EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Measurement of the azimuthal anisotropy of Y(1S) and Y(2S) mesons in PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$

The CMS Collaboration*

Abstract

The second-order Fourier coefficients (v_2) characterizing the azimuthal distribution of Y(1S) and Y(2S) mesons arising from PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV are studied. The Y mesons are reconstructed in their dimuon decay channel, as measured by the CMS detector. The data set was collected in 2018 and corresponds to an integrated luminosity of 1.7 nb^{-1} . The scalar product method is used to extract the v_2 coefficients of the azimuthal distribution. Results are reported for the rapidity range |y| < 2.4, with the transverse momentum $0 < p_T < 50 \text{ GeV}/c$, and in three centrality ranges of 10–30, 30–50 and 50–90%. In contrast to the J/ ψ mesons, no azimuthal anisotropy is observed for the Y mesons.

Submitted to Physics Letters B

© 2020 CERN for the benefit of the CMS Collaboration. CC-BY-4.0 license

^{*}See Appendix A for the list of collaboration members

1 Introduction

The primary motivation for studying high-energy heavy ion collisions is to better understand the hot and dense matter produced in these interactions [1]. Lattice quantum chromodynamics (QCD) calculations indicate that at sufficiently high temperature an environment is created for a crossover from hadronic matter to a strongly interacting system of deconfined quarks and gluons [2] to occur. This deconfined medium is called the "quark-gluon plasma" (QGP) [3]. One of the most prominent signatures of QGP formation is that the production of quarkonia, the bound states of a heavy quark and its antiquark, is suppressed with respect to expectations from scaling the yields in proton-proton collisions. This suppression arises because the quarkonia binding is weakened by color screening caused by the surrounding partons in the medium [4], and therefore the extent of their suppression is expected to be sequentially ordered by their binding energies. In heavy ion collisions, the majority of heavy quarks are produced from hard scattering processes in the early stage and interact with the QGP throughout its entire development.

Because of the binding energy dependence of the screening, the bottomonium states (Y(1S), Y(2S), Y(3S), χ_b , etc.) are particularly useful probes to understand the space-time evolution of the QGP. The sequential suppression of the yield of Y(nS) states was first observed by CMS [5, 6] at a nucleon-nucleon (NN) center-of-mass energy $\sqrt{s_{_{NN}}} = 2.76$ TeV. More recently, results with improved statistical precision have been reported by both the ALICE Collaboration [7] and CMS Collaboration [8, 9] at $\sqrt{s_{_{NN}}} = 5.02$ TeV. The suppression of the Y(1S) meson has also been studied at $\sqrt{s_{_{NN}}} = 200$ GeV at RHIC [10]. The collective data, spanning from 0.20 to 5.02 TeV, have provided new insight into the thermal properties of the QGP [11].

The screening due to the QGP can also result in an azimuthal asymmetry in the observed yields of quarkonia. An advantage of asymmetry studies is that the azimuthal dependence of yields is independent of the momentum distribution of partons inside the nuclei. In contrast, the differing parton distribution functions in nuclei and protons affects the inclusive yields of quarkonia in a way that cannot be experimentally dissociated from screening effects. In non-central heavy ion collisions, the produced QGP has a lenticular shape in the transverse plane. Pressure gradients in the QGP lead to anisotropic particle emission with respect to the event plane, defined experimentally by the transverse direction of maximum particle density and the beam direction. As a result of their larger average path-length while passing through the QGP, a larger suppression is expected for quarkonia traveling in a direction perpendicular to the the event plane [12–15]. By studying the azimuthal distribution of the emitted quarkonia, it is possible to develop a more comprehensive understanding of the dynamics of their production.

The anisotropic distribution of particles can be characterized by the strength of the secondorder Fourier coefficient (v_2) of the azimuthal correlation of particles, through the relation

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n} v_n \cos[n(\phi - \Psi_n)]. \tag{1}$$

Here ϕ is the azimuthal angle of the particles and Ψ_n is the event plane angle of the n^{th} harmonic in the transverse plane [16].

Positive v_2 values have been reported for J/ ψ mesons by both the ALICE Collaboration [17, 18] and the CMS Collaboration [19] at $\sqrt{s_{_{NN}}} = 5.02$ TeV and 2.76 TeV, respectively. However, the J/ ψ signals can also arise from the late-stage recombination of uncorrelated charm quark pairs inside the QGP, which acts in the opposite direction as color screening. The relative contribution of recombination to the inclusive cross section of bottomonium states is expected to

be smaller than for charmonium states [20–23]. For this reason, the azimuthal anisotropy of bottomonia better reflects the screening that occurs during its passage through the QGP medium. The ALICE Collaboration has measured the v_2 for Y(1S) mesons at forward rapidity (2.5 < y < 4) using 5.02 TeV PbPb collisions [24].

This paper reports on the measurement of v_2 using the scalar product method for Y(1S) and Y(2S) mesons at midrapidity (|y| < 2.4) in PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV [25]. The data set was collected with the CMS detector in 2018 and corresponds to an integrated luminosity of $1.7 \,\mathrm{nb}^{-1}$. The Y mesons are reconstructed through their dimuon decay channel. The v_2 values for Y(1S) mesons are measured in four transverse momentum (p_T) bins (0–3, 3–6, 6–10, and 10–50 GeV/*c*) for different centrality classes. Centrality is defined as the fraction of the total inelastic nucleon-nucleon cross section with 0% representing the largest overlap of the two colliding Pb nuclei, and is estimated experimentally using the sum of the transverse energy deposited in both Hadron Forward (HF) calorimeters. For this analysis, events are classified in three centrality intervals (10–30, 30–50, and 50–90%), with 10–30% corresponding to the most central events in this study. More central (0–10%) and more peripheral (90–100%) collisions are excluded because of small eccentricity and low event selection efficiency, respectively. For the p_T differential analysis, the 10–30 and 30–50% bins are merged. Because of its lower cross section, the v_2 of the Y(2S) is measured in one bin which spans $|y| < 2.4, 0 < p_T < 50 \,\mathrm{GeV}/c$, and centrality interval 10–90%.

2 The CMS Detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, as well as a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. The HF calorimeters located at $3 < |\eta| < 5$, extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded in the steel fluxreturn yoke outside the solenoid within the pseudorapidity coverage of $|\eta| < 2.4$. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [26].

3 Event Selection

Events were selected based on several trigger stages. First, at least two muon candidates reconstructed in the fast hardware-based trigger system are required. In the high level trigger, Level-2 (L2) muons are identified by requiring fitted tracks in the outer muon spectrometer. At Level-3 (L3), muons are reconstructed using full tracks from the L2 muon tracks and the inner tracker information, with a minimum of ten high-quality hits in the inner tracker [27]. Finally, events are required to contain at least one L2 muon and another L3 muon, with their invariant mass being greater than $7 \text{ GeV}/c^2$. To reject beam-related background processes (beam scraping events and beam-gas collisions), events are required to pass the following conditions: (a) that at least one reconstructed primary vertex exists, (b) that at least 25% of the tracks pass a tight track quality selection [28], (c) that the width of silicon pixel detector clusters is compatible with the vertex position [29], and (d) that at least three towers in each of the two HF detectors located on opposite sides of CMS detect energy above 3 GeV. The primary vertex, which is reconstructed based on two tracks or more, is required to be located within 15 cm from the central point of the detector along the beam axis. For high-quality muon identification, a set of offline selection criteria is applied. This selection requires that the reconstructed muon is matched to a track reconstructed in the inner tracking detector, which has at least six silicon tracker hits, with at least one of these hits occurring in the inner silicon pixel detector array. In addition, the distance of closest approach of a muon track from the nearest primary vertex must be less than 0.3 and 20 cm in the transverse and the longitudinal directions, respectively. To assure high efficiency, the individual muons were required to have $p_{\rm T}^{\mu} > 3.5 \,{\rm GeV/c}$, with $|\eta^{\mu}| < 2.4$. Pairs of oppositely charged muons are fitted with a common vertex constraint and used in this analysis if the confidence level of the fit is greater than 1%.

4 Analysis

The Y meson signals and combinatorial backgrounds for selected dimuon pairs are separated using fits to the invariant mass (m_{inv}) distribution. The range of the studied mass spectrum is 8–14 GeV/ c^2 , which covers both Y(1S) and Y(2S) resonance peaks, as well as the Y(3S) mesons.

Acceptance and efficiency correction factors are used as event-by-event weights when the invariant mass distribution and the average v_2 values are computed. Acceptance is defined as the probability for both the decay muons originated from an Y meson to be within $p_T^{\mu} > 3.5 \text{ GeV}/c$, $|\eta^{\mu}| < 2.4$. It is determined as a function of p_T using PYTHIA 8.212 [30] Monte Carlo (MC) generator with tune CP5 [31], where Y mesons from 3S_1 , 3P_J , 3D_J bottomonium states form via the color-singlet [32, 33] and color-octet [34] mechanisms. The MC events are then reweighted to match the p_T spectra to the PbPb data. The efficiencies for reconstruction, muon identification, and trigger selection are calculated by a full simulation of the CMS detector using GEANT4 [35]. Each Y event is embedded in a HYDJET 1.9 [36] PbPb event to reproduce the hydrodynamic background environment. To account for the small difference found between the Simulation and collision data, a systematic uncertainty is assigned based on the difference found between the MC results and collision data. In this procedure, the tag-and-probe method with single muons obtained from J/ ψ mesons decays is used [37, 38]. The efficiency ratio of data over simulation is applied as a weight for the derivation of the final dimuon efficiency.

