Overview of recent ATLAS results Dominik Derendarz on behalf of the ATLAS collaboration Hard Probes 2020 somewhere on the Zoom servers - 1/06/2020 ## Ultra Peripheral Collisions (UPC) - → better understanding of QED - → better understanding of backgrounds in the peripheral heavy ion collisions - sensitive to new physics #### Di-lepton production # Photonuclear vector meson production #### Light-by-light scattering # Photonuclear di-jets production ## Light-by-Light scattering #### Iwona Grabowska Bold Monday 11:00 (A2 - Electroweak Probes I) #### Non UPC di-muons UPC di-muons may probe EM degrees of freedom of QGP if they are produced on top of the heavy ion collisions Soumya Mohapatra Wednesday 10:30 (E2 - Electroweak Probes III) #### Poster by Benjamin Gilbert Centrality dependent, shift of the distribution going from UPC to peripheral to central events ## Colorless probes - electroweak bosons (W/Z) in Pb+Pb - → how can we handle geometry of the collisions? - → what is the structure of the nucleon? ## Electroweak bosons (W/Z) in Pb+Pb Best agreement seen with free proton PDF including the isospin effect (CT14) Iwona Grabowska Bold Monday 11:00 (A2 - Electroweak Probes I) ## Electroweak bosons (W/Z) in Pb+Pb R_{AA} in centrality overall constant for W and Z, but indication of excess in peripheral collisions Iwona Grabowska Bold **Monday 11:00** (A2 - Electroweak Probes I) Shadowing in inelastic nucleon-nucleon cross section? (arXiv:2003.11856) \Rightarrow analysis with those data suggest suppression of σ_{pp}^{inel} $\langle N_{ m part}$ ## Colored probes - heavy flavour - → how is QGP affecting quarkonia states formation? - → how is open heavy flavour interacting with the medium? ## Suppression of Y(nS) states in Pb+Pb Songkyo Lee **Monday 13:15** (B2 - Heavy Flavor II) **Poster by Martin Krivos** Clear signal of sequential melting of Y states ## Heavy flavour flow in Pb+Pb Non-zero v₂ of muons from charm and beauty decays Model with energy loss (DREENA-B) better describe the data ## Colored probes - jets - precise measurement of jet quenching - → how does the jet suppression depend on jet structure? ## Fresh look a the fragmentation Complementary information to jet fragmentation measurements - no explicit jet requirement ## Di-jet asymmetry - reaching new precision Virginia Bailey Monday 11:00 (A1 - Jets and High-PT Hadrons I) #### **Poster by Timothy Rinn** Significant modification of the momentum balance in central Pb+Pb with respect to pp ## Large R-jets - quenching and jet structure Large R jets - ATLAS way Splitting scale $$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$ Anne Sickles Wednesday 10:30 (E1 - Jets and High-PT Hadrons V) Poster by Wenkai Zou SSJ jets less suppressed with respect to those with higher sub-jet multiplicity - → is the azimuthal anisotropy at high pT consistent with energy loss? - → how the flow in pp collision is affected by hard processes? - → can we constrain the geometry of the pp collision? ## Flow of high pT hadrons in p+Pb Associated charged particles close ($|\Delta\eta|<1$) to the jet (jet with $p_T>15$ GeV) removed from the 2PC Tomasz Bold Monday 12:20 (A4 - Initial State I) Model able to reproduce the flow but ... ## Flow of high pT hadrons in p+Pb Associated charged particles close ($|\Delta\eta|<1$) to the jet (jet with $p_T>15$ GeV) removed from the 2PC Model able to reproduce the flow but ... requires significant modification of charged hadrons spectra #### Eur. Phys. J. C 80 (2020) 73 Tomasz Bold Monday 12:20 (A4 - Initial State I) ## Flow in pp with jet particle rejection Charged particles close ($|\Delta\eta|<1$) to the jet (track jet with $p_T>10$ GeV) removed from the 2PC (both trigger and associated) The v_2 integrated over the 0.5–5 GeV p_T range decreases only marginally (2-5%) when applying jet particle rejection ## Flow in pp with jet particle rejection Charged particles