field model Psf) reads:

P
Psf

=
|ζ|2

|ζ0|2
=

(
k

H

) p
p−2

V
2
p−2

0

Γ2
(

3−p
2−p

)
π

(2− p)
4−p
2−p . (35)

Eq. (35) reproduces several well-known results. For p = 0 and V 2
0 = const, corresponding to the first of the two

limits discussed in Section III B 3, we obtain:

P
Psf

=
1

V0
. (36)

For p = −2 and V 2
0 = k2

4η2⊥H
2 , which correspond to the second limit in Section III B 3, we have

P
Psf

=
8
√

2
(
Γ
(
5
4

))2
π

η
1/2
⊥ ∼ 2.96 η

1/2
⊥ . (37)

This formula agrees very well with numerical results presented in [26].
Both results (36) and (37) correspond to a scale-invariant power spectrum. Generally, if we parametrize

V 2
0 = γ(k/H)q, where γ is a k-independent coefficient, the scalar spectral index is

ns = 1− p+ q

2− p
. (38)

Assuming a scale-invariant power spectrum, i.e. p + q = 0, we show the predictions of the formula (35) in
Figure 2.

The calculations for the single-field case presented in this Section can be easily generalized to a multi-field
system. In Appendix B, we present an appropriate derivation, followed in Appendix C by a prescription for
matching the perturbations in the sub- and super-Hubble regime.
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FIG. 2: Enhancement of the power spectrum of curvature perturbations predicted by eq. (35).

V. NUMERICAL EXAMPLES

In Section III, we have put forth a number a hypotheses. We argued that slow-roll fast-turn two-field
inflationary models can be effectively described by a single-field theory with a time and k-dependent sound
speed. We also proposed which combination of modes serves as an effective degree of freedom in the single-
field theory. In this Section, we would like to corroborate those findings by presenting results of numerical
calculations.

We study the evolution of the perturbations in the model described by the Lagrangian:

L =
e−2φ2/M

2
(∂φ1)2 − Vinf(φ1) +

1

2
(∂φ2)2 − 1

2
m2

2φ
2
1 . (39)

In this model, the interactions stemming from the non-canonical kinetic term can compensate the potential
force acting on the field φ2. As a consequence, there may exist an inflationary trajectory, for which φ1 rolls
slowly and φ2 stays constant. Models of this type have been analyzed by many authors and it was found that
for certain values of the parameters one can describe the curvature perturbations with a single-field effective
theory, either one with an effective sound speed smaller than one or one with modified dispersion relations.

Here we consider the approximation of quasi-de Sitter space, i.e., following [26, 30], we assume that the
Hubble parameter is practically constant and that the field φ1 moves negligibly during inflation, so all the
quantities defined in terms of the homogeneous background are also practically constant. In this approximation,

equations of motion resulting from (39) assume the form (B.1) with (B.3) and (B.4), where η⊥ = φ̇1

MH can be
much larger than 1. This approximation allows us to capture characteristic features of the evolution of the
effective sound speed in various models with high accuracy (which is particularly important for |η⊥| � 1),
disentangling the effects of the changes in the sound speed from other time dependencies, e.g. those originating
from time-dependent background. Of course, the MESS approach is completely general and does not require
the simplifications discussed here, but our goal is to discuss it in the context of multi-field examples already
worked out in the literature.

For numerical calculations, we use initial conditions (C.1) and (C.3) with θ0 = 0, integrating the equations
of motion (B.1) with (B.3) and (B.4) twice: to cover both intitial conditions. In order to isolate the adiabatic
mode that dominates after Hubble radius crossing, we preform the following unitary transformations of the two

results corresponding to initial conditions. If the first initial condition leads to u
(1)
σ = z1 and the second initial

condition leads to u
(2)
σ = z2, we consider combinations of the two solutions, corresponding to rotated vectors in

(C.1): (
ũ
(1)
σ

ũ
(2)
σ

)
=

1√
|z1|2 + |z2|2

(
z∗1 z∗2
−z2 z1

)(
u
(1)
σ

u
(2)
σ

)
. (40)
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multi-field model

perturbation mode (defined by the behavior of the adiabatic mode) color coding

curvature freezing thick, black, solid

curvature decaying thin, black, dashed

entropy freezing thin, red, dashed

entropy decaying thin, red, solid

single-field effective model

curvature ṽk given by eq. (6) evaluated for the solution of the equations
of motion corresponding to the freezing adiabatic mode

thick, green, dashed

curvature ṽk given by eq. (6) evaluated for the solution of the equations
of motion corresponding to the decaying adiabatic mode

thick, yellow, dashed
(only Fig. 6)