The v_2 values of Y candidates are determined using the scalar product (SP) method, in a similar way as the one employed to determine the elliptic flow of prompt D^0 mesons in PbPb collisions [39]. Using this method, the event plane angles are characterized by *Q*-vectors that are determined for different η ranges using either tracker or HF calorimeter data. The *Q*-vectors are given by $Q_2 = \sum_{k=1}^{M} \omega_k e^{2i\phi_k}$, where the sum is over the multiplicity of particles for the tracker or the number of towers for the HF calorimeters, ϕ is the azimuthal angle of the particle or the tower, and ω is the weight given by the p_T of a particle in the tracker or the transverse energy deposited in a tower. In this analysis, three event plane *Q*-vectors are calculated from the tracker, with $|\eta| < 0.75$, and the two HF calorimeters, with $3 < \eta < 5$ (HF+) and $-5 < \eta < -3$ (HF–). The *Q*-vector of an Y candidate is defined as $Q_{2,Y} = e^{i2\phi}$ where ϕ is the azimuthal angle of the candidate. The v_2 coefficient is then given by

$$v_{2} \{ \mathrm{SP} \} \equiv \frac{\left\langle Q_{2,Y} Q_{2A}^{*} \right\rangle}{\sqrt{\frac{\left\langle Q_{2A} Q_{2B}^{*} \right\rangle \left\langle Q_{2A} Q_{2C}^{*} \right\rangle}{\left\langle Q_{2B} Q_{2C}^{*} \right\rangle}}},$$
(2)

where the subscripts *A* and *B* refer to either HF+ or HF– event plane, depending on the rapidity of the Y candidate. Indeed in order to avoid autocorrelations and to reduce nonflow effects, the η gap between Y candidates and the event plane detector is required to be at least

3 units. For this reason, HF+ is selected for the A (B) event plane when the Y candidate is produced at negative (positive) rapidity. The subscript *C* denotes the event plane obtained using tracker information. The $\langle \rangle$ brackets denote averages over all Y candidate events, taking the real part of the *Q*-vector products. The denominator in Eq. (2) accounts for finite resolution of the experimental event planes. The lower panel of Fig. 1 shows an example of the resulting v_2 distribution as a function of the Y candidate invariant mass. The separation of signal and back-

Figure 1: Simultaneous fit of the dimuon invariant mass spectrum and the $v_2^{\text{Sig+Bkg}}$ distribution, as defined in Eq. (4), for $p_T < 50 \text{ GeV}/c$ and with centrality 10–90%. The solid (signal + background) and dashed (background only) blue lines show the result of the mass fit, and the solid and dashed red lines show the corresponding results for the binned χ^2 fit to the v_2 distribution.

ground is done in two steps. First, the yields of Y signals are extracted from the invariant mass distribution without using the v_2 information. The purpose of this step is to find the best parameters for the probability distribution describing the Y mass peaks. Unbinned log-likelihood fits to the mass distribution are used to obtain the best fit to the data. The analysis is done using a single rapidity bin with |y| < 2.4 and, thus, uses Y candidates obtained in both the barrel and endcap regions of CMS. For this reason, the signal mass distribution (Sig) for each Y meson is formed by the sum of two Crystal Ball (CB) functions [40], to account for the different mass resolutions of the two regions. For both CB functions, the mass and the radiative tail parameters are constrained to be equal since these are not sensitive to the detector resolution. The Y(1S) mass is taken as a free parameter of the fit, allowing for a possible scaling error in the momentum calibration for the reconstructed tracks. The mean (m_0) and width (σ) parameters for the excited states (Y(2S) and Y(3S)) are found by scaling the Y(1S) values by the ratio of published masses [41]. Other parameters for the excited states are constrained to be identical to those of the Y(1S) mesons. The normalization parameters $N_{\text{sig,1S}}$, $N_{\text{sig,2S}}$ and $N_{\text{sig,3S}}$ are free parameters of the fit. More details about the parameters for the invariant mass fit can be found in Ref. [9].

The modeling function of the background mass spectrum (Bkg) is obtained by multiplying a

real-valued error function and an exponential function. The error function is used to reproduce a kinematic enhancement found at low mass, resulting from the single muon p_T threshold. The exponential component is motivated by the exponentially falling structure of the combinatorial background in the high mass region. There are four parameters characterizing the shape of background, the μ and σ parameters of the error function, the decay length of the exponential function, and an overall normalization parameter.

In the second step, the invariant mass distribution and v_2 profile are fitted simultaneously using binned χ^2 fits. The signal function parameters are fixed to the values obtained from the previous step, although the normalizations $N_{\text{sig},1\text{S}}$, $N_{\text{sig},2\text{S}}$, and $N_{\text{sig},3\text{S}}$ and the background function parameters are left free. The v_2 dependence on m_{inv} is taken as

$$v_{2}^{\text{Sig+Bkg}}(m_{\text{inv}}) = \alpha_{1}(m_{\text{inv}})v_{2}^{\text{Y}(1\text{S})} + \alpha_{2}(m_{\text{inv}})v_{2}^{\text{Y}(2\text{S})} + \alpha_{3}(m_{\text{inv}})v_{2}^{\text{Y}(3\text{S})} + [1 - \alpha_{1}(m_{\text{inv}}) - \alpha_{2}(m_{\text{inv}}) - \alpha_{3}(m_{\text{inv}})]v_{2}^{Bkg}(m_{\text{inv}}),$$
(3)

where, $v_2^{Y(iS)}$ (*i* = 1, 2, 3) is the v_2 value for the Y(*i*S) mesons and is assumed to be independent of m_{inv} . The $\alpha_i(m_{inv})$ coefficients are the fractions that the Y(*i*S) states occupy as a function of invariant mass, as determined from the fit. They are defined as

$$\alpha_i(m_{\rm inv}) = \operatorname{Sig}_{Y(iS)}(m_{\rm inv}) / (\operatorname{Sig}_{Y(1S)}(m_{\rm inv}) + \operatorname{Sig}_{Y(2S)}(m_{\rm inv}) + \operatorname{Sig}_{Y(3S)}(m_{\rm inv}) + \operatorname{Bkg}(m_{\rm inv})).$$
(4)

The background v_2 value, $v_2^{\text{Bkg}}(m_{\text{inv}})$, is modeled as a second-order polynomial function of the invariant mass. Figure 1 shows an example of a simultaneous fit to the mass distribution (upper panel) and v_2 profile (lower panel).

5 Systematic Uncertainties

The systematic uncertainties in this analysis come from various sources, including the modeling of signal and background probability functions, as well as acceptance and efficiency corrections (muon identification and trigger). For the uncertainty associated with the signal, an alternative function is formed by adding one CB and one Gaussian function having equal mass parameters. The difference in the new v_2 value from the nominal one is taken as the uncertainty. The uncertainties resulting from holding the final fit parameters constant are studied by releasing each parameter, one by one, and redoing the fit with the additional free parameter. The largest deviation of the resulting v_2 values from the nominal result is taken as the uncertainty. To determine the uncertainty related to the background modeling, the functions for both the invariant mass distribution and $v_2^{\text{Bkg}}(m_{\text{inv}})$ are varied. For the mass distribution, a fourth-order polynomial is used as an alternative functional behavior. For the $v_2^{\rm Bkg}(m_{\rm inv})$ function, two alternative functions are introduced instead of the nominal second-order polynomial, one as the third-order polynomial and the other as an exponential function. The deviation of the final result with each alteration is taken as the associated systematic uncertainty, while the uncertainty for the $v_2^{\text{Bkg}}(m_{\text{inv}})$ function is quoted as the maximum deviations using the two alternative functions.

The uncertainty resulting from the acceptance correction is evaluated by comparing the result with and without applying correction factors. By virtue of the cylindrical symmetry of the detector, the effect of this correction is minor. The effect of the efficiency uncertainty is based on the difference found between the efficiency values derived from simulation and with the tag-and-probe method. Finally, uncertainties resulting from the hadronic event selection are considered. The collision event filter is varied, thus allowing for a migration of Y(1S) mesons across centrality boundaries. The effect on the deduced v_2 value is taken as a systematic uncertainty. Individual systematic uncertainties are expected to be uncorrelated and are therefore added in quadrature for the final quoted values. The absolute systematic uncertainty in the v_2 values for the Y(1S) meson range from 0.002 to 0.026, smaller than the statistical uncertainty. The largest uncertainty corresponds to the most peripheral and lowest p_T interval measured, which is dominated by the uncertainty related to the $v_2^{\text{Bkg}}(m_{\text{inv}})$ modeling and hadronic event selection. The uncertainty for $Y(2S) v_2$, which is analyzed for the integrated bin only, is 0.037.

6 Results

The $p_{\rm T}$ integrated results are shown in Fig. 2 (left) for three centrality intervals. The Y(1S) v_2 values are consistent with zero within the statistical uncertainties. The rightmost points in this figure are the average v_2 values in the 10–90% centrality interval. They are determined to be 0.007 ± 0.011 (stat) ± 0.005 (syst) for Y(1S) mesons and -0.063 ± 0.085 (stat) ± 0.037 (syst) for Y(2S) mesons.

Figure 2: (left) p_T integrated v_2 values for Y(1S) mesons measured in four centrality bins and for the Y(2S) meson in the 10–90% centrality range. (right) v_2 of Y(1S) mesons as a function of p_T in the 10–90% centrality range compared with model calculations from Du and Rapp [22], Yao [42, 43], Hong and Lee [44, 45], and Bhaduri, Borghini, Jaiswal and Strickland [46]. All results are for the rapidity range of |y| < 2.4. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.

