

Leptonic decays of light states and rare B decays

Aidan Grummer University of New Mexico

on behalf of the ATLAS and CMS Collaborations

LHCP May 26, 2020

$$B^0_{(s)} o \mu^+ \mu^-$$

 $\tau \rightarrow 3\mu$

A. Grummer

Introduction

Analysis of leptonic decays from ATLAS and CMS

CMS

Inner Trackers: Inner Diameter: 4 cm from beam line ~80M readout channels Magnetic Field (Central Solenoid): 3.8 T Outer Diameter and length: 15 m × 28.7 m

CMS

ATLAS

ATLAS

Inner Trackers: Inner Diameter: 3.3 cm from beam line ~100M readout channels Magnetic Field (Central Solenoid): 2 T Outer Diameter and length: 25 m × 46 m

A. Grummer

26 May 2020

en!

Slide 2

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$

• ATLAS: JHEP 04 (2019) 098 <u>https://doi.org/10.1007/JHEP04(2019)098</u> 26.3 fb⁻¹ of $\sqrt{s} = 13$ TeV (2015 and 2016) 25 fb⁻¹ of $\sqrt{s} = 7$ and 8 TeV (2011 and 2012)

• CMS: JHEP 04 (2020) 188 https://doi.org/10.1007/JHEP04(2020)188 36 fb⁻¹ of $\sqrt{s} = 13$ TeV* (2016A and 2016B) 20 fb⁻¹ of $\sqrt{s} = 8$ TeV (2012) 5 fb⁻¹ 7 $\sqrt{s} = 7$ TeV (2011)

*Due to operational instabilities experienced with the CMS microstrip detector, CMS Run 2 data are divided into two separate running periods, denoted 2016A and 2016B. Data are further separated into the forward and central regions of the detector.

A. Grummer

Motivation for Measurement of $B_{(s)}^0 \rightarrow \mu^+ \mu^-$

The smallness and precision of the predicted branching fractions^{*} provides a favorable environment for observing contributions from new physics

•
$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (3.66 \pm 0.14) \times 10^{-9}$$

•
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) = (1.03 \pm 0.05) \times 10^{-10}$$

- Probe the Standard Model, which predicts that only the heavy mass eigenstate contributes to the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime, $\tau_{\mu^+ \mu^-}$
 - Experimental World Average from PDG^{**}: $\tau_{B_{cH}^0} = 1.615 \pm 0.009$ ps
- Significant deviations could arise in models involving non-SM heavy particles such as those predicted in
 - Minimal Supersymmetric Standard Model***
 - Minimal Flavor Violation[†]
 - Two Higgs-Doublet Models[‡]

"New Physics"

- M. Beneke, C. Bobeth and R. Szafron, "Power-enhanced leading-logarithmic QED corrections to $B_0 \rightarrow \mu^+ \mu^-$," JHEP 10 (2019) 232 [arXiv:1908.07011].
- Particle Data Group collaboration, "Review of particle physics," Phys. Rev. D 98 (2018) 030001.

- G. D'Ambrosio, G. F. Giudice, G. Isidori and A. Strumia, "Minimal flavor violation: an effective field theory approach," Nucl. Phys. B 645 (2002) 155, arXiv: hep-ph/0207036 [hep-ph]. ‡
- K. S. Babu and C. F. Kolda, "Higgs mediated $B^0 \rightarrow \mu^+ \mu^-$ in minimal supersymmetry," Phys. Rev. Lett. 84 (2000) 228, arXiv: hep-ph/9909476 [hep-ph].

A. Grummer

Huang, Chao-Shang and Liao, Wei and Yan, Qi-Shu, "Promising process to distinguish supersymmetric models with large tan β from the standard model: B \rightarrow X_s μ + μ -," Phys. Rev. D 59 *** (1998) 011701, arXiv: hep-ph/9803460 [hep-ph].