TABLE I: Color coding of the perturbations in Figures 3-6

.

decaying mode

freezing mode

~ ��
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R
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FIG. 3: Numerical calculations in single-field effective theories with constant reduced sound speed; model described in
Section V A. Left panel: evolution of the sound speed given by eq. (6) for initial conditions leading to a freezing adiabatic
mode (red solid line) and for initial conditions leading to a decaying adiabatic mode (blue dashed lines); thin dashed
line corresponds to the value (22). Right panel: evolution of the instantaneous power spectra in the full theory and in
the effective theory; color coding described in Table I; thin dashed line corresponds to the asymptotic value (36). N = 0
corresponds to the Hubble radius crossing

At the end of numerical evolution, we have ũ
(2)
σ → 0, and therefore we identify the freezing mode with ũ

(1)
σ and

the decaying mode with ũ
(2)
σ . According to our discussion in Appendix B, with freeze-in at sub-Hubble scales

the freezing mode should correspond to z2 = −iz1 and we confirm this in our numerical examples.
We represent perturbations as instantaneous power spectra and normalize them to the corresponding instan-

taneous power spectra of curvature perturtbations in single-field models, as described in detail in [31]. We use
color coding for different components and different initial conditions described in Table I.

A. Single-field effective theories with reduced sound speed

For the first numerical example, we assume η⊥ = 30 and ν = 102, which leads to the effective sound speed
ṽ2k = 0.0265 ≈ 1/37.7. Evolution of the effective sound speed calculated from (6) and evolution of adiabatic
perturbations is shown in Figure 3. We find exquisite consistency at all scales between the predictions of the
full two-field model and the effective single-field theory with a MESS sound speed.
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FIG. 4: Numerical calculations in single-field effective theories with modified dispersion relations; model described in
Section V B. Left panel: evolution of the sound speed given by eq. (6) for initial conditions leading to a freezing adiabatic
mode (red solid line) and for initial conditions leading to a decaying adiabatic mode (blue dashed lines); of thin dashed
lines, one corresponds to the value (22) and the other shows that the sound speed decreases as ∼ a−2. Right panel:
evolution of the instantaneous power spectra in the full theory and in the effective theory; color coding described in
Table I; thin dashed line corresponds to the asymptotic value (37). N = 0 corresponds to the Hubble radius crossing

B. Single-field effective theories with modified dispersion relations

For the second numerical example, we assume η⊥ = 300 and ν = 10. This model is not described by an
effective single-field theory with a constant, reduced sound speed, but rather by by an effective single-field
theory with modified dispersion relations. Evolution of the effective sound speed calculated from (6) and
evolution of adiabatic perturbations is shown in Figure 4. We again find exquisite consistency at all scales
between the predictions of the full two-field model and the effective single-field theory with a MESS sound
speed.

C. Hyperinflation

If the Lagrangian mass term for the entropy perturbations is small compared to other scales, the mass of these
perturbations is dominated by the ‘geometrical’ −2H2η2⊥ term, which in our example is related to the negative
curvature of the field space. Such a negative mass term leads to instability and to a very strong enhancement
of the amplitude of the perturbations. This phenomenon was first described in [26], which dubbed it transient
tachyonic instability around the Hubble radius, and after a decade it was rediscovered in [32], which called it
hyperinflation, and further analyzed in [33]. In a slightly different context, sidetracked inflation models with a
negative effective sound speed were discussed in [28, 29]. In all works mentioned above, inflation was realized
on a steep potential in a hyperbolic field space.

It is interesting to note that hyperinflation can also be described in our effective single-field approach, albeit
with a sound speed ṽ2k which changes sign during evolution. We demonstrate this numerically by an example
with η⊥ = 300 and ν = −104. Evolution of the effective sound speed calculated from (6) and evolution of
adiabatic perturbations is shown in Figure 5. We find exquisite consistency at all scales between the predictions
of the full two-field model and the effective single-field theory with a MESS sound speed.