In Fig. 2 (right), the p_T dependence of Y(1S) meson v_2 values is measured for the 10–90% centrality interval. The measured v_2 values are observed to be consistent with zero for all bins. The result is also compared with theoretical predictions from four different approaches. The green shaded area (Du, Rapp [22]) is a calculation using the kinetic rate equation framework for the time evolution of bottom quarks. In this model, the in-medium effect is applied with a lattice QCD based equation of state. The red line (Yao et al. [42, 43]) is computed from a real-time simulation of heavy quarks using coupled Boltzmann transport equations. The dissociation and recombination rates are calculated from potential non-relativistic QCD for this model. The dashed violet curve (Hong, Lee [44, 45]) is another kinetic model prediction in which the heavy

Figure 3: The v_2 coefficients for Y(1S) mesons as a function of p_T in three centrality bins: 10–30% (left), 30–50% (middle) and 50–90% (right). The rapidity range is |y| < 2.4. The vertical lines indicate the statistical uncertainties and the rectangular boxes show the total systematic uncertainties.

Figure 4: The v_2 for Y(1S) mesons as a function of p_T in the rapidity range |y| < 2.4 compared with the ALICE results for Y(1S) (open circles) and J/ ψ (full squares) mesons measured in 2.5 < y < 4 [24]. All results are measured in the range of 0 < $p_T < 15 \text{ GeV}/c$ and centrality interval 5–60%. The vertical bars denote statistical uncertainties, and the rectangular boxes show the total systematic uncertainties.

quark collisional terms are obtained from Bethe-Salpeter amplitude and hard thermal loop resummation. A diffusion constant $D(2\pi T) = 6$, where T is the temperature of the medium, was used. With this parameter, the nuclear modification factor, which is the ratio of the quarkonium yield in a nucleus-nucleus collision to the corresponding yield in a proton-proton (pp) collision scaled by the number of binary collisions, is consistent with the CMS result in Ref. [9]. The dashed brown line (Bhaduri et al. [46]) shows the result of 3+1d quasiparticle anisotropic hydrodynamics framework. The initial conditions for temperature and shear viscosity to entropy density ratio are tuned to the identified hadron spectra and flow harmonics in 5.02 TeV PbPb data at the Large Hadron Collider. Despite their slightly different p_T dependence, all models in the figure derive small v_2 values, which is quantitatively compatible with the result in the measured p_T range.

The $p_{\rm T}$ differential results for Y(1S) mesons in each centrality bin are shown in Fig. 3 and the v_2 values are found to be consistent with zero within uncertainties.

The Y(1S) results can also be compared with the ALICE results [24] as shown in Fig. 4. The v_2 values for Y(1S) mesons from ALICE are compatible with zero within statistical uncertainties for the range of $0 < p_T < 15 \text{ GeV}/c$ and 5–60% centrality, although they were measured for the complementary rapidity region (2.5 < y < 4). Compared to the inclusive J/ ψv_2 values measured in the same kinematic range and at the same center-of-mass energy by the ALICE Collaboration [18, 24], the Y(1S) v_2 values are significantly lower than those of J/ ψ for p_T greater than 3 GeV/c, as one example, $v_2^{J/\psi} = 0.081 \pm 0.006$ (stat) ± 0.002 (syst) for $3 < p_T < 6 \text{ GeV}/c$. These observations indicate different responses of charmonia and bottomonia states to the QGP.

7 Summary

The v_2 coefficients for Y(1S) and Y(2S) mesons are measured in PbPb collisions at a nucleonnucleon center-of-mass energy of 5.02 TeV. Results are reported for the rapidity range |y| < 2.4, with transverse momentum $0 < p_T < 50 \text{ GeV}/c$, and in three centrality intervals of 10–30, 30– 50, and 50–90% for the Y(1S) meson, while the centrality interval 10–90% is used for the Y(2S) meson. The v_2 values are observed to be compatible with zero for the Y(1S) meson in the measured kinematic bins and centrality intervals. This observation contrasts with the positive v_2 values reported for J/ ψ mesons, suggesting different medium effects for charmonia and bottomonia. The measured values of v_2 are consistent with the predictions of several theoretical models. The v_2 value found for Y(2S) mesons, which is being reported for the first time, is also consistent with zero. As there are expected to be differences in the various processes through which the QGP affects Y(1S) and Y(2S) mesons, these measurements provide new inputs for the study of bottomonia production in heavy ion collisions.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 752730, and 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the "Excellence of Science – EOS" – be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG) under Germany's Excellence Strategy - EXC 2121 "Quantum Universe" - 390833306; the Lendület ("Momentum") Programme and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS programme of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus programme of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 02.a03.21.0005 (Russia); the Tomsk Polytechnic University Competitiveness Enhancement Program and "Nauka" Project FSWW-2020-0008 (Russia); the Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia María de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA).

References

- W. Busza, K. Rajagopal, and W. van der Schee, "Heavy ion collisions: the big picture and the big questions", *Annual Review of Nuclear and Particle Science* 68 (2018) 339, doi:10.1146/annurev-nucl-101917-020852, arXiv:1802.04801.
- [2] F. Karsch, E. Laermann, and A. Peikert, "The pressure in 2, 2+1 and 3 flavor QCD", Phys. Lett. B 478 (2000) 447, doi:10.1016/S0370-2693(00)00292-6, arXiv:hep-lat/0002003.

- [3] E. V. Shuryak, "Theory of hadronic plasma", *Sov. Phys. JETP* **47** (1978) 212. [Zh. Eksp. Teor. Fiz., 74 (1978) 408].
- [4] T. Matsui and H. Satz, "J/ψ suppression by quark-gluon plasma formation", *Phys. Lett. B* 178 (1986) 416, doi:10.1016/0370-2693(86)91404-8.
- [5] CMS Collaboration, "Observation of sequential Upsilon suppression in PbPb collisions", Phys. Rev. Lett. 109 (2012) 222301, doi:10.1103/PhysRevLett.109.222301, arXiv:1208.2826.
- [6] CMS Collaboration, "Suppression of Y(1S), Y(2S), and Y(3S) quarkonium states in PbPb collisions at \(\sqrt{s_{NN}}\) = 2.76 TeV", Phys. Lett. B 770 (2017) 357, doi:10.1016/j.physletb.2017.04.031, arXiv:1611.01510.
- [7] ALICE Collaboration, "Y suppression at forward rapidity in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \,\text{TeV}$ ", Phys. Lett. B **790** (2019) 89, doi:10.1016/j.physletb.2018.11.067, arXiv:1805.04387.
- [8] CMS Collaboration, "Suppression of excited Y states relative to the ground state in Pb-Pb collisions at \(\sigma_{NN}\) = 5.02 TeV", Phys. Rev. Lett. 120 (2018) 142301, doi:10.1103/PhysRevLett.120.142301, arXiv:1706.05984.
- [9] CMS Collaboration, "Measurement of nuclear modification factors of Y(1S), Y(2S), and Y(3S) mesons in PbPb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", *Phys. Lett. B* **790** (2019) 270, doi:10.1016/j.physletb.2019.01.006, arXiv:1805.09215.
- [10] STAR Collaboration, "Suppression of Y production in d+Au and Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ ", *Phys. Lett. B* 735 (2014) 127, doi:10.1016/j.physletb.2014.06.028, arXiv:1312.3675. [Erratum: doi:10.1016/j.physletb.2015.01.046].
- [11] A. Andronic et al., "Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions", *Eur. Phys. J. C* 76 (2016) 107, doi:10.1140/epjc/s10052-015-3819-5, arXiv:1506.03981.
- [12] L. He et al., "Anisotropic parton escape is the dominant source of azimuthal anisotropy in transport models", *Phys. Lett. B* 753 (2016) 506, doi:10.1016/j.physletb.2015.12.051, arXiv:1502.05572.
- [13] N. Borghini and C. Gombeaud, "Anisotropic flow far from equilibrium", Eur. Phys. J. C 71 (2011) 1612, doi:10.1140/epjc/s10052-011-1612-7, arXiv:1012.0899.
- [14] P. Romatschke, "Collective flow without hydrodynamics: simulation results for relativistic ion collisions", Eur. Phys. J. C 75 (2015) 429, doi:10.1140/epjc/s10052-015-3646-8, arXiv:1504.02529.
- [15] A. Jaiswal and P. P. Bhaduri, "Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions", *Phys. Rev. C* 97 (2018) 044909, doi:10.1103/PhysRevC.97.044909, arXiv:1712.02707.
- [16] S. Voloshin and Y. Zhang, "Flow study in relativistic nuclear collisions by fourier expansion of azimuthal particle distributions", Z. Phys. C 70 (1996) 665, doi:10.1007/s002880050141, arXiv:hep-ph/9407282.

