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Abstract

We show that the low frequency, long wavelength dynamics of the phase of the pair field

for a BCS-type s-wave superconductor at T=0 is equivalent to that of a time-dependent

non-linear Schrödinger Lagrangian (TDNLSL), when terms required by Galilean invariance

are included. If the modulus of the pair field is also allowed to vary, the system is equivalent

to two coupled TDNLSL’s.
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The classic Ginzburg-Landau (GL) theory [1] is very successful[2,3] in describing a large

class of static superconducting phenomena near the critical temperature Tc, and its form

was established by Gorkov [4] shortly after the microscopic BCS theory [5]. Subsequently, a

number of attempts [2,3,6,7] were made to obtain a generalized GL theory for time-dependent

phenomena, and for temperatures well below Tc, but a consensus has still not been reached

on the form of such a theory at T=0. In this paper we shall show that the low frequency,long

wavelength dynamics of the phase of the pair field for a BCS-type s-wave superconductor

at T=0 is equivalent to a time-dependent non-linear Schrödinger Lagrangian (TDNLSL).

At first sight, this result might seem almost obvious: after all, the energy density in GL

theory looks formally like that of a non-linear Schrödinger theory so that it seems natural to

extend it to the corresponding time-dependent theory as, indeed, Feynman assumed [8] in his

discussion of the dynamics of superconductors and of the Josephson effects. Yet neither the

earlier discussions[2,3,6], nor recent work based on the effective action formalism of quantum

field theory [7,9], appears to lead to this conclusion. This is in contrast to the case of a Bose

superfluid, such as 4He, which is well described by a TDNLSL near T=0[10]. Indeed, there is

considerable current interest in probing the relationship and “crossover” between BCS and

Bose superfluidity[11]. Our result implies that both are fundamentally the same, at least

near T=0 in the clean limit ; in particular, the existence of the Magnus force for a vortex

line in a superconductor follows naturally. The last point is pertinent to the discussion of

vortex dynamics in superconductors within the effective theory formulation [12].

Three of the present authors have, in fact, recently shown [13] that the motion of the

condensate is described by a non-linear Schrödinger equation at T=0, using a density matrix

approach and the Born-Oppenheimer approximation. But this left open the question how

this could be reconciled with the earlier work [2,3,6,7,9], which was generally based on field

theory (or Green function) techniques, and apparently led to a quite different result. The
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solution of this problem is contained in the present paper, and it is essentially very simple.

In [13] the further approximation was made that the modulus of the energy gap (or pair

field) is constant. If this approximation is made in the field theory approach, one can

derive [9] from BCS theory an effective action for the phase θ(x) of the pair field (i.e. the

Goldstone mode), which one then expands up to a certain order of derivatives. The resulting

Lagrangian Leff (θ) is the same as that previously proposed on symmetry grounds [14], and

also corresponds precisely to the early results of Kemoklidze and Pitaevskii [15], who started

from Gorkov’s equations [5]. We shall show that the dynamics of θ(x) as given by Leff (θ)

can be re-written in terms of a TDNLSL, which is equivalent to a particular case of the

general non-linear Schrödinger theory derived in [13] under the same approximation.

We also extend this to include variations in the modulus of the pair fields, and show

that the dynamics is then that of two coupled TDNLSL’s. The thread that unites all these

approaches is ultimately Galilean invariance. Since the microscopic starting point is always

Galilean invariant, one expects any theory based on an effective action to preserve this

symmetry, a point emphasized in Ref. 15, and the Schrödinger Lagrangian is the simplest

such available.