Branching Fraction Measurement

- The aim is to obtain the branching fraction of the $B^0_{(s)} \rightarrow \mu^+ \mu^-$ channels
 - Utilize a reference channel: $B^+ \rightarrow J/\psi K^+$ which is abundant and has a well measured branching fraction

$$\mathcal{B}(B_{(s)}^0 \to \mu^+ \mu^-) = \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}}$$

• Here $N_{d(s)}$ is the signal yield, $N_{J/\psi K^+}$ is the reference yield, $\varepsilon_{\mu^+\mu^-}$ and $\varepsilon_{J/\psi K^+}$ are the acceptance times the efficiencies and $f_u/f_{d(s)}$ is the ratio of the hadronization probabilities of a b-quark into B^+ and $B_{(s)}^0$.

• Perform a blind analysis

- Conceal the signal region of the dimuon invariant mass while procedures of the event selection and signal extraction are defined
- ATLAS: $m_{\mu\mu}$ in [5166, 5526] MeV
- CMS: $m_{\mu\mu}$ in [5200, 5450] MeV
- MC simulated samples
 - Dimuon events for signal and background regions
 - $B^+ \rightarrow J/\psi K^+$ candidates (reference channel)

Dimuon invariant mass [MeV]

A. Grummer

Background Composition

- Continuum background: the dominant combinatorial component
 - Consists of muons from uncorrelated hadron decays
 - The background distribution is characterized by a weak dependence on the dimuon invariant mass
 - A BDT is used to suppress the continuum background^{*} ٠
 - The BDT discriminator boundaries are indicated with arrows in the figure on the right ٠
 - Signal yield extraction and systematic uncertainty determinations are performed on ٠ the highest BDT intervals
- Partially reconstructed decays: one or more of the final-state particles (X) in a b hadron decay are not reconstructed
 - These candidates accumulate in the low dimuon invariant mass sideband
- Peaking background: $B_{(s)}^0 \rightarrow hh'$ decays with both hadrons misidentified as muons

A. Grummer

Reference Channel $B^+ \to J/\psi K^+$

- The B^{\pm} yield for the reference channel is extracted with an unbinned extended maximum-likelihood fit to the $J/\psi K^+$ invariant mass distribution
 - The two CMS figures are for the two subsamples of the 2016 dataset in different regions of pseudorapidity based on the most forward muon.
- The fit includes 4 components
 - $B^+ \to J/\psi K^+$ decays
 - Cabibbo-suppressed $B^+ \to J/\psi \pi^+$ decays
 - The $J/\psi\pi^+$ events are reconstructed using the K mass
 - Partially reconstructed B decays $(B^+ \rightarrow J/\psi K^+ X)$
 - Continuum background (composed mostly of $b\bar{b} \rightarrow J/\psi X$ decays)
- ATLAS: $B^+ \rightarrow J/\psi K^+$ yield for 2015-2016 data: 334,351 with a statistical uncertainty of 0.3%
- CMS: $B^+ \rightarrow J/\psi K^+$ yield for all data subsets is $1.43 \pm 0.06 \times 10^6$

A. Grummer

Signal Extraction and Yield Results

- The dimuon candidates are classified according to the BDT output
- ATLAS yield, determined from the unbinned maximum likelihood fit of highest three BDT bins
 - SM Expected: $N_s = 91$ and $N_d = 10$
 - $N_s = 80 \pm 22$ and $N_d = -12 \pm 20$
- CMS yield is determined from each BDT bin and data subset category (separated by year and detector region)
 - $N_s = 61^{+15}_{-13}$, results^{*} are consistent the SM expectations

*Yield results for each data subset category for N_s and N_d are in the backup slides

Branching Fractions

• The branching fraction measurements for $B_s^0 \rightarrow \mu^+ \mu^-$ and the upper limits on the $B^0 \rightarrow \mu^+ \mu^-$ at 95% CL are:

ATLAS

CMS

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left(2.8^{+0.8}_{-0.7}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &< 2.1 \times 10^{-10} \end{aligned}$$

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = [2.9 \pm 0.7 \,(\text{exp}) \pm 0.2 \,(\text{frag})] \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10}$$

• The likelihood contours for the branching fractions are shown in the figures (the Neyman construction is used for ATLAS results)

Lifetime Measurement CMS

- A two dimensional unbinned maximum likelihood fit to the dimuon invariant mass and the proper decay time is implemented for extracting the $B_s^0 \rightarrow \mu^+ \mu^-$ effective lifetime
 - The fit includes the signal and each background component

$$\tau_{\mu^{+}\mu^{-}} = [1.70^{+0.60}_{-0.43} \,(\text{stat}) \pm 0.09 \,(\text{syst})] \,\text{ps}$$

• Experimental World Average from PDG^{*}: $\tau_{B_{sH}^0} = 1.615 \pm 0.009$ ps

* Particle Data Group collaboration, "Review of particle physics," Phys. Rev. D 98 (2018) 030001.

 $\tau \rightarrow 3\mu$

- ATLAS: *Eur. Phys. J. C* 76 (2016) 232 20.3 fb⁻¹ of $\sqrt{s} = 8$ TeV
- CMS: CMS-PAS-BPH-17-004 (2019) 33 fb⁻¹ of $\sqrt{s} = 13$ TeV

Motivation

- Charged lepton flavor violation would be a major breakthrough in understanding the matter content of the universe
- Branching fraction is expected to very small in the SM*:
 - $\mathcal{B}(\tau \rightarrow 3\mu) < 10^{-14}$
- Some extensions to the Standard Model^{**, †} lead to a branching fraction orders of magnitude greater ($10^{-10} 10^{-8}$), within reach of experimental confirmation

* X.-Y. Pham, "Lepton flavor changing in neutrinoless tau decays," Eur. Phys. J. C 8 (1999) 513–516 **M. Raidal et al., "Flavour physics of leptons and dipole moments," Eur. Phys. J. C57 (2008) 13–182, arXiv:0801.1826 [hep-ph].

[†] W. J. Marciano, T. Mori, and J. M. Roney, "Charged Lepton Flavor Violation Experiments," Ann. Rev. Nucl. Part. Sci. 58 (2008) 315, doi:10.1146/annurev.nucl.58.110707.171126.

A. Grummer

Analysis Overview

ATLAS

- The search for $\tau \to 3\mu$ uses the source channel: $W \to \tau \nu$
- A tau-neutrino from the W boson appears as missing transverse energy (E_T^{miss})
- The three muons from the τ lepton flavor violating decay are expected to have close geometric proximity
- The branching fraction is calculated as:

$$Br(\tau \to 3\mu) = \frac{N_s}{(\mathcal{A}_s \times \epsilon_s) N_{W \to \tau \nu}}$$

• where, N_s is the number of signal events, $\mathcal{A}_s \times \epsilon_s$ is the acceptance times efficiency of the signal and $N_{W \to \tau \nu}$ is the number of τ leptons produced via the decay $W \to \tau \nu$

Analysis Procedures

- 1. Three muon vertex events are preselected and required to meet *loose* selection criteria^{*} (including selections on the three-muon vertex fit quality and missing energy)
- 2. A BDT discriminator is trained with signal MC and background events in the BDT training region
 - BDT training region: $m_{3\mu}$ in [750, 1450] MeV and [2110, 2500] MeV
 - A loose cut on the BDT score ($x > x_0$, where $x_0 = -0.9$) is applied to remove background-like events
- 3. *Tight* selection criteria^{*} are applied (including tightening of the loose requirements and mass restrictions for two muons with the same-charge and opposite-charge)
- Two analysis variables are shown, the track based missing transverse energy, $E_{T,trk}^{miss}$, and significance of the three-muon vertex fit a_{xy}^0 significance, $S(a_{xy}^0)$