- [17] ALICE Collaboration, "Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at √s_{NN} = 5.02 and 8.16 TeV", *Phys. Lett. B* 780 (2018) 7, doi:10.1016/j.physletb.2018.02.039, arXiv:1709.06807.
- [18] ALICE Collaboration, "J/ ψ elliptic flow in Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02 \text{ TeV}$ ", Phys. Rev. Lett. **119** (2017) 242301, doi:10.1103/PhysRevLett.119.242301, arXiv:1709.05260.
- [19] CMS Collaboration, "Suppression and azimuthal anisotropy of prompt and nonprompt J/ ψ production in PbPb collisions at $\sqrt{s_{_{NN}}} = 2.76 \text{ TeV}$ ", Eur. Phys. J. C 77 (2017) 252, doi:10.1140/epjc/s10052-017-4781-1, arXiv:1610.00613.
- [20] B. Krouppa and M. Strickland, "Predictions for bottomonia suppression in 5.023 TeV Pb-Pb collisions", Universe 2 (2016) 16, doi:10.3390/universe2030016, arXiv:1605.03561.
- [21] N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, "Quarkonium suppression in heavy-ion collisions: an open quantum system approach", *Phys. Rev. D* 96 (2017) 034021, doi:10.1103/PhysRevD.96.034021, arXiv:1612.07248.
- [22] X. Du, R. Rapp, and M. He, "Color screening and regeneration of bottomonia in high-energy heavy-ion collisions", *Phys. Rev. C* 96 (2017) 054901, doi:10.1103/PhysRevC.96.054901, arXiv:1706.08670.
- [23] A. Emerick, X. Zhao, and R. Rapp, "Bottomonia in the quark-gluon plasma and their production at RHIC and LHC", *Eur. Phys. J. A* 48 (2012) 72, doi:10.1140/epja/i2012-12072-y, arXiv:1111.6537.
- [24] ALICE Collaboration, "Measurement of Y(1S) elliptic flow at forward rapidity in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ ", *Phys. Rev. Lett.* **123** (2019) 192301, doi:10.1103/PhysRevLett.123.192301, arXiv:1907.03169.
- [25] M. Luzum and J.-Y. Ollitrault, "Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions", *Phys. Rev. C* 87 (2013) 044907, doi:10.1103/PhysRevC.87.044907, arXiv:1209.2323.
- [26] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.
- [27] CMS Collaboration, "The CMS trigger system", JINST 12 (2017) P01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- [28] CMS Collaboration, "Description and performance of track and primary-vertex reconstruction with the CMS tracker", JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.
- [29] CMS Collaboration, "Transverse momentum and pseudorapidity distributions of charged hadrons in pp collisions at $\sqrt{s} = 0.9$ and 2.36 TeV", *JHEP* 02 (2010) 041, doi:10.1007/JHEP02(2010)041, arXiv:1002.0621.
- [30] T. Sjöstrand et al., "An introduction to PYTHIA 8.2", *Comput. Phys. Commun.* **191** (2015) 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

- [31] CMS Collaboration, "Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements", Eur. Phys. J. C 80 (2020) 4, doi:10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- [32] R. Baier and R. Ruckl, "Hadronic collisions: a quarkonium factory", *Z. Phys. C* **19** (1983) **251**, doi:10.1007/BF01572254.
- [33] R. Gastmans, W. Troost, and T. T. Wu, "Cross-sections for gluon + gluon \rightarrow heavy quarkonium + gluon", *Phys. Lett. B* **184** (1987) 257, doi:10.1016/0370-2693(87)90578-8.
- [34] P. L. Cho and A. K. Leibovich, "Color-octet quarkonia production. II.", Phys. Rev. D 53 (1996) 6203, doi:10.1103/PhysRevD.53.6203, arXiv:hep-ph/9511315.
- [35] GEANT4 Collaboration, "GEANT4—a simulation toolkit", Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.
- [36] I. P. Lokhtin et al., "Heavy ion event generator HYDJET++ (hydrodynamics plus jets)", *Comput. Phys. Commun.* 180 (2009) 779, doi:10.1016/j.cpc.2008.11.015, arXiv:0809.2708.
- [37] CMS Collaboration, "Measurements of inclusive W and Z cross sections in pp collisions at $\sqrt{s} = 7 \text{ TeV}$ ", *JHEP* **01** (2011) 080, doi:10.1007/JHEP01(2011)080, arXiv:1012.2466.
- [38] CMS Collaboration, "Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7 \text{ TeV}$ ", JINST 7 (2012) P10002, doi:10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.
- [39] CMS Collaboration, "Measurement of prompt D^0 meson azimuthal anisotropy in Pb-Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02 \text{ TeV}$ ", *Phys. Rev. Lett.* **120** (2018) 202301, doi:10.1103/PhysRevLett.120.202301, arXiv:1708.03497.
- [40] M. J. Oreglia, "A study of the reactions $\psi' \rightarrow \gamma \gamma \psi$ ". PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
- [41] Particle Data Group, M. Tanabashi et al., "Review of particle physics", Phys. Rev. D 98 (2018) 030001, doi:10.1103/PhysRevD.98.030001.
- [42] X. Yao et al., "Coupled Boltzmann transport equations of heavy quarks and quarkonia in quark-gluon plasma", (2020). arXiv:2004.06746.
- [43] X. Yao and B. Müller, "Quarkonium inside the quark-gluon plasma: diffusion, dissociation, recombination, and energy loss", *Phys. Rev. D* 100 (2019) 014008, doi:10.1103/PhysRevD.100.014008, arXiv:1811.09644.
- [44] J. Hong and S. H. Lee, "Y(1S) transverse momentum spectra through dissociation and regeneration in heavy ion collisions", *Phys. Lett. B* 801 (2020) 135147, doi:10.1016/j.physletb.2019.135147, arXiv:1909.07696.
- [45] W. Ke, Y. Xu, and S. A. Bass, "Linearized Boltzmann-Langevin model for heavy quark transport in hot and dense QCD matter", *Phys. Rev. C* 98 (2018) 064901, doi:10.1103/PhysRevC.98.064901, arXiv:1806.08848.

[46] P. P. Bhaduri, N. Borghini, A. Jaiswal, and M. Strickland, "Anisotropic escape mechanism and elliptic flow of bottomonia", *Phys. Rev. C* 100 (2019) 051901, doi:10.1103/PhysRevC.100.051901, arXiv:1809.06235.

A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia A.M. Sirunyan[†], A. Tumasyan

Institut für Hochenergiephysik, Wien, Austria

W. Adam, F. Ambrogi, T. Bergauer, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth¹, M. Jeitler¹, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, J. Schieck¹, R. Schöfbeck, M. Spanring, W. Waltenberger, C.-E. Wulz¹, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus

V. Drugakov, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium

M.R. Darwish, E.A. De Wolf, D. Di Croce, X. Janssen, T. Kello², A. Lelek, M. Pieters, H. Rejeb Sfar, H. Van Haevermaet, P. Van Mechelen, S. Van Putte, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium

F. Blekman, E.S. Bols, S.S. Chhibra, J. D'Hondt, J. De Clercq, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, Q. Python, S. Tavernier, W. Van Doninck, P. Van Mulders

Université Libre de Bruxelles, Bruxelles, Belgium

D. Beghin, B. Bilin, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, L. Favart, A. Grebenyuk, A.K. Kalsi, L. Moureaux, A. Popov, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom

Ghent University, Ghent, Belgium

T. Cornelis, D. Dobur, I. Khvastunov³, M. Niedziela, C. Roskas, K. Skovpen, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, V. Lemaitre, J. Prisciandaro, A. Saggio, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato⁴, E. Coelho, E.M. Da Costa, G.G. Da Silveira⁵, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, J. Martins⁶, D. Matos Figueiredo, M. Medina Jaime⁷, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, P. Rebello Teles, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote⁴, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista^{*a*}, Universidade Federal do ABC^{*b*}, São Paulo, Brazil

C.A. Bernardes^{*a*}, L. Calligaris^{*a*}, T.R. Fernandez Perez Tomei^{*a*}, E.M. Gregores^{*b*}, D.S. Lemos^{*a*}, P.G. Mercadante^{*b*}, S.F. Novaes^{*a*}, Sandra S. Padula^{*a*}

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Aleksandrov, G. Antchev, R. Hadjiiska, P. Iaydjiev, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

University of Sofia, Sofia, Bulgaria

M. Bonchev, A. Dimitrov, T. Ivanov, L. Litov, B. Pavlov, P. Petkov, A. Petrov

Beihang University, Beijing, China W. Fang², X. Gao², L. Yuan

Department of Physics, Tsinghua University, Beijing, China M. Ahmad, Z. Hu, Y. Wang

Institute of High Energy Physics, Beijing, China G.M. Chen⁸, H.S. Chen⁸, M. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang⁸, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China A. Agapitos, Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Q. Wang

Zhejiang University, Hangzhou, China M. Xiao

Universidad de Los Andes, Bogota, Colombia C. Avila, A. Cabrera, C. Florez, C.F. González Hernández, M.A. Segura Delgado

Universidad de Antioquia, Medellin, Colombia J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

D. Giljanović, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia *Z*. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov⁹, T. Susa

University of Cyprus, Nicosia, Cyprus

M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka, D. Tsiakkouri

Charles University, Prague, Czech Republic M. Finger¹⁰, M. Finger Jr.¹⁰, A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt M.A. Mahmoud^{11,12}, Y. Mohammed¹¹

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland

F. Garcia, J. Havukainen, J.K. Heikkilä, V. Karimäki, M.S. Kim, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, H. Siikonen, E. Tuominen, J. Tuominiemi

Lappeenranta University of Technology, Lappeenranta, Finland P. Luukka, T. Tuuva

,

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, B. Lenzi, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M.Ö. Sahin, A. Savoy-Navarro¹³, M. Titov, G.B. Yu

Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Paris, France

S. Ahuja, C. Amendola, F. Beaudette, M. Bonanomi, P. Busson, C. Charlot, B. Diab, G. Falmagne, R. Granier de Cassagnac, I. Kucher, A. Lobanov, C. Martin Perez, M. Nguyen, C. Ochando, P. Paganini, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A. Zabi, A. Zghiche

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

J.-L. Agram¹⁴, J. Andrea, D. Bloch, G. Bourgatte, J.-M. Brom, E.C. Chabert, C. Collard, E. Conte¹⁴, J.-C. Fontaine¹⁴, D. Gelé, U. Goerlach, C. Grimault, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l'Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, C. Camen, A. Carle, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, Sa. Jain, I.B. Laktineh, H. Lattaud, A. Lesauvage, M. Lethuillier, L. Mirabito, S. Perries, V. Sordini, L. Torterotot, G. Touquet, M. Vander Donckt, S. Viret