We begin with the BCS Lagrangian for s-wave pairing and in the absence of external

fields:

L =
∑

σ

ψ∗
σ(x)

(

i∂t +
∇2

2m
+ µ

)

ψσ(x) + gψ∗
↑(x)ψ

∗
↓(x)ψ↓(x)ψ↑(x) (1)

where ψσ describes electrons with spin σ = (↑, ↓), µ = k2F/2m is the Fermi energy in the

normal state, and x = (x, t). Introducing the auxiliary(pair) fields ∆(x) and ∆∗(x), and

integrating out the electron fields, one obtains the effective action

S[∆,∆∗] = −iT r lnG−1 − 1

g

∫

d4x|∆(x)|2 (2)
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where the Nambu Green function satisfies








O1 ∆(x)

∆∗(x) O2









G(x, x′) = δ(x− x′) (3)

with O1 = i∂t + ∇2/2m + µ, O2 = i∂t − ∇2/2m − µ, and Tr includes interval and space-

time indices. To obtain from (2) an effective Lagrangian in terms of the degrees of freedom

represented by ∆, a possible procedure [7] is to set ∆(x) = ∆0 + ∆′(x) where ∆0 is the

position of the minimum of S for space-time independent ∆, and where ∆′ is assumed to be

slowly varying in both space and time. One then expands Tr lnG−1 in powers of derivatives

of ∆′. There are, however, two (related) objections to this. First, we are dealing with the

spontaneous breaking of a local U(1) phase invariance, which implies that at a temperature

far from the transition temperature, the most important degree of freedom is the phase of ∆,

which is the relevant Goldstone field. It is this field, rather than the real and/or imaginary

parts of ∆, which should carry the low frequency and long wavelength dynamics. Secondly,

the ansatz ∆(x) = ∆0+∆′(x) violates the Galilean invariance possessed by (1), which implies

[15] that

∆(r− vt, t) exp(2imv · r− imv2t) (4)

should satisfy the same equation of motion as ∆(r, t). We shall return to the question of

Galilean invariance below.

We therefore set

∆(x) = eiθ(x)|∆(x)| (5)

and |∆(x)| = |∆0|+δ|∆(x)|, where we are interested in the low frequency and long wavelength

fluctuations of θ(x) and δ|∆(x)|. However, although δ|∆(x)|/|∆0| is expected to be small,

and a simple expansion of the sort mentioned above for Tr lnG−1 could easily be set up

in terms of derivatives of δ|∆(x)| if θ(x) were zero, it is crucial to recognize that θ(x) is
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not small in general, so that the phase factor in (5) cannot be expanded, but must be

treated as a whole. This prevents a straightforward expansion of Tr lnG−1 when (5) is

substituted into (2). Fortunately, this difficulty can be easily circumvented [9,16]. Defining

U(x) = exp(iθ(x)τ3/2), we can write

Tr lnG−1 = Tr lnG−1UU−1 = Tr lnUG̃−1U−1 = Tr ln G̃−1 (6)

where

G̃−1 = G−1
0 (1−G0Σ)

G−1
0 =









O1 |∆0|

|∆0| O2









(7)

and

Σ = −i∇2θ/4m− i∇θ · ∇/2m+ (θ̇/2 + (∇θ)2/8m)τ3 − δ|∆| τ1. (8)

Minimizing (2) with θ = δ|∆| = 0 yields the usual gap equation for |∆0|. The dynamics of

θ and |∆| is contained in

Seff [θ, δ|∆|] = iT r
∞
∑

n=1

1

n
(G0Σ)

n − 1

g

∫

|∆|2d4x , (9)

where we note that Σ contains just δ|∆(x)| and derivatives of θ(x), in terms of which (as-

sumed small) quantities a useful expansion can be conducted, following standard techniques

[17].

We now concentrate on θ(x), and set δ|∆| = 0 for the time being. Carrying out the

calculation to the indicated order in derivatives we obtain

Leff (θ) = −ρ0(θ̇/2 + (∇θ)2/8m) +N(0)(θ̇/2 + (∇θ)2/8m)2 (10)

where ρ0 = k3F/3π
2 is the electron density at T=0, N(0) is the density of states ( for one

spin projection) at the Fermi surface and we have adopted a convenient normalization; note
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that N(0) = ρ0/2mv
2
a where va = vF/

√
3 is the velocity of propagation of the Bogoliubov-

Anderson mode. Eqn. (10) is the same as Eqn. (4) in Ref.9 if θ is replaced by 2φ (see also

Eqn.(2.6) of ref.14). The equation of motion for θ which follows from (10) is

∂ρ

∂t
+∇ · j = 0 (11)

where

ρ = ρ0 −N(0)(θ̇ + (∇θ)2/4m) (12)

and

j = ρ∇θ/2m. (13)

Equations (11)-(13) are, in fact, precisely those obtained (to this order in derivatives) by

putting δ|∆| = 0 in Eqns.(21)-(23) of Ref.15. We now show how the dynamics contained in

(11)-(13) can be reinterpreted in terms of a TDNLSL.