In [26], hyperinflation was described as an intrinsically two-field phenomenon. However, [32] hinted at a
curious property, determined numerically, that the freezing adiabatic mode is obtained from a single, well-
defined initial mode. Here we confirm this observation and show that the evolution of that mode can be
understood in effective theory with a time-dependent sound speed that starts at a canonical value of 1 and then
goes imaginary.
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FIG. 5: Numerical calculations in single-field effective theories for hyperinflation; model described in Section V C. Left
panel: evolution of the sound speed given by eq. (6) for initial conditions leading to a freezing adiabatic mode (red solid
line) and for initial conditions leading to a decaying adiabatic mode (blue dashed lines); change of sign of the sound
speed squared, i.e. transition from real to imaginary sound speed, is indicated; thin dashed line corresponds to the value
(22). Right panel: evolution of the instantaneous power spectra in the full theory and in the effective theory; color
coding described in Table I; N = 0 corresponds to the Hubble radius crossing

D. Single-field description for models with light entropy modes that cannot be integrated out

In Section III, we showed how the MESS approach allows to formulate a single-field description for models
which were previously studied in the literature by integrating out entropy modes. Here we will consider the
case in which the approach based on integrating out entropy modes cannot be applied, i.e. the first two terms
in eq.(13) cannot be neglected, and no simple algebraic relation between ζ and Qσ holds at all times. In these
cases the MESS approach can still be used to compute the effective sound speed of each independent quantum
degree of freedom of the system. While from a field theoretic point of view the fact that there are two light
degrees of freedom would be interpreted as the non existence of a single-field description, the effective sound of
the appropriately rotated modes allows to compute the final value of the full curvature spectrum by studying
the evolution of a single degree of freedom, providing a single-field description.

We consider a model with light entropy perturbations, ν = 0 and moderate kinetic coupling between per-
turbations, η⊥ = 0.3. Such models were proposed in [30] to explain in an alternative way the red tilt of the
power spectrum of adiabatic perturbations; later they were rediscovered and analyzed anew in an improved
way, invoking symmetries of the theory [34]. Our particular model has entropy perturbations slowly decaying,
so the sourcing of the adiabatic perturbations eventually becomes ineffective; had we chosen ν = −2η2⊥, the
amplitude of entropy perturbations would remain nearly constant and the sourcing could last much longer.

In these models, adiabatic perturbations are sourced by entropy perturbations on super-Hubble scales, which
corresponds to the situation described in Section III B 2, with the sound speed diverging to infinity. A closer
inspection shows [30] that the amplitude of the adiabatic perturbations grows as ∼ η⊥N on super-Hubble scales,
hence the sound speed increases as ∼ a2−η⊥ , according to eq. (18). Similarly, the sound speed for of the decaying
mode increases as a2+η⊥ . This is consistent with our findigs in Section II B that ṽk ∼ a2 marks a divide between
freezing and decaying solutions.

In Figure 6, we show that, similarly to the case of hyperinflation, the sound speed ṽ2k changes sign during
evolution. We also show the evolution of adiabatic and entropy perturbations.

The evolution of the freezing and decaying modes of the adiabatic perturbations is compared to the evolution
of a single-field effective description with an effective sound speed given by (6) with an appropriate set of initial
conditions. We find a good agreement betwen the predictions of the full theory and two single-field effective
theories with different effective sound speeds. Depending on the phase of the evolution, either the freezing or the
decaying mode dominates the instantaneous power spectrum and the late-time domination of the freezing mode
starts only after Hubble radius crossing. This shows that the model cannot be approximated by an effective
single-field theory at all times – we need to combine two single-field theories with two effective, independent
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FIG. 6: Numerical calculations in single-field effective theories for light entropy perturbations; model described in
Section V D. Left panel: evolution of the sound speed given by eq. (6) for initial conditions leading to a freezing adiabatic
mode (red solid line) and for initial conditions leading to a decaying adiabatic mode (blue dashed lines); change of sign
of the sound speed squared, i.e. transition from real to imaginary sound speed, is indicated; thin dashed line corresponds
to the value (22). Right panel: evolution of the instantaneous power spectra in the full theory and in the effective theory;
color coding described in Table I; N = 0 corresponds to the Hubble radius crossing; the pink line corresponds to the
total curvature power spectrum.

sound speeds to obtain correct predictions for the curvature perturbations at all times, but the freezing mode
is sufficient to compute the final value. Our numerical analyses also point to the fact that this conclusion holds
true for all models described in Section III B 2, i.e. models with sourcing of the adiabatic perturbations on
super-Hubble scales.