Georgian Technical University, Tbilisi, Georgia T. Toriashvili¹⁵

Tbilisi State University, Tbilisi, Georgia

Z. Tsamalaidze¹⁰

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

C. Autermann, L. Feld, K. Klein, M. Lipinski, D. Meuser, A. Pauls, M. Preuten, M.P. Rauch, J. Schulz, M. Teroerde

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

M. Erdmann, B. Fischer, S. Ghosh, T. Hebbeker, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, G. Mocellin, S. Mondal, S. Mukherjee, D. Noll, A. Novak, T. Pook, A. Pozdnyakov, T. Quast, M. Radziej, Y. Rath, H. Reithler, J. Roemer, A. Schmidt, S.C. Schuler, A. Sharma, S. Wiedenbeck, S. Zaleski

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

G. Flügge, W. Haj Ahmad¹⁶, O. Hlushchenko, T. Kress, T. Müller, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl¹⁷

Deutsches Elektronen-Synchrotron, Hamburg, Germany

M. Aldaya Martin, P. Asmuss, I. Babounikau, H. Bakhshiansohi, K. Beernaert, O. Behnke, A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras¹⁸, V. Botta, A. Campbell, A. Cardini, P. Connor, S. Consuegra Rodríguez, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani, G. Eckerlin, D. Eckstein, T. Eichhorn, A. Elwood, E. Eren, E. Gallo¹⁹, A. Geiser, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem¹⁸, M. Kasemann, H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych, K. Lipka, W. Lohmann²⁰, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, J. Mnich, A. Mussgiller, V. Myronenko, D. Pérez Adán, S.K. Pflitsch, D. Pitzl, A. Raspereza, A. Saibel, M. Savitskyi, V. Scheurer, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, R.E. Sosa Ricardo, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev, R. Zlebcik

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, T. Dreyer, A. Ebrahimi, F. Feindt, A. Fröhlich, C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, T. Lange, A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Reimers, O. Rieger, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

M. Akbiyik, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, A. Gottmann, F. Hartmann¹⁷, C. Heidecker, U. Husemann, M.A. Iqbal, S. Kudella, S. Maier, S. Mitra, M.U. Mozer, D. Müller, Th. Müller, M. Musich, A. Nürnberg, G. Quast, K. Rabbertz, D. Savoiu, D. Schäfer, M. Schnepf, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, M. Wassmer, M. Weber, C. Wöhrmann, R. Wolf, S. Wozniewski

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Anagnostou, P. Asenov, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, A. Stakia

National and Kapodistrian University of Athens, Athens, Greece

M. Diamantopoulou, G. Karathanasis, P. Kontaxakis, A. Manousakis-katsikakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Theofilatos, K. Vellidis, E. Vourliotis

National Technical University of Athens, Athens, Greece

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis, A. Zacharopoulou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, K. Manitara, N. Manthos, I. Papadopoulos, J. Strologas, F.A. Triantis, D. Tsitsonis

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

M. Bartók²¹, R. Chudasama, M. Csanad, P. Major, K. Mandal, A. Mehta, G. Pasztor, O. Surányi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath²², F. Sikler, V. Veszpremi, G. Vesztergombi[†]

Institute of Nuclear Research ATOMKI, Debrecen, Hungary N. Beni, S. Czellar, J. Karancsi²¹, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary P. Raics, D. Teyssier, Z.L. Trocsanyi, B. Ujvari

Eszterhazy Karoly University, Karoly Robert Campus, Gyongyos, Hungary T. Csorgo, W.J. Metzger, F. Nemes, T. Novak

Indian Institute of Science (IISc), Bangalore, India S. Choudhury, J.R. Komaragiri, P.C. Tiwari

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

S. Bahinipati²⁴, C. Kar, G. Kole, P. Mal, V.K. Muraleedharan Nair Bindhu, A. Nayak²⁵, D.K. Sahoo²⁴, S.K. Swain

Panjab University, Chandigarh, India

S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, N. Dhingra²⁶, R. Gupta, A. Kaur, M. Kaur, S. Kaur, P. Kumari, M. Lohan, M. Meena, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi

University of Delhi, Delhi, India

A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

R. Bhardwaj²⁷, M. Bharti²⁷, R. Bhattacharya, S. Bhattacharya, U. Bhawandeep²⁷, D. Bhowmik, S. Dutta, S. Ghosh, B. Gomber²⁸, M. Maity²⁹, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, G. Saha, S. Sarkar, M. Sharan, B. Singh²⁷, S. Thakur²⁷

Indian Institute of Technology Madras, Madras, India P.K. Behera, S.C. Behera, P. Kalbhor, A. Muhammad, P.R. Pujahari, A. Sharma, A.K. Sikdar

Bhabha Atomic Research Centre, Mumbai, India

D. Dutta, V. Jha, D.K. Mishra, P.K. Netrakanti, L.M. Pant, P. Shukla

Tata Institute of Fundamental Research-A, Mumbai, India

T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, Ravindra Kumar Verma

Tata Institute of Fundamental Research-B, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, S. Karmakar, S. Kumar, G. Majumder, K. Mazumdar, N. Sahoo, S. Sawant

Indian Institute of Science Education and Research (IISER), Pune, India

S. Dube, B. Kansal, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, A. Rastogi, S. Sharma

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

S. Chenarani, S.M. Etesami, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi

University College Dublin, Dublin, Ireland

M. Felcini, M. Grunewald

INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^{*c*}, Bari, Italy

M. Abbrescia^{*a,b*}, R. Aly^{*a,b*,30}, C. Calabria^{*a,b*}, A. Colaleo^{*a*}, D. Creanza^{*a,c*}, L. Cristella^{*a,b*}, N. De Filippis^{*a,c*}, M. De Palma^{*a,b*}, A. Di Florio^{*a,b*}, W. Elmetenawee^{*a,b*}, L. Fiore^{*a*}, A. Gelmi^{*a,b*}, G. Iaselli^{*a,c*}, M. Ince^{*a,b*}, S. Lezki^{*a,b*}, G. Maggi^{*a,c*}, M. Maggi^{*a*}, J.A. Merlin^{*a*}, G. Miniello^{*a,b*}, S. My^{*a,b*},

S. Nuzzo^{*a,b*}, A. Pompili^{*a,b*}, G. Pugliese^{*a,c*}, R. Radogna^{*a*}, A. Ranieri^{*a*}, G. Selvaggi^{*a,b*}, L. Silvestris^{*a*}, F.M. Simone^{*a,b*}, R. Venditti^{*a*}, P. Verwilligen^{*a*}

INFN Sezione di Bologna^{*a*}, Università di Bologna^{*b*}, Bologna, Italy

G. Abbiendi^{*a*}, C. Battilana^{*a*,*b*}, D. Bonacorsi^{*a*,*b*}, L. Borgonovi^{*a*,*b*}, S. Braibant-Giacomelli^{*a*,*b*}, R. Campanini^{*a*,*b*}, P. Capiluppi^{*a*,*b*}, A. Castro^{*a*,*b*}, F.R. Cavallo^{*a*}, C. Ciocca^{*a*}, G. Codispoti^{*a*,*b*}, M. Cuffiani^{*a*,*b*}, G.M. Dallavalle^{*a*}, F. Fabbri^{*a*}, A. Fanfani^{*a*,*b*}, E. Fontanesi^{*a*,*b*}, P. Giacomelli^{*a*}, C. Grandi^{*a*}, L. Guiducci^{*a*,*b*}, F. Iemmi^{*a*,*b*}, S. Lo Meo^{*a*,31}, S. Marcellini^{*a*}, G. Masetti^{*a*}, F.L. Navarria^{*a*,*b*}, A. Perrotta^{*a*}, F. Primavera^{*a*,*b*}, A.M. Rossi^{*a*,*b*}, T. Rovelli^{*a*,*b*}, G.P. Siroli^{*a*,*b*}, N. Tosi^{*a*}

INFN Sezione di Catania^{*a*}, Università di Catania^{*b*}, Catania, Italy

S. Albergo^{*a,b,32*}, S. Costa^{*a,b*}, A. Di Mattia^{*a*}, R. Potenza^{*a,b*}, A. Tricomi^{*a,b,32*}, C. Tuve^{*a,b*}

INFN Sezione di Firenze ^{*a*}, Università di Firenze ^{*b*}, Firenze, Italy

G. Barbagli^{*a*}, A. Cassese^{*a*}, R. Ceccarelli^{*a*,*b*}, V. Ciulli^{*a*,*b*}, C. Civinini^{*a*}, R. D'Alessandro^{*a*,*b*}, F. Fiori^{*a*}, E. Focardi^{*a*,*b*}, G. Latino^{*a*,*b*}, P. Lenzi^{*a*,*b*}, M. Meschini^{*a*}, S. Paoletti^{*a*}, G. Sguazzoni^{*a*}, L. Viliani^{*a*}

INFN Laboratori Nazionali di Frascati, Frascati, Italy

L. Benussi, S. Bianco, D. Piccolo

INFN Sezione di Genova ^{*a*}, **Università di Genova** ^{*b*}, **Genova**, **Italy** M. Bozzo^{*a*,*b*}, F. Ferro^{*a*}, R. Mulargia^{*a*,*b*}, E. Robutti^{*a*}, S. Tosi^{*a*,*b*}

INFN Sezione di Milano-Bicocca^{*a*}, Università di Milano-Bicocca^{*b*}, Milano, Italy