*Tight and loose selection criteria are described in the backup slides

Results ATLAS

- The BDT distribution for the *tight* + $x > x_0$ selection upon the sideband data and signal MC is shown in the figure on the left
 - A fit to the BDT score distribution of the sideband data, excluding the blinded data, is shown with the corresponding fit uncertainty
 - The fit is used to estimate the background in the signal region, and to scale the quantities measured in $x > x_0$ to the corresponding quantities in $x > x_1$
 - The optimal BDT cut is found to be $x_1 = 0.933$, optimizing the expected upper limit on the branching fraction
- The three-muon mass distribution for $tight + x > x_0$, $tight + x > x_1$, the fit to the sidebands, and the signal MC are shown in the figure on the right
- The observed upper limit on the branching fraction is:

Analysis Overview

- Use the source of τ -leptons from D and B mesons
- With the 33 fb⁻¹ of integrated luminosity used in the analysis:
 - $D \rightarrow \tau \nu : 4 \times 10^{12}$ expected number of τ leptons produced
 - $B \rightarrow \tau \nu : 1.5 \times 10^{12}$ expected number of τ leptons produced
 - $B \to D \to \tau \nu : 6.3 \times 10^{11}$ expected number of τ leptons produced
- Event selection trigger is for two muons and one track
- The branching fraction is measured using the normalization channel^{*}

 $D_s\,\rightarrow\,\phi\pi\,\rightarrow\,\mu\mu\pi$

- Data are separated into <u>three categories</u> (A, B, and C) based on the three-muon mass resolution
- A BDT is trained on signal simulation data and the threemuon mass sidebands for each mass resolution category
 - The BDT regions are optimized by maximizing the expected search sensitivity and used for signal extraction and uncertainty estimations.

Slide 16

*See backup slides for more details

NN.

Mass Distributions and Results

- The three-muon mass distributions for the three mass resolution categories are shown in the highest BDT bins
- The signal is normalized in each category, assuming a branching fraction $\mathcal{B}(\tau \rightarrow 3\mu) = 10^{-7}$
- The yield results for the signal and data are summarized in the table for the mass range 1.62 2.00 GeV (and for the signal mass region: $1.78 \pm 2\sigma$ in parentheses)
- The upper limit on the branching fractions is:
 - $\mathcal{B}(\tau \to 3\mu) < 8.8 \times 10^{-8}$ at a 90% CL

Summary

- Results from ATLAS and CMS have been presented for
- ATLAS CMS The branching fraction measurements for $B_s^0 \rightarrow \mu^+ \mu^-$ 1. $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = [2.9 \pm 0.7 \,(exp) \pm 0.2 \,(frag)] \times 10^{-9}$ $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$ 2. Upper limits on $B^0 \rightarrow \mu^+ \mu^ \mathcal{B}(B^0 \to \mu^+ \mu^-) < 3.6 \times 10^{-10}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$ Effective lifetime measurement for $B_s^0 \rightarrow \mu^+ \mu^-$ by CMS 3. $\tau_{\mu^+\mu^-} = [1.70^{+0.60}_{-0.43} \,(\text{stat}) \pm 0.09 \,(\text{syst})] \,\text{ps}$ Upper limits on $\tau \rightarrow 3\mu$ branching fraction 4. $\mathcal{B}(\tau \to 3\mu) < 3.76 \times 10^{-7}$ at a 90% CL $\mathcal{B}(\tau \to 3\mu) < 8.8 \times 10^{-8}$ at a 90% CL

Additional Slides

$N_{(s)}^{0} \rightarrow \mu^{+}\mu^{-} \text{ Data-Simulation Comparisons}$ ATLAS

- The BDT is optimized when trained with 15 selected input variables used to characterize a B meson event and the produced muons
- A grid search is performed to optimize the other BDT parameters