close ($|\Delta\eta|<1$) to the jet (track jet with $p_T>10$ GeV) removed from the 2PC (both trigger and associated) The v_2 integrated over the 0.5–5 GeV p_T range decreases only marginally (2-5%) when applying jet particle rejection ## Flow in Z tagged pp collisions # Blair Seidlitz Tuesday 12:00 (C4 - Initial State III) Large Q²-process (Z) select pp events with smaller impact parameter v₂ in Z-tagged events shows only a slight increase if any ## Flow in UPC # Blair Seidlitz Tuesday 12:00 (C4 - Initial State III) Observed significant v₂, but smaller than p+Pb and pp ## Heavy flavour flow in pp Qipeng Hu Thursday 10:30 (G3 - Heavy Flavor IX) v₂ of muons from charm decays consistent with light hadrons flow v₂ of muons from beauty decays consistent with 0 #### Role of the initial state ## vn - [pT] correlation # System size dependence of flow harmonics decorrelation #### **Ultra Peripheral Collisions (UPC)** limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### Heavy flavour probes - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour **ATLAS-CONF-2020-010** #### Jet quenching - new high precision measurement give better constrain on energy loss - ⇒ single isolated jets experience less energy loss than jets with more complicated structure - → no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb **→** better description of data without nuclear PDFs #### Heavy flavour probes - → observed sequential suppression of Y(nS) states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - → single isolated jets experience less energy loss than jets with more complicated structure - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### **Heavy flavour probes** - **→** observed sequential suppression of Y(nS) states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - ⇒ single isolated jets experience less energy loss than jets with more complicated structure - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### **Heavy flavour probes** - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - → single isolated jets experience less energy loss than jets with more complicated structure - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### Heavy flavour probes - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - → new high precision measurement give better constrain on energy loss - → single isolated jets experience less energy loss than jets with more complicated structure - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### Heavy flavour probes - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - ⇒ single isolated jets experience less energy loss than jets with more complicated structure #### Flow in small systems - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### ATLAS-CONF-2019-056 R_{AA} #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### Heavy flavour probes - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - ⇒ single isolated jets experience less energy loss than jets with more complicated structure - → no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied #### Ultra Peripheral Collisions (UPC) → limit for axion like particles production #### W/Z bosons in Pb+Pb → better description of data without nuclear PDFs #### Heavy flavour probes - \rightarrow observed sequential suppression of $\Upsilon(nS)$ states - → interplay of hydro expansion and energy loss in open heavy flavour #### Jet quenching - new high precision measurement give better constrain on energy loss - → single isolated jets experience less energy loss than jets with more complicated structure - no sing of impact parameter dependence of flow in pp - → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied ## ATLAS talks ## Thank you for attention! | Monday 11:00 Single jet and dijet measurements of jet quenching with the ATLAS detector | | | | | | |---|--|--|--|--|--| | Monday 11:00 Electroweak probes in heavy-ion collisions with ATLAS | | | | | | | Measurements of v_n at high- p_T and correlation between v_n and mean- p_T in $p+Pb$ collisions with the ATLAS detector | | | | | | | Quarkonium production in Pb+Pb collisions with ATLAS | | | | | | | ATLAS measurement of azimuthal anisotropies in Z-boson tagged pp collisions at 8 and 13 TeV and in ultra-peripheral