A. Benaglia^a, A. Beschi^{a,b}, F. Brivio^{a,b}, V. Ciriolo^{a,b,17}, M.E. Dinardo^{a,b}, P. Dini^a, S. Gennai^a,
A. Ghezzi^{a,b}, P. Govoni^{a,b}, L. Guzzi^{a,b}, M. Malberti^a, S. Malvezzi^a, D. Menasce^a, F. Monti^{a,b},
L. Moroni^a, M. Paganoni^{a,b}, D. Pedrini^a, S. Ragazzi^{a,b}, T. Tabarelli de Fatis^{a,b}, D. Valsecchi^{a,b,17},
D. Zuolo^{a,b}

INFN Sezione di Napoli^{*a*}, Università di Napoli'Federico II'^{*b*}, Napoli, Italy, Università della Basilicata^{*c*}, Potenza, Italy, Università G. Marconi^{*d*}, Roma, Italy

S. Buontempo^{*a*}, N. Cavallo^{*a,c*}, A. De Iorio^{*a,b*}, A. Di Crescenzo^{*a,b*}, F. Fabozzi^{*a,c*}, F. Fienga^{*a*}, G. Galati^{*a*}, A.O.M. Iorio^{*a,b*}, L. Layer^{*a,b*}, L. Lista^{*a,b*}, S. Meola^{*a,d*,17}, P. Paolucci^{*a*,17}, B. Rossi^{*a*}, C. Sciacca^{*a,b*}, E. Voevodina^{*a,b*}

INFN Sezione di Padova ^a, Università di Padova ^b, Padova, Italy, Università di Trento ^c, Trento, Italy

P. Azzi^{*a*}, N. Bacchetta^{*a*}, D. Bisello^{*a,b*}, A. Boletti^{*a,b*}, A. Bragagnolo^{*a,b*}, R. Carlin^{*a,b*}, P. Checchia^{*a*}, P. De Castro Manzano^{*a*}, T. Dorigo^{*a*}, U. Dosselli^{*a*}, F. Gasparini^{*a,b*}, U. Gasparini^{*a,b*}, A. Gozzelino^{*a*}, S.Y. Hoh^{*a,b*}, M. Margoni^{*a,b*}, A.T. Meneguzzo^{*a,b*}, J. Pazzini^{*a,b*}, M. Presilla^{*b*}, P. Ronchese^{*a,b*}, R. Rossin^{*a,b*}, F. Simonetto^{*a,b*}, A. Tiko^{*a*}, M. Tosi^{*a,b*}, M. Zanetti^{*a,b*}, P. Zotto^{*a,b*}, A. Zucchetta^{*a,b*}, G. Zumerle^{*a,b*}

INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy

A. Braghieri^{*a*}, D. Fiorina^{*a*,*b*}, P. Montagna^{*a*,*b*}, S.P. Ratti^{*a*,*b*}, V. Ře^{*a*}, M. Ressegotti^{*a*,*b*}, C. Riccardi^{*a*,*b*}, P. Salvini^{*a*}, I. Vai^{*a*}, P. Vitulo^{*a*,*b*}

INFN Sezione di Perugia ^{*a*}, Università di Perugia ^{*b*}, Perugia, Italy

M. Biasini^{*a,b*}, G.M. Bilei^{*a*}, D. Ciangottini^{*a,b*}, L. Fanò^{*a,b*}, P. Lariccia^{*a,b*}, R. Leonardi^{*a,b*}, E. Manoni^{*a*}, G. Mantovani^{*a,b*}, V. Mariani^{*a,b*}, M. Menichelli^{*a*}, A. Rossi^{*a,b*}, A. Santocchia^{*a,b*}, D. Spiga^{*a*}

INFN Sezione di Pisa^{*a*}, **Università di Pisa**^{*b*}, **Scuola Normale Superiore di Pisa**^{*c*}, **Pisa, Italy** K. Androsov^{*a*}, P. Azzurri^{*a*}, G. Bagliesi^{*a*}, V. Bertacchi^{*a*,*c*}, L. Bianchini^{*a*}, T. Boccali^{*a*}, R. Castaldi^{*a*}, M.A. Ciocci^{*a*,*b*}, R. Dell'Orso^{*a*}, S. Donato^{*a*}, L. Giannini^{*a*,*c*}, A. Giassi^{*a*}, M.T. Grippo^{*a*}, F. Ligabue^{*a*,*c*}, E. Manca^{*a*,*c*}, G. Mandorli^{*a*,*c*}, A. Messineo^{*a*,*b*}, F. Palla^{*a*}, A. Rizzi^{*a*,*b*}, G. Rolandi^{*a*,*c*}, S. Roy Chowdhury^{*a*,*c*}, A. Scribano^{*a*}, P. Spagnolo^{*a*}, R. Tenchini^{*a*}, G. Tonelli^{*a*,*b*}, N. Turini^{*a*}, A. Venturi^{*a*}, P.G. Verdini^{*a*}

INFN Sezione di Roma^{*a*}, Sapienza Università di Roma^{*b*}, Rome, Italy

F. Cavallari^{*a*}, M. Cipriani^{*a*,*b*}, D. Del Re^{*a*,*b*}, E. Di Marco^{*a*}, M. Diemoz^{*a*}, E. Longo^{*a*,*b*}, P. Meridiani^{*a*}, G. Organtini^{*a*,*b*}, F. Pandolfi^{*a*}, R. Paramatti^{*a*,*b*}, C. Quaranta^{*a*,*b*}, S. Rahatlou^{*a*,*b*}, C. Rovelli^{*a*}, F. Santanastasio^{*a*,*b*}, L. Soffi^{*a*,*b*}, R. Tramontano^{*a*,*b*}

INFN Sezione di Torino ^{*a*}, Università di Torino ^{*b*}, Torino, Italy, Università del Piemonte Orientale ^{*c*}, Novara, Italy

N. Amapane^{*a,b*}, R. Arcidiacono^{*a,c*}, S. Argiro^{*a,b*}, M. Arneodo^{*a,c*}, N. Bartosik^{*a*}, R. Bellan^{*a,b*}, A. Bellora^{*a,b*}, C. Biino^{*a*}, A. Cappati^{*a,b*}, N. Cartiglia^{*a*}, S. Cometti^{*a*}, M. Costa^{*a,b*}, R. Covarelli^{*a,b*}, N. Demaria^{*a*}, J.R. González Fernández^{*a*}, B. Kiani^{*a,b*}, F. Legger^{*a*}, C. Mariotti^{*a*}, S. Maselli^{*a*}, E. Migliore^{*a,b*}, V. Monaco^{*a,b*}, E. Monteil^{*a,b*}, M. Monteno^{*a*}, M.M. Obertino^{*a,b*}, G. Ortona^{*a*}, L. Pacher^{*a,b*}, N. Pastrone^{*a*}, M. Pelliccioni^{*a*}, G.L. Pinna Angioni^{*a,b*}, A. Romero^{*a,b*}, M. Ruspa^{*a,c*}, R. Salvatico^{*a,b*}, V. Sola^{*a*}, A. Solano^{*a,b*}, D. Soldi^{*a,b*}, A. Staiano^{*a*}, D. Trocino^{*a,b*}

INFN Sezione di Trieste^{*a*}, Università di Trieste^{*b*}, Trieste, Italy

S. Belforte^{*a*}, V. Candelise^{*a*,*b*}, M. Casarsa^{*a*}, F. Cossutti^{*a*}, A. Da Rold^{*a*,*b*}, G. Della Ricca^{*a*,*b*}, F. Vazzoler^{*a*,*b*}, A. Zanetti^{*a*}

Kyungpook National University, Daegu, Korea

B. Kim, D.H. Kim, G.N. Kim, J. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

G. Bak, H. Kim, H. Lee, D.H. Moon

Hanyang University, Seoul, Korea B. Francois, T.J. Kim, J. Park

Korea University, Seoul, Korea S. Cho, S. Choi, Y. Go, S. Ha, B. Hong, K. Lee, K.S. Lee, J. Lim, J. Park, S.K. Park, Y. Roh, J. Yoo

Kyung Hee University, Department of Physics, Seoul, Republic of Korea J. Goh

Sejong University, Seoul, Korea H.S. Kim, Y. Kim

Seoul National University, Seoul, Korea

J. Almond, J.H. Bhyun, J. Choi, S. Jeon, J. Kim, J.S. Kim, H. Lee, K. Lee, S. Lee, K. Nam, M. Oh, S.B. Oh, B.C. Radburn-Smith, U.K. Yang, H.D. Yoo, I. Yoon

University of Seoul, Seoul, Korea D. Jeon, J.H. Kim, J.S.H. Lee, I.C. Park, I.J Watson

Sungkyunkwan University, Suwon, Korea Y. Choi, C. Hwang, Y. Jeong, J. Lee, Y. Lee, I. Yu

Riga Technical University, Riga, Latvia V. Veckalns³³

Vilnius University, Vilnius, Lithuania V. Dudenas, A. Juodagalvis, A. Rinkevicius, G. Tamulaitis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia F. Mohamad Idris³⁴, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada, L. Valencia Palomo

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-De La Cruz³⁵, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico S. Carrillo Moreno, C. Oropeza Barrera, M. Ramirez-Garcia, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico A. Morelos Pineda

University of Montenegro, Podgorica, Montenegro J. Mijuskovic³, N. Raicevic

University of Auckland, Auckland, New Zealand D. Krofcheck

University of Canterbury, Christchurch, New Zealand S. Bheesette, P.H. Butler, P. Lujan

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan A. Ahmad, M. Ahmad, M.I.M. Awan, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shoaib, M. Waqas

AGH University of Science and Technology Faculty of Computer Science, Electronics and Telecommunications, Krakow, Poland