Since those models can be studied also by integrating out entropy modes, the fact that a single EFT valid at
any time does not exist, would also be a limitation of the EFT obtained using that method, and is an intrinsic
property of these systems, independent of the method adopted to study them.

VI. DISCUSSION

In the context of cosmological perturbations, the existence of a single-field effective theory requires that
the degree of freedom corresponding to the freezing mode, accounting for the entire amplitude of adiabatic
perturbations at the end of inflation, evolves independently of all other perturbations. Those perturbations can
be dynamical, but as their masses are larger than the Hubble parameter, their amplitudes decrease as power
law functions of the scale factor. Hence the notion of the effective theory in cosmology is different from the one
used in particle physics, where decoupling normally means that other degrees of freedom are too heavy to be
excited.

At face value, our effective description of single-field inflation resembles the quadratic part of the action for
adiabatic perturbations derived in [35]. However, we would like to point out that the sound speed in that
reference is a function of time only. Using a very simple model with a large and constant turning rate, analyzed
previously in [26, 27], we have shown that the evolution of the adiabatic perturbations is correctly accounted for
by a sound speed that is both time- and momentum-dependent. Hence our approach generalizes the effective
theory of inflation of [35] in a non-trivial way, including the effects of entropy.

A truly effective single-field theory has only one relevant degree of freedom that fully accounts for both the
power spectrum of the adiabatic perturbations and for higher-order correlation functions of adiabatic pertur-
bations. Although such a mode has both the adiabatic and the entropic components, a known effective sound
speed (6) provides an algebraic relation between these two components, so the entropic component is no longer
an independent quantity. Such an effective description requires just one effective sound speed, because other
degrees of freedom are assumed to have decayed before the Hubble radius crossing and thus do not contribute
to correlation functions of adiabatic perturbations. In this sense, the models analyzed in Sections V A-V C have
a single-field effective theory, while the model described in Section V D does not. In this latter case, there
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is a non-negligible independent degree of freedom that significantly contributes to the amplitude of adiabatic
perturbations around the Hubble crossing. We can therefore conclude that a momentum-dependent effective
sound speed parametrizes single-field effective theories of inflation and provides an effective description of the
adiabatic perturbations when such a theory cannot be formulated.

There is also an alternative, more general view of the models discussed in Section V, which, however, involves
more input and is thus less predictive. Since the perturbed energy-stress tensor enters Einstein equations and
does not rely on a particular model of multi-field inflation, the evolution of the adiabatic component of each
degree of freedom is described by eq. (7) with an appropriate sound speed. We can define a number of different
effective sound speeds to account for the evolution of all degrees of freedom, as we have done in Section V D.
This approach allows us to describe also the evolution of adiabatic perturbations (without resorting explicitly
to the notion of entropy perturbations) in models which do not admit an effective single-field theory.

The effective field theory of inflation [35] is based on the assumption that only one scalar degree of freedom
is present, and is formulated in the uniform field gauge, also called unitary gauge, in which an action invariant
under time-dependent space diffeomerphism can be written without any matter perturbation terms. The unitary
gauge does not coincide with the comoving slices gauge in multi-field systems [1], so in general the effective theory
of inflation cannot be applied to multi-field systems in which there is no gauge in which the matter perturbations
can be completely set to zero (in other words, entropy perturbations) cannot be neglected. Nevertheless, there
can also be effective entropy in the comoving slicea gauge in modified gravity theories with a single scalar degree
of freedom, e.g. in such as KGB models [36], which can be described by the effective theory of inflation. These
modified gravity theories give rise to a modification of the dispersion relation, related to extrinsic curvature
terms of the effective action [27, 35] and leading to a momentum-effective sound speed, consistent with the
MESS approach, once the gauge transformation from the unitary to the comoving slices gauge is performed
[36]. In contrast, effective theory of inflation cannot be applied to multi-fields systems where there is no gauge in
which the action can only be written in term of geometrical quantitites This is confirmed, e.g. by the modified
dispersion relation obtained in eq. (B.6) in [27], which has a different momentum dependency from the one
which arises from extrinsic curvature terms in the effective theory of inflation, as shown in eq. (3.22) in [27],
associated to intrinsic entropy in single field modified gravity theories.