- Shown here are two of the input variables used in the training
- Care is taken to ensure that BDT output is not correlated with the invariant mass of the muons

BDT Continuum Background Suppression

ATLAS

- A multivariate approach, implemented as a Boosted Decision Tree (BDT), is used to enhance the signal relative to the continuum background
- Here is the BDT output for various datasets used in the analysis.
- A larger BDT output corresponds to more suppression of the continuum background
- Four BDT intervals are defined to give an equal efficiency of 18% for signal MC events, ordered according to increasing signal-to-background ratio
 - The lowest two BDT intervals contribute to background modelling.
 - Signal yield extraction and systematic uncertainty determinations are performed on the highest three BDT intervals.

BDT Background Suppression CMS

- One BDT is used to improve muon identification and suppress the peaking background
- A second (analysis) BDT is used to suppress the continuum background
 - The analysis BDT output is shown in the plots below for the signal MC and the sideband data for 7 TeV, 8 TeV, and 13 TeV datasets
 - The BDT boundaries are indicated with arrows in the figures
 - The binning of the analysis BDT discriminator distributions are used for the result extraction

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Efficiency Ratio ATLAS

• The efficiency ratio is required for the calculation of the signal branching fraction:

$$R_{\varepsilon} = \frac{\varepsilon \left(B^+ \to J/\psi K^+ \right)}{\varepsilon \left(B^{0}_{(s)} \to \mu^+ \mu^- \right)}$$

- Both channels are measured in the fiducial acceptance for the B meson:
 - $p_T^B > 8 \text{ GeV and } |\eta_B| < 2.5$
- The total efficiencies include acceptance and trigger, reconstruction and selection efficiencies.
 - Muon acceptance: $p_T^{\mu_1} > 6.0 \text{ GeV}, p_T^{\mu_2} > 4.0 \text{ GeV}$ and $|\eta_{\mu_{1,2}}| < 2.5$
 - Kaon acceptance: $p_T^K > 1.0$ GeV and $|\eta_K| < 2.5$
 - The signal reference BDT selection: BDT > 0.2455

$B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$ Extracted Yields by Category CMS

Category	$N(\mathbf{B_s^0})$	$N(B^0)$	$N_{ m comb}$	$N_{\rm obs}^{\rm B^+}/100$	$\langle p_{\rm T}({\rm B}^0_{ m s})\rangle [{ m GeV}]$	$\varepsilon_{\rm tot}/\varepsilon_{\rm tot}^{\rm B^+}$
2011/central	$3.6 \ ^{+0.9}_{-0.8}$	$0.4 \ ^{+0.7}_{-0.6}$	2.3 ± 1.0	750 ± 30	16.4	3.9 ± 0.5
2011/forward	$2.0 \ ^{+0.5}_{-0.4}$	$0.2 \ ^{+0.4}_{-0.3}$	0.7 ± 0.5	220 ± 10	14.9	7.5 ± 0.8
2012/central/low	$3.7 \substack{+0.9 \\ -0.8}$	$0.4 \ ^{+0.6}_{-0.6}$	29.9 ± 2.9	790 ± 30	16.1	3.8 ± 0.5
2012/central/high	$9.3 \ ^{+2.3}_{-2.1}$	$1.0 \ ^{+1.7}_{-1.6}$	7.6 ± 1.8	2360 ± 100	17.3	3.2 ± 0.4
2012/forward/low	$1.7 \ ^{+0.4}_{-0.4}$	$0.2 \ ^{+0.3}_{-0.3}$	29.9 ± 2.9	190 ± 10	14.3	7.3 ± 1.0
2012/forward/high	$4.7 \ ^{+1.2}_{-1.1}$	$0.5 \ ^{+0.9}_{-0.8}$	8.3 ± 1.7	660 ± 30	15.5	5.9 ± 0.8
$2016 \mathrm{A/central/low}$	$2.2 \ ^{+0.5}_{-0.5}$	$0.2 \ ^{+0.4}_{-0.4}$	10.3 ± 1.7	580 ± 20	17.5	3.1 ± 0.4
$2016 \mathrm{A/central/high}$	$4.0 \ ^{+1.0}_{-0.9}$	$0.4 \ ^{+0.8}_{-0.7}$	3.4 ± 1.2	1290 ± 60	19.3	2.5 ± 0.3
2016A/forward/low	$3.7 \ ^{+0.9}_{-0.8}$	$0.4 \ ^{+0.7}_{-0.7}$	43.5 ± 3.5	780 ± 30	15.8	3.9 ± 0.5
2016A/forward/high	$8.1 \stackrel{+2.0}{_{-1.8}}$	$0.8 \ ^{+1.5}_{-1.4}$	15.9 ± 2.4	1920 ± 80	17.5	3.4 ± 0.4
2016 B/central/low	$4.1 \ ^{+1.0}_{-0.9}$	$0.4 \ ^{+0.8}_{-0.7}$	34.4 ± 3.2	1020 ± 40	17.2	3.3 ± 0.4
$2016 \mathrm{B/central/high}$	$3.6 \ ^{+0.9}_{-0.8}$	$0.4 \ ^{+0.7}_{-0.6}$	2.2 ± 1.0	1320 ± 50	20.8	2.2 ± 0.2
2016B/forward/low	$6.1 \ ^{+1.5}_{-1.4}$	$0.6 \ ^{+1.1}_{-1.0}$	33.4 ± 3.1	1260 ± 50	16.2	3.9 ± 0.4
2016B/forward/high	$3.9 \ ^{+1.0}_{-0.9}$	$0.4 \ ^{+0.8}_{-0.7}$	4.0 ± 1.3	1180 ± 50	19.5	2.7 ± 0.3

