

Overview of recent ATLAS results

Dominik Derendarz on behalf of the ATLAS collaboration Hard Probes 2020 somewhere on the Zoom servers - 1/06/2020

Ultra Peripheral Collisions (UPC)

- → better understanding of QED
- → better understanding of backgrounds in the peripheral heavy ion collisions
- sensitive to new physics

Di-lepton production

Photonuclear vector meson production

Light-by-light scattering

Photonuclear di-jets production

Light-by-Light scattering

Iwona Grabowska Bold Monday 11:00 (A2 - Electroweak Probes I)

Non UPC di-muons

UPC di-muons may probe EM degrees of freedom of QGP if they are produced on top of the heavy ion collisions

Soumya Mohapatra Wednesday 10:30 (E2 - Electroweak Probes III)

Poster by Benjamin Gilbert

Centrality dependent, shift of the distribution going from UPC to peripheral to central events

Colorless probes - electroweak bosons (W/Z) in Pb+Pb

- → how can we handle geometry of the collisions?
- → what is the structure of the nucleon?

Electroweak bosons (W/Z) in Pb+Pb

Best agreement seen with free proton PDF including the isospin effect (CT14)

Iwona Grabowska Bold
Monday 11:00
(A2 - Electroweak Probes I)

Electroweak bosons (W/Z) in Pb+Pb

 R_{AA} in centrality overall constant for W and Z, but

.... indication of excess in peripheral collisions

Iwona Grabowska Bold

Monday 11:00

(A2 - Electroweak Probes I)

Shadowing in inelastic nucleon-nucleon cross section? (arXiv:2003.11856)

 \Rightarrow analysis with those data suggest suppression of σ_{pp}^{inel}

 $\langle N_{
m part}$

Colored probes - heavy flavour

- → how is QGP affecting quarkonia states formation?
- → how is open heavy flavour interacting with the medium?

Suppression of Y(nS) states in Pb+Pb

Songkyo Lee **Monday 13:15** (B2 - Heavy Flavor II)

Poster by Martin Krivos

Clear signal of sequential melting of Y states

Heavy flavour flow in Pb+Pb

Non-zero v₂ of muons from charm and beauty decays

Model with energy loss (DREENA-B) better describe the data

Colored probes - jets

- precise measurement of jet quenching
- → how does the jet suppression depend on jet structure?

Fresh look a the fragmentation

Complementary information to jet fragmentation measurements - no explicit jet requirement

Di-jet asymmetry - reaching new precision

Virginia Bailey
Monday 11:00

(A1 - Jets and High-PT Hadrons I)

Poster by Timothy Rinn

Significant modification of the momentum balance in central Pb+Pb with respect to pp

Large R-jets - quenching and jet structure

Large R jets - ATLAS way

Splitting scale

$$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$

Anne Sickles
Wednesday 10:30
(E1 - Jets and High-PT Hadrons V)

Poster by Wenkai Zou

SSJ jets less suppressed with respect to those with higher sub-jet multiplicity

- → is the azimuthal anisotropy at high pT consistent with energy loss?
- → how the flow in pp collision is affected by hard processes?
- → can we constrain the geometry of the pp collision?

Flow of high pT hadrons in p+Pb

Associated charged particles close ($|\Delta\eta|<1$) to the jet (jet with $p_T>15$ GeV) removed from the 2PC

Tomasz Bold Monday 12:20 (A4 - Initial State I)

Model able to reproduce the flow but ...

Flow of high pT hadrons in p+Pb

Associated charged particles close ($|\Delta\eta|<1$) to the jet (jet with $p_T>15$ GeV) removed from the 2PC

Model able to reproduce the flow but ... requires significant modification of charged hadrons spectra

Eur. Phys. J. C 80 (2020) 73

Tomasz Bold Monday 12:20 (A4 - Initial State I)

Flow in pp with jet particle rejection

Charged particles close ($|\Delta\eta|<1$) to the jet (track jet with $p_T>10$ GeV) removed from the 2PC (both trigger and associated)

The v_2 integrated over the 0.5–5 GeV p_T range decreases only marginally (2-5%) when applying jet particle rejection

Flow in pp with jet particle rejection

Charged particles close ($|\Delta\eta|<1$) to the jet (track jet with $p_T>10$ GeV) removed from the 2PC (both trigger and associated)

The v_2 integrated over the 0.5–5 GeV p_T range decreases only marginally (2-5%) when applying jet particle rejection

Flow in Z tagged pp collisions

Blair Seidlitz Tuesday 12:00 (C4 - Initial State III)

Large Q²-process (Z) select pp events with smaller impact parameter

v₂ in Z-tagged events shows only a slight increase if any

Flow in UPC

Blair Seidlitz Tuesday 12:00 (C4 - Initial State III)

Observed significant v₂, but smaller than p+Pb and pp

Heavy flavour flow in pp

Qipeng Hu
Thursday 10:30
(G3 - Heavy Flavor IX)

v₂ of muons from charm decays consistent with light hadrons flow

v₂ of muons from beauty decays consistent with 0

Role of the initial state

vn - [pT] correlation

System size dependence of flow harmonics decorrelation

Ultra Peripheral Collisions (UPC)

limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

ATLAS-CONF-2020-010

Jet quenching

- new high precision measurement give better constrain on energy loss
- ⇒ single isolated jets experience less energy loss than jets with more complicated structure

- → no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- → observed sequential suppression of Y(nS) states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- → single isolated jets experience less energy loss than jets with more complicated structure

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- **→** observed sequential suppression of Y(nS) states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- ⇒ single isolated jets experience less energy loss than jets with more complicated structure

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- → single isolated jets experience less energy loss than jets with more complicated structure