In summary, the advantages of the MESS are that it relates the effective sound speed to the energy-stress
tensor in a model-independent way. It also does not require integrating out e ntropy modes and it is not based
on any further approximation, such as the decoupling limit often assumed in the effective theory of inflation.
Thus it gives a general model-independent description of adiabatic perturbations, valid at any energy scale. It
also makes explicit the relation between the entropy of the mulfi-field theory and the momentum dependent
effective sound speed of the corresponding single field effective theory, and that it can be computed directly
from the solutions of the matter perturbations equations without the need of computing an effective action.

The definition of MESS is completely general, and can be applied to any multifields model, including models
with sharp turns of the classical field trajectory. It can also be applied to modified gravity theories [36], and
more complex systems involving gauge fields, such as axion inflation, as long as the comoving gauge of the
total effective energy-momentum tensor is properly computed. The ungauged tensor can always be computed
analytically, while the comoving gauge condition can be added to the field equations to be solved numerically,
in case it cannot be used to simply them analytically.

As long as numerical calculations can be carried out with sufficient accuracy, the method can be applied
without any restrictions to any multi-field model, with no restriction on the classical field trajectory. The
computation of the MESS involves in some cases the cancellation between very small numbers, which requires
the use of a sufficiently high numerical accuracy to avoid instabilities, but for models where entropy modes
cannot be integrated out, this is the only approach which can be adopted to obtain a single-field description
capable of predicting the time dependence of the adiabatic perturbations of the full multi-field theory.

VII. CONCLUSIONS

In this work, we presented a formulation of a single-field effective description of inflation, making use of a
recently advocated approach based on the momentum-dependent effective sound speed (MESS) [1]. We have
shown that this formulation includes a number of multi-field models that were considered in the literature in
the last decade. We have identified the effective degree of freedom and shown how its evolution can be treated
independently of other degrees of freedom, even at scales at which the amplitudes the latter are not suppressed
yet. We have also applied the MESS approach to a models with light entropy perturbations, which does not
admit an effective field theory obtained by integrating out entropy modes. Hence we have demonstrated that
the MESS approach, which generalizes the notion of single-field effective theory of inflation, is a powerful and
useful scheme for studying a wide range of inflationary models.
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Appendix A: MESS of multiple scalar fields

The energy-stress tensor for the system described by the action given in eq.(12) is

Tµν = GIJ
(
ΦK
)
∂µΦI∂νΦJ + δµν

[
−1

2
GIJ

(
ΦK
)
∂λΦI∂λΦJ − V

(
ΦK
)]

. (A.1)

The scalar fields at linear order can be expanded as ΦK(xµ) = φK(t) + δφK(xµ), where the background parts
of the scalar fields satisfy the following equations of motion

φ̈I + 3Hφ̇I + ΓIJK φ̇
J φ̇K +GIJ

(
φK
)
V,J
(
φJ
)

= 0 , (A.2)

where ΓIJK are the Christoffel symbols corresponding to the fields space metric GIJ
(
φK
)
, and we denote the

partial derivative respect to the field φJ according to V,J
(
φJ
)

= ∂
∂φJ

V
(
φJ
)
. The background energy density

and pressure are

ρ =
1

2
σ̇2 + V

(
φK
)
, (A.3)

P =
1

2
σ̇2 − V

(
φK
)
, (A.4)

where σ̇2 = GIJ
(
φK
)
φ̇I φ̇J . The components of the perturbed energy-stress tensor of the two scalar fields

system, without gauge fixing, are

δT 0
0 = −1

2
GIJ

(
φK
) (
φ̇I ˙δφ

J
+ φ̇J ˙δφ

I
)

+ σ̇2A− δφk
(

1

2
φ̇I φ̇JGIJ ,K

(
φK
)

+ V,K
(
φK
))