We first remark that the forms of (11) and (13) strongly suggest that the quantities ρ and

j have the physical significance of a number density and of a number current density, respec-

tively. In fact, simple linear response theory (assuming, as always, a derivative expansion)

gives [18]

δρ ≈ −N(0)θ̇, j ≈ ρ0∇θ/2m (14)

where δρ is the departure of the density from the equilibrium value ρ0, and j is the number

density current. We now consider the implications of Galilean invariance. For densities ρ

and j obeying (11), Galilean symmetry requires

ρ′(r′, t′) = ρ(r, t), j′(r′, t′) = j(r, t)− vρ(r, t) (15)

where r′ = r−vt,t′ = t; that is, ρ and j transform as t and r respectively. From the discussion

around Eqn.(4) above, the behaviour of θ under Galilean transformations is given by

θ′(r′, t′) = θ(r, t) +mv2t− 2mv · r, (16)

6



from which it follows that δρ as given by (14) is not invariant, and that j transforms in-

correctly. However, although θ̇ is not a Galilean invariant, the combination θ̇ + (∇θ)2/4m

is.(This is actually the justification for singling out the terms given in (10) from the total

n = 2 contribution in (9).) Thus the requirement that δρ be Galilean invariant leads pre-

cisely to the expression (12) for ρ − ρ0, which can now be identified as δρ. Similarly, if

we replace ρ0 in the expression (14) for j by ρ, we find that j transforms correctly and the

expression for j is that in (13).

We are therefore led to seek a theory involving two fields ρ and θ, such that the equation

of motion for θ is (11) and that for ρ is (12), with ρ, θ and j related by (13). Consider the

TDNLSL

Lψ = iψ∗ψ̇ − 1

4m
∇ψ∗ · ∇ψ − V (17)

where the mass has been chosen to be 2m, and V will be assumed to be a function of |ψ|

only. Let us set

ψ =
√
ρ exp(iθ). (18)

Then inserting (18) into (17) and discarding a total derivative, Lψ becomes

Lψ = −ρθ̇ − ρ(∇θ)2/4m− (∇ρ)2/16mρ− V (ρ). (19)

The equation of motion for θ is then (11), with j given by (13), while that for ρ is

dV

dρ
= −(θ̇ + (∇θ)2/4m)− (∇ρ)2/16mρ2 +∇2ρ/8mρ2. (20)

If we now choose

V = (ρ− ρ0)
2/2N(0) (21)

and solve (20) by expanding in derivatives, we recover precisely (12) at the relevant order.

Thus the introduction of the auxiliary variable ρ, which can be expressed in terms of θ

via its equation of motion, has allowed us to rewrite the dynamics of the Goldstone field θ,
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as given by Leff (θ), in terms of the TDNLSL (17). The variable ρ is interpreted physically

as the number density. It must be stressed, however, that the wavefunction ψ introduced in

this way (see (18)) is quite distinct from the pair field ∆, despite the fact that they have the

same phase θ. In our development thus far, the modulus |∆| has been held fixed, whereas ρ

varies; there is no simple relation between |∆| and √
ρ.

The dynamical theory described by (17) is a special case of the general time-dependent

non-linear Schrödinger theory for the condensate wavefunction derived in [13], in which the

form of the potential V was not explicitly calculated. Here, it has been necessary to fix V

in order to carry out the elimination of the variable ρ, to the required order in derivatives.

(We remark that in [13] ψ is normalised to the density of Cooper pairs, rather than, as here,

to the electron density.)