V. Avati, L. Grzanka, M. Malawski

National Centre for Nuclear Research, Swierk, Poland H. Bialkowska, M. Bluj, B. Boimska, M. Górski, M. Kazana, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland K. Bunkowski, A. Byszuk³⁶, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Olszewski, M. Walczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal M. Araujo, P. Bargassa, D. Bastos, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, T. Niknejad, J. Seixas, K. Shchelina, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev^{37,38}, P. Moisenz, V. Palichik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

L. Chtchipounov, V. Golovtcov, Y. Ivanov, V. Kim³⁹, E. Kuznetsova⁴⁰, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, A. Nikitenko⁴¹, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

O. Bychkova, R. Chistov⁴², M. Danilov⁴², S. Polikarpov⁴², E. Tarkovskii

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy⁴³, O. Kodolova, V. Korotkikh, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia A. Barnyakov⁴⁴, V. Blinov⁴⁴, T. Dimova⁴⁴, L. Kardapoltsev⁴⁴, Y. Skovpen⁴⁴

Institute for High Energy Physics of National Research Centre 'Kurchatov Institute', Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia

A. Babaev, A. Iuzhakov, V. Okhotnikov

Tomsk State University, Tomsk, Russia

V. Borchsh, V. Ivanchenko, E. Tcherniaev

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences, Belgrade, Serbia

P. Adzic⁴⁵, P. Cirkovic, M. Dordevic, P. Milenovic, J. Milosevic, M. Stojanovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

M. Aguilar-Benitez, J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, Cristina F. Bedoya, J.A. Brochero Cifuentes, C.A. Carrillo Montoya, M. Cepeda, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, Á. Navarro Tobar, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, S. Sánchez Navas, M.S. Soares, A. Triossi, C. Willmott

Universidad Autónoma de Madrid, Madrid, Spain

C. Albajar, J.F. de Trocóniz, R. Reyes-Almanza

Universidad de Oviedo, Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Oviedo, Spain

B. Alvarez Gonzalez, J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, E. Palencia Cortezon, C. Ramón Álvarez, V. Rodríguez Bouza, S. Sanchez Cruz

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, G. Gomez, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo, A. Ruiz-Jimeno, L. Russo⁴⁶, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka

D.U.J. Sonnadara

University of Ruhuna, Department of Physics, Matara, Sri Lanka

W.G.D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini, E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati, D. d'Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, O. Davignon, A. De Roeck, M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Emriskova, F. Fallavollita⁴⁷, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk, S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, Y. Iiyama, V. Innocente, T. James, P. Janot, O. Karacheban²⁰, J. Kaspar, J. Kieseler, M. Krammer¹, N. Kratochwil, C. Lange, P. Lecoq, K. Long, C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo¹⁷, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin, J. Salfeld-Nebgen, S. Scarfi, C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas⁴⁸, J. Steggemann, S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti, K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland

L. Caminada⁴⁹, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

M. Backhaus, P. Berger, A. Calandri, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T.A. Gómez Espinosa, C. Grab, D. Hits, W. Lustermann, R.A. Manzoni, M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, F. Pauss, V. Perovic, G. Perrin, L. Perrozzi, S. Pigazzini, M.G. Ratti, M. Reichmann, C. Reissel, T. Reitenspiess, B. Ristic, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland

C. Amsler⁵⁰, C. Botta, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, B. Kilminster, S. Leontsinis, V.M. Mikuni, I. Neutelings, G. Rauco, P. Robmann, K. Schweiger, Y. Takahashi, S. Wertz

National Central University, Chung-Li, Taiwan

C.M. Kuo, W. Lin, A. Roy, T. Sarkar²⁹, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan

P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.y. Li, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand B. Asavapibhop, C. Asawatangtrakuldee, N. Srimanobhas, N. Suwonjandee

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

A. Bat, F. Boran, A. Celik⁵¹, S. Damarseckin⁵², Z.S. Demiroglu, F. Dolek, C. Dozen⁵³,
I. Dumanoglu⁵⁴, G. Gokbulut, Emine Gurpinar Guler⁵⁵, Y. Guler, I. Hos⁵⁶, C. Isik, E.E. Kangal⁵⁷,
O. Kara, A. Kayis Topaksu, U. Kiminsu, G. Onengut, K. Ozdemir⁵⁸, A.E. Simsek, U.G. Tok,
S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey B. Isildak⁵⁹, G. Karapinar⁶⁰, M. Yalvac⁶¹

Bogazici University, Istanbul, Turkey

I.O. Atakisi, E. Gülmez, M. Kaya⁶², O. Kaya⁶³, Ö. Özçelik, S. Tekten⁶⁴, E.A. Yetkin⁶⁵

Istanbul Technical University, Istanbul, Turkey A. Cakir, K. Cankocak⁵⁴, Y. Komurcu, S. Sen⁶⁶

Istanbul University, Istanbul, Turkey

S. Cerci⁶⁷, B. Kaynak, S. Ozkorucuklu, D. Sunar Cerci⁶⁷

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine L. Levchuk

University of Bristol, Bristol, United Kingdom

E. Bhal, S. Bologna, J.J. Brooke, D. Burns⁶⁸, E. Clement, D. Cussans, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, B. Krikler, S. Paramesvaran, T. Sakuma, S. Seif El Nasr-Storey, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom

K.W. Bell, A. Belyaev⁶⁹, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, D.M. Newbold, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams

Imperial College, London, United Kingdom

R. Bainbridge, P. Bloch, S. Bonomally, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, Gurpreet Singh CHAHAL⁷⁰, D. Colling, P. Dauncey, G. Davies, M. Della Negra, P. Everaerts, G. Hall, G. Iles, M. Komm, J. Langford, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, V. Milosevic, A. Morton, J. Nash⁷¹, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, M. Stoye, T. Strebler, A. Tapper, K. Uchida, T. Virdee¹⁷, N. Wardle, S.N. Webb, D. Winterbottom, A.G. Zecchinelli, S.C. Zenz

Brunel University, Uxbridge, United Kingdom

J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA

A. Brinkerhoff, K. Call, B. Caraway, J. Dittmann, K. Hatakeyama, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA

R. Bartek, A. Dominguez, R. Uniyal, A.M. Vargas Hernandez

The University of Alabama, Tuscaloosa, USA

A. Buccilli, S.I. Cooper, S.V. Gleyzer, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA

A. Albert, D. Arcaro, Z. Demiragli, D. Gastler, C. Richardson, J. Rohlf, D. Sperka, D. Spitzbart, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, USA

G. Benelli, B. Burkle, X. Coubez¹⁸, D. Cutts, Y.t. Duh, M. Hadley, U. Heintz, J.M. Hogan⁷², K.H.M. Kwok, E. Laird, G. Landsberg, K.T. Lau, J. Lee, M. Narain, S. Sagir⁷³, R. Syarif, E. Usai, W.Y. Wong, D. Yu, W. Zhang

University of California, Davis, Davis, USA

R. Band, C. Brainerd, R. Breedon, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, F. Jensen, W. Ko[†], O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, M. Shi, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA

M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, A. Florent, J. Hauser, M. Ignatenko, N. Mccoll, W.A. Nash, S. Regnard, D. Saltzberg, C. Schnaible, B. Stone, V. Valuev

University of California, Riverside, Riverside, USA

K. Burt, Y. Chen, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, O.R. Long, N. Manganelli, M. Olmedo Negrete, M.I. Paneva, W. Si, S. Wimpenny, B.R. Yates, Y. Zhang

University of California, San Diego, La Jolla, USA

J.G. Branson, P. Chang, S. Cittolin, S. Cooperstein, N. Deelen, M. Derdzinski, J. Duarte, R. Gerosa, D. Gilbert, B. Hashemi, D. Klein, V. Krutelyov, J. Letts, M. Masciovecchio, S. May, S. Padhi, M. Pieri, V. Sharma, M. Tadel, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara - Department of Physics, Santa Barbara, USA

N. Amin, R. Bhandari, C. Campagnari, M. Citron, V. Dutta, J. Incandela, B. Marsh, H. Mei, A. Ovcharova, H. Qu, J. Richman, U. Sarica, D. Stuart, S. Wang

California Institute of Technology, Pasadena, USA

D. Anderson, A. Bornheim, O. Cerri, I. Dutta, J.M. Lawhorn, N. Lu, J. Mao, H.B. Newman, T.Q. Nguyen, J. Pata, M. Spiropulu, J.R. Vlimant, S. Xie, Z. Zhang, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA

J. Alison, M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

University of Colorado Boulder, Boulder, USA

J.P. Cumalat, W.T. Ford, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA

J. Alexander, Y. Cheng, J. Chu, A. Datta, A. Frankenthal, K. Mcdermott, J.R. Patterson, D. Quach, A. Ryd, S.M. Tan, Z. Tao, J. Thom, P. Wittich, M. Zientek

Fermi National Accelerator Laboratory, Batavia, USA

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee,

L.A.T. Bauerdick, A. Beretvas, D. Berry, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hasegawa, R. Heller, J. Hirschauer, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, T. Klijnsma, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, J. Lewis, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O'Dell, V. Papadimitriou, K. Pedro, C. Pena⁷⁴, F. Ravera, A. Reinsvold Hall, L. Ristori, B. Schneider, E. Sexton-Kennedy, N. Smith, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, M. Wang, H.A. Weber, A. Woodard

University of Florida, Gainesville, USA

D. Acosta, P. Avery, D. Bourilkov, L. Cadamuro, V. Cherepanov, F. Errico, R.D. Field, D. Guerrero, B.M. Joshi, M. Kim, J. Konigsberg, A. Korytov, K.H. Lo, K. Matchev, N. Menendez, G. Mitselmakher, D. Rosenzweig, K. Shi, J. Wang, S. Wang, X. Zuo