,

δT ij = δij

[
1

2
GIJ

(
φK
) (
φ̇I ˙δφ

J
+ φ̇J ˙δφ

I
)
− σ̇2A+ δφk

(
1

2
φ̇I φ̇JGIJ ,K

(
φK
)
− V,K

(
φK
))]

,

δT 0
i = −∂i

[
GIJ

(
φK
)
φ̇IδφJ

a

]
. (A.5)

Under an infinitesimal time translation t → t + δt the fields perturbations transform according to the gauge
transformation

δ̃φ
K

= δφK − φ̇Kδt . (A.6)

From these equations we can find the time translation δtc necessary to go to the comoving gauge, by imposing

the comoving gauge condition (δT 0
i)c = 0→ GIJ

(
φK
)
φ̇I δ̃φ

J
= 0, obtaining

δtc =
GIJ

(
φK
)
φ̇IδφJ

σ̇2
. (A.7)

We can now compute the gauge invariant comoving field perturbations according to

UK = δφK − φ̇Kδtc = δφK − φ̇K
GIJ

(
φK
)
φ̇IδφJ

σ̇2
, (A.8)

and the comoving pressure and energy density perturbations

α = δPc =
1

2
GIJ

(
φK
) (
φ̇I U̇J + φ̇J U̇ I

)
− σ̇2γ + Uk

(
1

2
φ̇I φ̇JGIJ ,K

(
φK
)
− V,K

(
φK
))

, (A.9)

β = δρc =
1

2
GIJ

(
φK
) (
φ̇I U̇J + φ̇J U̇ I

)
− σ̇2γ + Uk

(
1

2
φ̇I φ̇JGIJ ,K

(
φK
)

+ V,K
(
φK
))

. (A.10)
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After replacing eq.(A.8) and eq.(A.2) into these expressions we find

UkV,K
(
φK
)

=
1

2
GIJ

(
φK
) (
φ̇I U̇J + φ̇J U̇ I

)
+ Uk

1

2
φ̇I φ̇JGIJ ,K

(
φK
)

= −σ̇2 Θ

4
, (A.11)

α = −σ̇2γ = −σ̇2 ζ̇

H
, (A.12)

β = −σ̇2

(
γ +

Θ

2

)
= −σ̇2

(
ζ̇

H
+

Θ

2

)
, (A.13)

where we have used the perturbed Einstein’s equation γ = ζ̇/H, and we have defined the function Θ according
to

Θ ≡ −4φ̇1φ̇2
σ̇3

√
G

(
δφ1

φ̇1
− δφ2

φ̇2

)
V,s =

4

σ̇2
Q,sV,s , (A.14)

where G is the determinant of the fields space metric GIJ
(
φK
)
, i.e. G ≡ det (GIJ), Q,s ≡ Q,KeKs V,s ≡ V,KeKs ,

and

eKs =
(
e1s, e

2
s

)
=

(
G21φ̇1 +G22φ̇2

σ̇
√
G

,−G11φ̇1 +G12φ̇2

σ̇
√
G

)
. (A.15)

Finally the MESS is given by

ṽ2k(t) =

(
1 +

HΘ

2ζ̇

)−1
=

(
1 +

2HV,sQ,s

ζ̇σ̇2

)−1
=

(
1− 2H2η⊥Q,s

ζ̇σ̇

)−1
, (A.16)

where

η⊥ ≡ −
V,s
Hσ̇

. (A.17)

Appendix B: Multi-field case

The calculation given in Section IV can be easily generalized to a system of N coupled linear and homogeneous
equations, which can be written as:

d2 ~U
dη2

+ L(η)
d~U
dη

+ M(η)~U = 0 , (B.1)

where ~U = (U1(η), . . . ,UN (η)) and L(η), M(η) are real-valued N × N matrices, which are functions of the
independent variable η. It is easy to show that for L = 0 and MT = M the Wronskian defined as:

W (η) ≡ ~U†
~U

dη
−

(
d~U
dη

)†
~U (B.2)

does not depend on η.
The equations of motion for the two-field system of adiabatic and entropy perturbations (13)-(14) can be

transformed so that we can make use of this fact. We first redefine perturbations as ~u = (aQσ, aQs) and
identify η with conformal time. We obtain a system of equations of the form (B.1) with:

L =

(
0 2η⊥

η

− 2η⊥
η 0

)
(B.3)

and

M =

(
k2 − 2

η2

)
1 +

(
0 − 4η⊥

η2

− 2η⊥
η2

ν
η2

)
, (B.4)
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where ν =
m2
s

H2 − 2η2⊥ and we used de Sitter approximation again [37]. We then define

~U = R~u (B.5)

with

R(η) =

 cos
(
η⊥ log

(
η
η0

))
sin
(
η⊥ log

(
η
η0

))
− sin

(
η⊥ log

(
η
η0

))
cos
(
η⊥ log

(
η
η0

))  , (B.6)

where η0 is an arbitrary constant. In terms of the new variable ~U , the equation of motion (B.1) reads:

d2 ~U
dη2

+

[(
k2 +

η2⊥ − 2

η2

)
1 +

1

η2
RMRT

]
~U = 0 , (B.7)

where

M =

(
0 −3η⊥
−3η⊥ ν

)
, (B.8)

The conserved Wronskian (B.2) reads:

W (η) = ~u†
d~u

dη
−
(

d~u

dη

)†
~u+

2η⊥
η
~u†E~u , (B.9)

where we denoted:

E =

(
0 1

−1 0

)
(B.10)

and made use of the fact that dR
dη = η⊥

η RE.

This form of the Liouville equation can be used to identify the initial Bunch-Davis conditions in a coupled
multi-field system and to match those initial condition with the late-time behavior of the perturbations. We
comment on these issues below.

Appendix C: Matching curvature and entropy perturbations in the sub- and super-Hubble regime

Based on the results of Appendix B, we can comment on the choice of the Bunch-Davies vacuum as an
initial state for the adiabatic and entropy perturbations and on a simple way in which that initial state can be
matched with the asymptotic late-times solutions of the equations of motion. Deep inside the Hubble radius,
i.e. for η → −∞, eq. (B.7) becomes an equation of motion for a harmonic oscillator and it has two independent
positive-frequency solutions:

~U (1)(η) ∼ e−ikη√
2k

~U (1)
0 and ~U (2)(η) ∼ e−ikη√

2k
~U (2)
0 , (C.1)

where ~U (1)
0 and ~U (2)

0 are constant vectors satisfying

~U (I)†
0

~U (J)
0 = δIJ . (C.2)

These vectors can be parametrized as:

~U (1)
0 =

(
cos θ0

sin θ0e
iφ0

)
and ~U (2)

0 =

(
− sin θ0e

−iφ0

cos θ0

)
. (C.3)

In terms of perturbations ~u, the solution (C.1) reads:

~u(1) ∼ e−ikη√
2k

 cos θ0 cos
(
η⊥ log

(
η
η0

))
− eiφ0 sin θ0 sin

(
η⊥ log

(
η
η0

))
cos θ0 sin

(
η⊥ log

(
η
η0

))
+ eiφ0 sin θ0 cos

(
η⊥ log

(
η
η0

))  (C.4)
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and

~u(2) ∼ e−ikη√
2k

 −e−iφ0 sin θ0 cos
(
η⊥ log

(
η
η0

))
− cos θ0 sin

(
η⊥ log

(
η
η0

))
−e−iφ0 sin θ0 sin

(
η⊥ log

(
η
η0

))
+ cos θ0 cos

(
η⊥ log

(
η
η0

))  . (C.5)

The modulus squared of the upper (adiabatic) component in (C.4) reads:∣∣∣u(1)σ ∣∣∣2 =
1

4k

(
1 + cos 2θ0 cos

(
2η⊥ log

(
η

η0

))
− cosφ0 sin 2θ0 sin

(
2η⊥ log

(
η

η0

)))
. (C.6)

This expression is constant for θ0 = ±π4 and φ0 = π
2 , which also corresponds to constant |u(1)s |2, |u(2)σ |2 and

|u(2)s |2. Our final results is, therefore:

~u(1) ∼ e
−ikη+iη⊥ log

(
η
η0

)
2
√
k

(
1

−i

)
and ~u(2) ∼ e

−ikη−iη⊥ log
(
η
η0

)
2
√
k

(
−i

1

)
. (C.7)

Note that eq. (C.7) exhibits some redundancy, which was not visible in the intermediate steps leading to that
result. A change in arbitrary constant η0 can be extracted as an unphysical phase factor multiplying the
solution.