 $B^0_{(s)} \rightarrow \mu^+ \mu^-$ HL-LHC Prospects

ATLAS: ATL-PHYS-PUB-2018-005 CMS: CMS-PAS-FTR-18-013

$B^0_{(s)} \rightarrow \mu^+ \mu^-$ HL-LHC Projections CMS

- The CMS Phase-2 inner tracker provides an order of 40-50% improvement on the mass resolutions over the Run-2 case, as determined from detailed MC studies.
- For the full Run 2 and HL-LHC statistics
 - The anticipated signal event yields, uncertainties and range of significance (over 5σ for $\mathcal{B}(B^0 \to \mu^+ \mu^-)$) are shown
 - The last column shows the anticipated statistical uncertainty on the effective lifetime measurement (0.05 ps with 3 ab⁻¹ integrated luminosity)

A. Grummer

$\tau \rightarrow 3\mu$ Analysis Procedures ATLAS

- 1. Events with three muons originating from a common vertex with combined mass less than 2.5 GeV are selected
- 2. *Loose* selection criteria^{*} (including selections on the three-muon vertex fit quality and missing energy) are applied to obtain a background sample and a BDT is trained to discriminate the background
 - The data events are separated into three mutually exclusive regions: a blinded region (including a signal region), a sideband region and a training region
- 3. *Tight* selection criteria^{*} are applied (including tightening of the loose requirements and mass restrictions for two muons with the same-charge and opposite-charge) and a loose cut on the BDT score $(x > x_0)$
- 4. Optimization of the final BDT cut, x_1 , and statistical analysis of the *tight* + $x > x_1$ sample
- Two analysis variables are shown, the track based missing transverse energy, $E_{T,trk}^{miss}$, and significance of the three-muon vertex fit a_{xy}^0 significance, $S(a_{xy}^0)$