Before discussing the modifications caused by the inclusion of the field δ|∆(x)|, we make

one further comment on the Lagrangian (10). A simple alternative route to (10) is to start

from a Lagrangian which describes just the Bogoliubov- Anderson mode, viz.

La =
1

2
θ̇2 − 1

2
v2a(∇θ)2. (22)

Now (22) is clearly not invariant under (16). But, as we have seen, the combination

θ̇+ (∇θ)2/4m is invariant. Hence if in (22) we replace θ̇2 by (θ̇+ (∇θ)2/4m)2 and (∇θ)2 by

4mθ̇ + (∇θ)2 we will have a Galilean invariant Lagrangian; and the result of these replace-

ments is just proportional to Leff(θ). Actually, the (∇θ)2 term in (22) is of course invariant

by itself, up to constants and a total derivative. Indeed, the term θ̇ introduced above, and

present in Leff (θ), is also a total derivative and does not affect the equations of motion.

Nevertheless it is important physically, as it ensures that the density ρ has the equilibrium

value ρ0 [14].

In view of its relative unfamiliarity, it maybe worth noting that Leff (θ) (or equivalently
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Lψ) embodies the usual phenomenology of superfluid dynamics at T=0 (see, for example

[19,20]). We identify ∇θ/2m with the superfluid velocity vs, and multiply ρ and j of (12),

(13) by m to convert them to mass density and flux, ρm and jm. Eq. (11) is then the law of

mass conservation, following from the fact that Leff does not depend explicitly on θ. Eq.(12)

is equivalent [15] to Bernoulli’s equation, if we make use of δρ ≈ 2N(0)δµ and δp ≈ ρ0δµ.

Since Leff does not depend explicitly on t, we have the energy conservation relation

∂E

∂t
+∇ ·Q = 0 (23)

where using the canonical definitions (with suitable normalization), one finds

E ≈ 1

2
ρmv

2
s , Q = jm

(

1

2
v2
s + δµ

)

, (24)

and we have dropped a quantity of order δρ δµ in E. Finally, since Leff is translation

invariant we have the momentum conservation relation

∂jm
∂t

+∇ · Π = 0 (25)

where the momentum flux density tensor is

Πij = ρmvsivsj + δp δij . (26)

Eq.(25) is equivalent to Euler’s equation. In Ref.14, the proportionality between the mo-

mentum density and the number current j (defined by ∂L/∂(∇θ)), which is included in (25),

was taken as a constraint on possible Lagrangians L. If L is a function solely of the Galilean

scalar g = θ̇ + (∇θ)2/4m, then

∂L

∂θ̇
=
∂L

∂g
,

∂L

∂(∇θ) =
∂L

∂g

∇θ
2m

. (27)

Since θ is a phase variable, we can interpret ∂L/∂θ̇ and ∂L/∂(∇θ) as being proportional

to a conserved number density ρ and number current density j respectively, so that (27)
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becomes just (13). The momentum density is then automatically proportional to j. Once

again, Galilean invariance is the essential principle.

We now turn to the inclusion of the field δ|∆(x)|. Leff(θ, δ|∆|) can be extracted from

(9), up to a given order in derivatives, but calculations rapidly become laborious. For our

present purpose, we will simply use the result of Ref.15 which, using the normalization of

(10), gives

Leff (θ, ǫ) = −ρ0
[

θ̇/2 +
(∇θ)2
8m

+
(∇ǫ)2
8m

]

+N(0)

[

θ̇/2 +
(∇θ)2
8m

+
(∇ǫ)2
8m

]2

+N(0)

[

ǫ̇/2 +
∇ǫ · ∇θ
4m

]2

− 3N(0)|∆0|2ǫ2 (28)

where ǫ(x) ≡ δ|∆(x)|/(
√
3|∆0|) and we have retained corresponding terms in ǫ and θ. The

quadratic terms in ǫ yield the amplitude collective mode with a finite gap found in Ref.18

(and are also in agreement with the result of Ref.7); we have omitted higher powers of ǫ.