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- → new high precision measurement give better constrain on energy loss
- → single isolated jets experience less energy loss than jets with more complicated structure

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- ⇒ single isolated jets experience less energy loss than jets with more complicated structure

Flow in small systems

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

ATLAS-CONF-2019-056

 R_{AA}

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- ⇒ single isolated jets experience less energy loss than jets with more complicated structure

- → no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

Ultra Peripheral Collisions (UPC)

→ limit for axion like particles production

W/Z bosons in Pb+Pb

→ better description of data without nuclear PDFs

Heavy flavour probes

- \rightarrow observed sequential suppression of $\Upsilon(nS)$ states
- → interplay of hydro expansion and energy loss in open heavy flavour

Jet quenching

- new high precision measurement give better constrain on energy loss
- → single isolated jets experience less energy loss than jets with more complicated structure

- no sing of impact parameter dependence of flow in pp
- → flow in pp decreases only by few percent (2–5%) if jet particles rejection is applied

ATLAS talks

Thank you for attention!

Monday 11:00 Single jet and dijet measurements of jet quenching with the ATLAS detector					
Monday 11:00 Electroweak probes in heavy-ion collisions with ATLAS					
Measurements of v_n at high- p_T and correlation between v_n and mean- p_T in $p+Pb$ collisions with the ATLAS detector					
Quarkonium production in Pb+Pb collisions with ATLAS					
ATLAS measurement of azimuthal anisotropies in Z-boson tagged pp collisions at 8 and 13 TeV and in ultra-peripheral Pb+Pb collisions at 5.02 TeV					
Non-UPC production of di-muons from two-photon scattering in Pb+Pb collisions with the ATLAS detector					
Measurement of jet structure and substructure in heavy ion collisions with ATLAS					
ATLAS measurements of transverse and longitudinal flow decorrelations in Xe+Xe, Pb+Pb, and p+Pb collisions					
Production and azimuthal anisotropy of muons from heavy flavor decays in small and large systems with ATLAS					
Measurements of photon- and Z-tagged jet quenching by ATLAS					

ATLAS posters

Timothy Rinn	Exploring jet quenching through the measurement of di-jet momentum balance with ATLAS					
Klaudia Burka	Light-by-light scattering in ultra-peripheral Pb+Pb collisions in the ATLAS experiment					
	Suppression of charmonia states in Pb+Pb collisions at 5.02 TeV with the ATLAS detector					
Arabinda Behera	Longitudinal flow decorrelation in Xe+Xe and p+Pb collisions with the ATLAS detector					
	Measurement of suppression of large-radius jets and its dependence on substructure in Pb+Pb with ATLAS					
Benjamin Gilbert	Measurement of $\gamma\gamma \rightarrow \mu\mu$ pairs in non-ultra peripheral Pb+Pb collisions with the ATLAS detector					

All HI ATLAS public results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylonsPublicResults

Backup

Centrality in Heavy Ion collisions

2015 Pb+Pb data

Centrality is parametrized using the energy deposited in the Forward calorimeter ($|\eta|>3.2$)

Centrality intervals and their corresponding geometric quantities

Centrality [%]	$\langle N_{\rm part} \rangle$	$\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$	Centrality [%]	$\langle N_{ m part} \rangle$	$\langle T_{\rm AA} \rangle [{\rm mb}^{-1}]$
0–2%	399.0 ± 1.6	28.30 ± 0.25	20–25%	205.6 ± 2.9	9.77 ± 0.18
2-4%	380.2 ± 2.0	25.47 ± 0.21	25-30%	172.8 ± 2.8	7.50 ± 0.17
4–6%	358.9 ± 2.4	23.07 ± 0.21	30–40%	131.4 ± 2.6	4.95 ± 0.15
6-8%	338.1 ± 2.7	20.93 ± 0.20	40–50%	87.0 ± 2.4	2.63 ± 0.11
8-10%	317.8 ± 2.9	18.99 ± 0.19	50-60%	53.9 ± 2.0	1.28 ± 0.07
10–15%	285.2 ± 2.9	16.08 ± 0.18	60-80%	23.0 ± 1.3	0.39 ± 0.03
15-20%	242.9 ± 2.9	12.59 ± 0.17	80-100%	4.80 ± 0.36	0.052 ± 0.006
			0-100%	114.0 ± 1.1	5.61 ± 0.06
	l		I		

Large R jets - ATLAS way

$$\sqrt{d_{12}} = \min(p_{T1}, p_{T2}) \times \Delta R_{12}$$

Different jets than the conventional R=1.0

Trimming & 35 GeV threshold remove all the soft component

Heavy ion datasets

System	Year	sqrt(s _{NN}) [TeV]	L _{int}
Pb+Pb	2010	2.76	7 μb ⁻¹
Pb+Pb	2011	2.76	0.14 nb ⁻¹
pp	2012	8	19.4 fb ⁻¹
pp	2013	2.76	4 pb ⁻¹
p+Pb	2013	5.02	29 nb ⁻¹
low <µ> pp	2015-16	13	0.9 pb ⁻¹
pp	2015	5.02	28 pb ⁻¹
Pb+Pb	2015	5.02	0.49 nb ⁻¹
p+Pb	2016	5.02	0.5 nb ⁻¹
p+Pb	2016	8.16	0.16 pb ⁻¹
Xe+Xe	2017	5.44	3 µb-1
pp	2017	5.02	270 pb ⁻¹
Pb+Pb	2018	5.02	1.76 nb ⁻¹

Heavy flavor muon versus heavy flavor meson flow

Events with and without track jet of certain threshold in pp

Flow in pp with jet particle rejection - pt dependence