The approximate solution (C.7) is reliable as long as the last term in eq. (B.7) is negligible. This is satified
for (kη)2 > max{ν, 3η⊥}.

It is also interesting to study the late-time behavior of the system of equations (B.7) with (B.3) and (B.4),
following the treatment in [26]. In the limit η → 0−, we can neglect the k-dependent term and assume solutions
of the form:

~u =

(
η

η0

)P (
Aσ
As

)
, (C.8)

where η0 represents the value of the conformal time at which the solution should be matched with the early-time
solution. We obtain an algebraic equation:(

P (P − 1)− 2 2η⊥(P − 2)

−2η⊥(P + 1) P (P − 1)− 2 + ν

)(
Aσ
As

)
= 0 . (C.9)

Eq. (C.9) has four nontrivial solutions for p:

P1 = −1 , with
A

(1)
s

A
(1)
σ

= 0 (C.10)

P2 = 2 , with
A

(2)
s

A
(2)
σ

=
6η⊥
ν

(C.11)

P3,4 =
1

2
∓ i

√
ν + 4η2⊥ −

9

4
, with

A
(3,4)
s

A
(3,4)
σ

= − ν + 4η2⊥

η⊥

(
3± 2i

√
ν + 4η2⊥ −

9
4

) . (C.12)

The last two solutions (C.12) correspond to the positive and negative frequency solutions for a massive mode, of
mass squared (ν + 4η2⊥)H2. The first two solutions, eqs. (C.10)-(C.11) correspond to the growing and decaying
part of a massless mode. It is also clear that the growing mode ∼ 1/η carries only the adiabatic component,
i.e. in the considered model adiabatic perturbations can freeze in at some scale, while all entropy perturbations
decay at late times.

The mode corresponding to the exponent p4 corresponds to negative frequency. If the relative change of the
sound speed is not much larger than one, this mode is not excited during the evolution of the perturbations. It
is instructive to analyze the relations between the sub-Hubble solutions (C.7) and the solutions (C.10)-(C.12).
This is particularly simple in the limit ν → 0, which will correspond to numerical examples to be discussed
later. In this limit, we have:

A(1)
s = 0 , A(2)

σ ≈ 0 , A(3)
s ≈ iA(3)

σ . (C.13)
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Matching (C.7) with (C.10)-(C.12), we find that ~u(2) corresponds to a massive mode with p3, which decays
on super-Hubble scales, while ~u(1) is a combination of a growing mode corresponding to p1 and the decaying

massive mode corresponding to p2, with A
(1)
σ ≈ −iA

(2)
s .

A general late-times solution of (B.1) can therefore be written as:

~u =

4∑
I=1

(
η

η0

)PI (
A

(I)
σ

A
(I)
s

)
, (C.14)

where for a given I the coefficients A
(I)
σ and A

(I)
s satisfy the relations in respective eqs. (C.10)-(C.12). Plugging

(C.14) into the expression for the conserved Wronskian, we find:

W = −
i
(
ν + 4η2⊥

)
η⊥η0

Im
(
A(1)
σ A(2)∗

s

)
−

i
(
ν + 4η2⊥

)√
ν + 4η2⊥ −

9
4

2η2⊥η0

(∣∣∣A(3)
σ

∣∣∣2 − ∣∣∣A(4)
σ

∣∣∣2) . (C.15)

In the limit ν → 0 considered above, this reduces to:

W = −4iη⊥
η0
|A(1)
σ |2 . (C.16)

As the Wronskian (C.16) is conserved and equal −i, we find that |Aσ,1|2 = η0/4η⊥, which leads to the following
prediction for the power spectrum of the adiabatic perturbations:

P
Psf

=
|kη0|3

2η⊥
. (C.17)

Since η0 corresponds to matching between the early- and late-time solutions, and we argued that for ν → 0 we
have η0 = −

√
3η⊥/k, we obtain:

P
Psf

=
3
√

3

2
η
1/2
⊥ . (C.18)

We note that this equation has the same parametric form as eq. (37) and the numerical prefactor ∼ 2.6 in
eq. (C.18) is very close to that eq. (37). This is a remarkable consistency, given our crude approach to solving
the equations of motion for the two-field system, relying on matching between the early- and late-time asymptotic
solutions.
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