The term in ǫ̇/2 is made Galilean invariant by the addition of ∇ǫ · ∇θ/4m, since ǫ(x) is a

scalar. We now find that in order to rewrite (28) in “Schrödinger” form we have to introduce

a second auxiliary density feld, which we call ρǫ, in addition to the earlier density ρ, which

now becomes ρθ. Thus four fields (θ, ǫ, ρθ and ρǫ) are required, and (28) is actually equivalent

to two coupled Schrödinger equations. That is, the equations of motion for θ and ǫ which

follow from (28) are identical to those arising from

Lψ1,ψ2
= iψ∗

1ψ̇1 −
1

4m
∇ψ∗

1 · ∇ψ1 − (|ψ1|2 − ρ0/2)/N(0)

+ iψ∗
2ψ̇2 −

1

4m
∇ψ∗

2 · ∇ψ2 − (|ψ2|2 − ρ0/2)/N(0) +
3

2
N(0)|∆0|2[Im ln(ψ1/ψ2)]

2 (29)

where

ψ1 =
√

(ρθ + ρǫ)/2 exp(i(θ + ǫ)), ψ2 =
√

(ρθ − ρǫ)/2 exp(i(θ − ǫ)). (30)

For example, corresponding to (12), we have

ρθ = ρ0 −N(0)

(

θ̇ +
(∇θ)2
4m

+
(∇ǫ)2
4m

)

=
∂Leff (θ, ǫ)

∂θ̇
(31)
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and

ρǫ = −N(0)

(

ǫ̇+
∇ǫ · ∇θ
2m

)

=
∂Leff (θ, ǫ)

∂ǫ̇
. (32)

Eqn.(29) represents a system of two TDNLSL’s coupled via the “mass” term in (28). Ex-

pressions for all the conserved quantities can be found as before, and will include quantum

corrections to the semiclassical results of (23)-(26).

The inclusion of electromagnetism in the above formalism is straightforward. Consider

the formulation in terms of Leff(θ, ǫ). Since θ is the phase of a field with charge −2e,

gauge invariance implies that θ̇ and ∇θ must appear in the combinations θ̇ − 2eA0 and

∇θ + 2eA (e > 0), where A0 and A are the electromagnetic potentials. The field ǫ, on

the other hand, is electromagnetically neutral. The leading order electromagnetic charge

and current densities are obtained by multiplying δρ and j in (22) by −e and making the

above replacements for θ̇ and ∇θ. One then obtains the usual results [7]. In terms of the

Schrödinger formulation, one simply makes the expected minimal coupling substitutions:

i∂t → i∂t + 2eA0 and −i∇ → −i∇ + 2eA in (14) or (29) (note from (30) that both ψ1 and

ψ2 have charge −2e).

When the above analysis is extended to higher order derivative terms, it is clear on

dimensional grounds that some characteristic scale must enter. In fact, such higher terms

enter in the form ∂t/|∆0| and vF∇/|∆0| ∼ ξ∇ (see for example Eqn.(35) of [9]), where ξ is

the coherence length. The basis of the expansion is therefore the usual assumption [15] that

the characteristic frequency ω, and wavenumber k, of variations of ∆(x) satisfy ω ≪ |∆0|,

k ≪ ξ−1. Indeed, (28) already yields a static solution for ǫ which decays exponentially over

a characteristic distance ξ/6. Such a solution is of the type expected far from a vortex core.

Inclusion of appropriate higher derivative terms should make possible some predictions about

the vortex core structure.

The TDNLSL formulation provides, we believe, a simple and unifying framework for the
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discussion of dynamical effects in BCS superconductors at T=0. Results which have been

known for many years [2,3,6,15], as well as those obtained by quite different methods only

recently [9,14], are all seen to be in agreement with each other, and with the TDNLSL

formulation.

Note Added: After completion of this work we received a copy of a preprint by Michael

Stone [21], in which a similar conclusion is reached concerning the effective TDNLSL when

|∆| is constant.
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