Pb+Pb collisions at 5.02 TeV | | | | | | | Non-UPC production of di-muons from two-photon scattering in Pb+Pb collisions with the ATLAS detector | | | | | | | Measurement of jet structure and substructure in heavy ion collisions with ATLAS | | | | | | | ATLAS measurements of transverse and longitudinal flow decorrelations in Xe+Xe, Pb+Pb, and p+Pb collisions | | | | | | | Production and azimuthal anisotropy of muons from heavy flavor decays in small and large systems with ATLAS | | | | | | | Measurements of photon- and Z-tagged jet quenching by ATLAS | | | | | | | | | | | | | ## ATLAS posters | Timothy Rinn | Exploring jet quenching through the measurement of di-jet momentum balance with ATLAS | | | | | | |------------------|---|--|--|--|--|--| | Klaudia Burka | Light-by-light scattering in ultra-peripheral Pb+Pb collisions in the ATLAS experiment | | | | | | | | Suppression of charmonia states in Pb+Pb collisions at 5.02 TeV with the ATLAS detector | | | | | | | Arabinda Behera | Longitudinal flow decorrelation in Xe+Xe and p+Pb collisions with the ATLAS detector | | | | | | | | Measurement of suppression of large-radius jets and its dependence on substructure in Pb+Pb with ATLAS | | | | | | | Benjamin Gilbert | Measurement of $\gamma\gamma \rightarrow \mu\mu$ pairs in non-ultra peripheral Pb+Pb collisions with the ATLAS detector | | | | | | All HI ATLAS public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults ## Backup ## Centrality in Heavy Ion collisions 2015 Pb+Pb data Centrality is parametrized using the energy deposited in the Forward calorimeter ($|\eta|>3.2$) ## Centrality intervals and their corresponding geometric quantities | Centrality [%] | $\langle N_{\rm part} \rangle$ | $\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$ | Centrality [%] | $\langle N_{ m part} \rangle$ | $\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$ | |----------------|--------------------------------|---|----------------|-------------------------------|---| | 0–2% | 399.0 ± 1.6 | 28.30 ± 0.25 | 20–25% | 205.6 ± 2.9 | 9.77 ± 0.18 | | 2-4% | 380.2 ± 2.0 | 25.47 ± 0.21 | 25-30% | 172.8 ± 2.8 | 7.50 ± 0.17 | | 4–6% | 358.9 ± 2.4 | 23.07 ± 0.21 | 30–40% | 131.4 ± 2.6 | 4.95 ± 0.15 | | 6-8% | 338.1 ± 2.7 | 20.93 ± 0.20 | 40–50% | 87.0 ± 2.4 | 2.63 ± 0.11 | | 8-10% | 317.8 ± 2.9 | 18.99 ± 0.19 | 50-60% | 53.9 ± 2.0 | 1.28 ± 0.07 | | 10–15% | 285.2 ± 2.9 | 16.08 ± 0.18 | 60-80% | 23.0 ± 1.3 | 0.39 ± 0.03 | | 15-20% | 242.9 ± 2.9 | 12.59 ± 0.17 | 80-100% | 4.80 ± 0.36 | 0.052 ± 0.006 | | | | | 0-100% | 114.0 ± 1.1 | 5.61 ± 0.06 | | | l | | I | | | ## Large R jets - ATLAS way $$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$ Different jets than the conventional R=1.0 Trimming & 35 GeV threshold remove all the soft component ## Heavy ion datasets | System | Year | sqrt(s _{NN})
[TeV] | L _{int} | |---------------|---------|---------------------------------|-----------------------| | Pb+Pb | 2010 | 2.76 | 7 μb ⁻¹ | | Pb+Pb | 2011 | 2.76 | 0.14 nb ⁻¹ | | pp | 2012 | 8 | 19.4 fb ⁻¹ | | pp | 2013 | 2.76 | 4 pb ⁻¹ | | p+Pb | 2013 | 5.02 | 29 nb ⁻¹ | | low <µ>
pp | 2015-16 | 13 | 0.9 pb ⁻¹ | | pp | 2015 | 5.02 | 28 pb ⁻¹ | | Pb+Pb | 2015 | 5.02 | 0.49 nb ⁻¹ | | p+Pb | 2016 | 5.02 | 0.5 nb ⁻¹ | | p+Pb | 2016 | 8.16 | 0.16 pb ⁻¹ | | Xe+Xe | 2017 | 5.44 | 3 µb-1 | | pp | 2017 | 5.02 | 270 pb ⁻¹ | | Pb+Pb | 2018 | 5.02 | 1.76 nb ⁻¹ | ## Heavy flavor muon versus heavy flavor meson flow ## Events with and without track jet of certain threshold in pp ## Flow in pp with jet particle rejection - pt dependence