*Tight and loose selection criteria are described in the backup slides

BDT Optimization

- The BDT score for the *tight* and $x > x_0$ selection upon the sideband data and signal MC is shown in the figure
 - The loose x_0 BDT score cut is set to -0.9
 - A fit to the BDT score distribution of the sideband data, excluding the blinded data, is shown with the corresponding fit uncertainty
 - The fit is used to estimate the background in the signal region, and to scale the quantities measured in $x > x_0$ to the corresponding quantities in $x > x_1$
 - The optimal BDT cut is found to be $x_1 = 0.933$, optimizing the expected upper limit on the branching fraction

Loose Requirements for $\tau \rightarrow 3\mu$ Analysis ATLAS

- The L_{xy} significance, $S(L_{xy}) = L_{xy}/\sigma_{L_{xy}}$ must satisfy $-10 < S(L_{xy}) < 50$, where $\sigma_{L_{xy}}$ is the uncertainty in the L_{xy} .
- The a_{xy}^0 significance, $S(a_{xy}^0) = a_{xy}^0 / \sigma_{a_{xy}^0}$ must satisfy $S(a_{xy}^0) < 25$, where $\sigma_{a_{xy}^0}$ is the uncertainty in the a_{xy}^0 .
- The three-muon track-fit probability product, $\mathcal{P}_{trks} = p_1 \times p_2 \times p_3$ (where p_i is the track fit p-value of track i), must satisfy $\mathcal{P}_{trks} > 10^{-9}$.
- The three muon transverse momentum must satisfy $p_T^{3\mu} > 10$ GeV.
- The calorimeter-based and track-based missing transverse energies, $E_{T,cal}^{miss}$ and $E_{T,trk}^{miss}$, respectively, must both satisfy $10 < E_T^{miss} < 250$ GeV.
- The calorimeter-based and track-based transverse masses, m_T^{cal} and m_T^{trk} , respectively, must both satisfy $m_T > 20$ GeV.
- The three-muon track isolation is obtained from the sum of the $p_{\rm T}$ of all tracks $p_{\rm T}^{trk} > 500 \text{ MeV}$ in a cone of $\Delta R_{\rm max}^{3\mu} + 0.20$ (and $\Delta R_{\rm max}^{3\mu} + 0.30$) around the three muon momentum while excluding its constituent tracks; it must satisfy $\sum p_{\rm T}^{trk} (\Delta R_{\rm max}^{3\mu} + 0.20) / p_{\rm T}^{3\mu} < 0.30$ (and $\sum p_{\rm T}^{trk} (\Delta R_{\rm max}^{3\mu} + 0.30) / p_{\rm T}^{3\mu} < 1$). The largest separation, $\Delta R_{\rm max}^{3\mu}$, between any pair of the threemuon tracks is on average 0.07 for the signal.

- A number of the *loose* requirements are tightened, namely $\mathcal{P}_{trks} > 8 \times 10^{-9}$, $m_T^{cal} > 45 \text{ GeV}$, $m_T^{trk} > 45 \text{ GeV}$, and $1 < S(L_{xy}) < 50$.
- Three-muon vertex fit probability must have p-value > 0.2.
- The angle between \sum_{T} and $E_{T,cal}^{miss}$ ($E_{T,trk}^{miss}$) directions is required to be $\Delta \phi_{\sum_{T}}^{cal} > 2$ ($\Delta \phi_{\sum_{T}}^{trk} > 2$).
 - $\Sigma_{\rm T}$ is the transverse component of the vector sum of the three-muon and leading jet momenta.
- The same-charge two muon mass, m_{SS} , and opposite-charge two muon mass, m_{OS1} or m_{OS2} , satisfy $m_{SS} > 300 \text{ MeV}$, $m_{OS1} > 300 \text{ MeV}$, and $m_{OS2} > 300 \text{ MeV}$, where $m_{OS1}(m_{OS2})$ is the mass of the two opposite-charge muon pairs with highest (second highest) summed scalar p_T among the three muons
- The event is rejected if $|m_{OS} m_{\omega}| < 50$ MeV or $|m_{OS} m_{\phi}| < 50$ MeV if either the $p_T^{3\mu}$, the $E_{T,cal}^{miss}$, or the $E_{T,trk}^{miss}$ is lower than 35 GeV.
- The event is rejected if $|m_{\rm OS} m_{\rm \varphi}| < 50$ MeV if $|m_{3\mu} m_{D_{\rm S}}| < 100$ MeV