Florida International University, Miami, USA

Y.R. Joshi

Florida State University, Tallahassee, USA

T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, R. Khurana, T. Kolberg, G. Martinez, T. Perry, H. Prosper, C. Schiber, R. Yohay, J. Zhang

Florida Institute of Technology, Melbourne, USA

M.M. Baarmand, M. Hohlmann, D. Noonan, M. Rahmani, M. Saunders, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA

M.R. Adams, L. Apanasevich, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, V. Kumar, C. Mills, G. Oh, T. Roy, M.B. Tonjes, N. Varelas, J. Viinikainen, H. Wang, X. Wang, Z. Wu

The University of Iowa, Iowa City, USA

M. Alhusseini, B. Bilki⁵⁵, K. Dilsiz⁷⁵, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, O.K. Köseyan, J.-P. Merlo, A. Mestvirishvili⁷⁶, A. Moeller, J. Nachtman, H. Ogul⁷⁷, Y. Onel, F. Ozok⁷⁸, A. Penzo, C. Snyder, E. Tiras, J. Wetzel, K. Yi⁷⁹

Johns Hopkins University, Baltimore, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, A.V. Gritsan, W.T. Hung, S. Kyriacou, P. Maksimovic, C. Mantilla, J. Roskes, M. Swartz, T.Á. Vámi

The University of Kansas, Lawrence, USA

C. Baldenegro Barrera, P. Baringer, A. Bean, S. Boren, A. Bylinkin, T. Isidori, S. Khalil, J. King, G. Krintiras, A. Kropivnitskaya, C. Lindsey, D. Majumder, W. Mcbrayer, N. Minafra, M. Murray, C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA

S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA

F. Rebassoo, D. Wright

University of Maryland, College Park, USA

A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, A.C. Mignerey, S. Nabili, M. Seidel, A. Skuja, S.C. Tonwar, L. Wang, K. Wong

Massachusetts Institute of Technology, Cambridge, USA

D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D'Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA

R.M. Chatterjee, A. Evans, S. Guts[†], P. Hansen, J. Hiltbrand, Sh. Jain, Y. Kubota, Z. Lesko, J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA

J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA

K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin, I. Kravchenko, J.E. Siado, G.R. Snow[†], B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA

G. Agarwal, C. Harrington, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker, J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA

G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi, D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northwestern University, Evanston, USA

S. Bhattacharya, J. Bueghly, G. Fedi, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA

R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, Y. Musienko³⁷, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf

The Ohio State University, Columbus, USA

J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling, B.L. Winer

Princeton University, Princeton, USA

G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA

S. Malik, S. Norberg

Purdue University, West Lafayette, USA

A. Barker, V.E. Barnes, R. Chawla, S. Das, L. Gutay, M. Jones, A.W. Jung, B. Mahakud, D.H. Miller, G. Negro, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, N. Trevisani, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA

T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA

A. Baty, U. Behrens, S. Dildick, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, A.G. Stahl Leiton, Z. Tu, A. Zhang

University of Rochester, Rochester, USA

A. Bodek, P. de Barbaro, R. Demina, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, O. Hindrichs, A. Khukhunaishvili, E. Ranken, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA

B. Chiarito, J.P. Chou, A. Gandrakota, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas

University of Tennessee, Knoxville, USA

H. Acharya, A.G. Delannoy, S. Spanier

Texas A&M University, College Station, USA

O. Bouhali⁸⁰, M. Dalchenko, M. De Mattia, A. Delgado, R. Eusebi, J. Gilmore, T. Huang, T. Kamon⁸¹, H. Kim, S. Luo, S. Malhotra, D. Marley, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA

N. Akchurin, J. Damgov, F. De Guio, V. Hegde, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck

Vanderbilt University, Nashville, USA

S. Greene, A. Gurrola, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, F. Romeo, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij

University of Virginia, Charlottesville, USA

M.W. Arenton, P. Barria, B. Cox, G. Cummings, J. Hakala, R. Hirosky, M. Joyce, A. Ledovskoy, C. Neu, B. Tannenwald, Y. Wang, E. Wolfe, F. Xia

Wayne State University, Detroit, USA

R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa

University of Wisconsin - Madison, Madison, WI, USA

K. Black, T. Bose, J. Buchanan, C. Caillol, D. Carlsmith, S. Dasu, I. De Bruyn, L. Dodd, C. Galloni, H. He, M. Herndon, A. Hervé, U. Hussain, A. Lanaro, A. Loeliger, R. Loveless, J. Madhusudanan Sreekala, A. Mallampalli, D. Pinna, T. Ruggles, A. Savin, V. Sharma, W.H. Smith, D. Teague, S. Trembath-reichert

†: Deceased

1: Also at Vienna University of Technology, Vienna, Austria

2: Also at Université Libre de Bruxelles, Bruxelles, Belgium

3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

4: Also at Universidade Estadual de Campinas, Campinas, Brazil

5: Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil

6: Also at UFMS, Nova Andradina, Brazil

7: Also at Universidade Federal de Pelotas, Pelotas, Brazil

8: Also at University of Chinese Academy of Sciences, Beijing, China

9: Also at Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC 'Kurchatov Institute', Moscow, Russia

- 10: Also at Joint Institute for Nuclear Research, Dubna, Russia
- 11: Also at Fayoum University, El-Fayoum, Egypt
- 12: Now at British University in Egypt, Cairo, Egypt
- 13: Also at Purdue University, West Lafayette, USA
- 14: Also at Université de Haute Alsace, Mulhouse, France
- 15: Also at Tbilisi State University, Tbilisi, Georgia
- 16: Also at Erzincan Binali Yildirim University, Erzincan, Turkey
- 17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
- 18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
- 19: Also at University of Hamburg, Hamburg, Germany
- 20: Also at Brandenburg University of Technology, Cottbus, Germany
- 21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary
- 22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
- 23: Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary, Budapest, Hungary
- 24: Also at IIT Bhubaneswar, Bhubaneswar, India, Bhubaneswar, India
- 25: Also at Institute of Physics, Bhubaneswar, India
- 26: Also at G.H.G. Khalsa College, Punjab, India
- 27: Also at Shoolini University, Solan, India
- 28: Also at University of Hyderabad, Hyderabad, India
- 29: Also at University of Visva-Bharati, Santiniketan, India
- 30: Now at INFN Sezione di Bari^{*a*}, Università di Bari^{*b*}, Politecnico di Bari^{*c*}, Bari, Italy
- 31: Also at Italian National Agency for New Technologies, Energy and Sustainable Economic
- Development, Bologna, Italy
- 32: Also at Centro Siciliano di Fisica Nucleare e di Struttura Della Materia, Catania, Italy
- 33: Also at Riga Technical University, Riga, Latvia, Riga, Latvia
- 34: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
- 35: Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
- 36: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
- 37: Also at Institute for Nuclear Research, Moscow, Russia

38: Now at National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia

- 39: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
- 40: Also at University of Florida, Gainesville, USA
- 41: Also at Imperial College, London, United Kingdom
- 42: Also at P.N. Lebedev Physical Institute, Moscow, Russia

43: Also at INFN Sezione di Padova ^{*a*}, Università di Padova ^{*b*}, Padova, Italy, Università di Trento ^{*c*}, Trento, Italy, Padova, Italy

- 44: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
- 45: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
- 46: Also at Università degli Studi di Siena, Siena, Italy
- 47: Also at INFN Sezione di Pavia^{*a*}, Università di Pavia^{*b*}, Pavia, Italy, Pavia, Italy
- 48: Also at National and Kapodistrian University of Athens, Athens, Greece
- 49: Also at Universität Zürich, Zurich, Switzerland
- 50: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria
- 51: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
- 52: Also at Şırnak University, Sirnak, Turkey
- 53: Also at Department of Physics, Tsinghua University, Beijing, China, Beijing, China

54: Also at Near East University, Research Center of Experimental Health Science, Nicosia, Turkey

- 55: Also at Beykent University, Istanbul, Turkey, Istanbul, Turkey
- 56: Also at Istanbul Aydin University, Application and Research Center for Advanced Studies
- (App. & Res. Cent. for Advanced Studies), Istanbul, Turkey
- 57: Also at Mersin University, Mersin, Turkey
- 58: Also at Piri Reis University, Istanbul, Turkey
- 59: Also at Ozyegin University, Istanbul, Turkey
- 60: Also at Izmir Institute of Technology, Izmir, Turkey
- 61: Also at Bozok Universitetesi Rektörlügü, Yozgat, Turkey
- 62: Also at Marmara University, Istanbul, Turkey
- 63: Also at Milli Savunma University, Istanbul, Turkey
- 64: Also at Kafkas University, Kars, Turkey
- 65: Also at Istanbul Bilgi University, Istanbul, Turkey
- 66: Also at Hacettepe University, Ankara, Turkey
- 67: Also at Adiyaman University, Adiyaman, Turkey
- 68: Also at Vrije Universiteit Brussel, Brussel, Belgium

69: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom

- 70: Also at IPPP Durham University, Durham, United Kingdom
- 71: Also at Monash University, Faculty of Science, Clayton, Australia
- 72: Also at Bethel University, St. Paul, Minneapolis, USA, St. Paul, USA
- 73: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
- 74: Also at California Institute of Technology, Pasadena, USA
- 75: Also at Bingol University, Bingol, Turkey
- 76: Also at Georgian Technical University, Tbilisi, Georgia
- 77: Also at Sinop University, Sinop, Turkey
- 78: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
- 79: Also at Nanjing Normal University Department of Physics, Nanjing, China
- 80: Also at Texas A&M University at Qatar, Doha, Qatar
- 81: Also at Kyungpook National University, Daegu, Korea, Daegu, Korea