In the above notation, m_{OS} is m_{OS1} or m_{OS2} , and m_{ω} , m_{ϕ} , m_{D_s} are the masses of the ω , ϕ , and D_s mesons^{*}, respectively

^{*}K. Olive et al., Review of Particle Physics, Chin. Phys. C38 (2014) 090001.

ŃМ.

Normalization Channel

- (left plot) The invariant mass distribution for two muons and a pion is shown
 - Kinematic cuts are applied to the two muons and the pion, the muons are required to have opposite signs and an invariant mass consistent with the ϕ meson mass.
 - The two peaks are associated with $D_s(1.97 \text{ GeV})$ and D^+ (1.87 GeV) decays, and modelled with Crystal Ball functions, while the background is fitted with an exponential function.
- (right plot) Simulated prompt and non-prompt contributions of D_s are compared to data in the proper decay length distribution

BDT Training CMS

- A BDT is trained for each of the three mass resolution categories
- The BDTs are trained on signal simulation data and the three-muon mass sidebands
 - Ten analysis observables are used in the training and are separated into two categories: (1) variables associated with the three-muon vertex properties and (2) variables associated with reducing hadrons misidentified as muons and muons originating from a pion or kaon source
- The boundaries defining three BDT regions are optimized by maximizing the expected search sensitivity.
 - The two BDT regions with the best signal-to-background purity are retained for signal extraction and uncertainty estimations.

$\tau \rightarrow 3\mu$ Results CMS

- S/(S+B) weighted three-muon mass distribution including events from all mass resolution categories used in the analysis is shown
- The upper limit on the branching fractions is:
 - $\mathcal{B}(\tau \to 3\mu) < 8.8 \times 10^{-8}$ at a 90% CL

$\tau \rightarrow 3\mu$ HL-LHC Prospects

ATLAS: ATL-PHYS-PUB-2018-032

• HL-LHC prospects are also summarized in:

"Opportunities in Flavour Physics at the HL-LHC and HE-LHC," CERN-LPCC-2018-06

- Simulated three-muon mass distributions under HL-LHC detector conditions are shown
 - Widths are estimated from double gaussian fits.
 - For ATLAS, several conditions are investigated including improvements to vertex and momentum resolution with a new tracking system and improved low muon trigger thresholds
 - For CMS, two categories are considered: (1) all three muons reconstructed only with the Phase-1 detectors, and (2) at least one muon reconstructed by the new triple Gas Electron Multiplier (GEM) detectors in the upgraded muon system
- 90% confidence level limits are summarized in the tables below for (top table) ATLAS and (bottom table) CMS

ATLAS

Scenario	W-channel	HF-channel	
	90% CL UL $[10^{-9}]$	90% CL UL [10 ⁻⁹]	
ATLAS High	5.4	1	
ATLAS Medium	6.2	2.3	
ATLAS Low	13.5	6.4	

CMS

	Category 1	Category 2	
Number of background events	2.4×10^{6}	2.6×10^{6}	
Number of signal events	4580	3640	
Trimuon mass resolution	18 MeV	31 MeV	
$\mathcal{B}(au ightarrow 3\mu)$ limit per event category	4.3×10^{-9}	7.0×10^{-9}	
$\mathcal{B}(au ightarrow 3\mu)$ 90% C.L. limit	$3.7 \times$	10^{-9}	
$\mathcal{B}(\tau \to 3\mu)$ for 3- σ evidence	$6.7 imes 10^{-9}$		
$\mathcal{B}(\tau \to 3\mu)$ for 5- σ observation	1.1×10^{-8}		

A. Grummer