ATLAS Trigger in view of LLP Triggering

Kunihiro Nagano (KEK, Japan)
on behalf of the ATLAS Collaboration

Searching for long-lived particles at the LHC 7th Workshop of the LHC LLP Community 27 May, 2020

ATLAS Run-3 Trigger

- Two-level trigger system
 - -- Level-1 (L1): 40 MHz \rightarrow ~100 kHz
 - * By custom-made electronic, fully synchronized
 - * Topological selection by L1Topo
 - -- High Level Trigger (HLT)
 - * $\sim 100 \text{ kHz} \rightarrow \sim 1-2 \text{ kHz}$
 - * Computing farm, running custom and ~offline reconstruction software
- Limitation
 - -- L1 output rate in Run-2: \sim 86 kHz @ 2×10^{34} /cm²/s
 - -- HLT farm CPU in Run-2: ~30-40 kCores (= with 100 kHz input, process time < ~300-400 ms)
 - -- HLT recording rate in Run-2: 1.75 kHz @ 2×10^{34} /cm²/s

ATLAS Run-3 Trigger [What's New]

• L1Calo

- -- Trigger readout becomes fully digitized and finer granular ("super cell")
- -- Improved e/γ , τ , jet, E_T^{miss} with new hardwares (eFEX, jFEX, gFEX)
- -- Large-R jet reconstruction available
- L1Muon (Endcap)
 - $--6 \rightarrow 15$ thresholds p_T measurement
 - -- Charge information available

HLT

- -- Multi-threaded to reduce the memory requirements of parallel event processing
- -- Some more CPUs to allow software full-scan tracking on subset of L1-accept triggers

ATLAS Trigger Menu in Run-2 (2018)

ATL-DAQ-PUB-2019-001

Single leptons Single Two μ . Two ν . One e One lo One e Two τ . One τ One τ One τ Three leptons Three leptons Three leptons Two lo Signle photon Two photons Two lo Two τ Two τ Two τ Three		Trigger Selection		L1 Peak	HLT Peak
Single leptons Single Single Single Single Single Single Single Single Single Five μ Two μ Two μ Two τ One e One lo One e Two τ One τ One τ Three t Three t Two t Two t Two lo Signle photon One lo Two photons Two photons Single jet Jet t Jet t Jet t Single jet Done t Two t	Typical offline selection	L1 [GeV]	HLT [GeV]	Rate [kHz] L=2.0×10 ³	Rate [Hz]
Single leptons Single Single Single Single Single Single Single Single Five μ Two μ Two μ Two ν One e One lo One e Two τ One τ One τ Three ρ Two lo Signle photon Signle photon Two photons Two photons Two ρ	le isolated μ , $p_T > 27$ GeV	20	26 (i)	16	218
Single leptons Single Single Single Single Single Single Two μ . Two μ . Two μ . Two τ . One e One e Three e Three leptons Three leptons Three e Three	le isolated μ , $p_T > 27$ GeV	22 (i)	26 (i)	31	195
Two leptons Two photons Three leptons Two photons Three photon Two photons	le μ , $p_T > 52 \text{ GeV}$	20	50	16	70
Two leptons Two photons Two photons Three leptons Three lepto	$le e, p_T > 61 \text{ GeV}$	22 (i)	60	28	20
Two leptons Two μ , Two μ , Two μ . Two ν . One loop one e One loop one τ One loop one τ One loop on	$le \tau, p_T > 170 \text{ GeV}$	100	160	1.4	42
Two leptons Two leptons Two ve One e One lo One e One lo One τ Three leptons Three leptons Three f Three f Two f Two lo Signle photon Two photons Two photons Jet f Jet f Jet f Jet f Two	μ , each $p_T > 15$ GeV	2 × 10	2 × 14	2.2	30
Two leptons Two leptons Two leptons One e One lo One τ One τ One τ One τ Three leptons Three leptons Three leptons Two μ Two lo Signle photon One lo Two lo Two lo Two photons Two photons Jet (R) Two (R)	μ , each $p_1 > 13 \text{ GeV}$ μ , $p_T > 23$, 9 GeV	20	22, 8	16	47
Two leptons $One \ e$ One lo One e One lo One e Two τ One τ Three leptons Three leptons Time μ Two lo Signle photon Two photons Two lo Two μ Two is Jet (R) Jet (R) Jet (R) Jet (R) One (R) Two (R) Tw	very loose e , each $p_T > 18 \text{ GeV}$	2×15 (i)	2×17	2.0	13
Three leptons One lo One e Two τ , One τ One τ Three Three Two μ Two lo Signle photon One lo Two η Two is Jet (R)	$e \& \text{ one } \mu, p_T > 8, 25 \text{ GeV}$	20 (µ)	7, 24	16	6
$ \begin{array}{c c} One \ e \\ \hline Two \ \tau, \\ One \ \tau \\ \hline One \ \tau \\ \hline One \ \tau \\ \hline Three \ I \\ \hline Three \ I \\ \hline Two \ \mu \\ \hline Two \ lo \\ \hline Two \ lo \\ \hline Two \ photons \\ \hline Two \ b \\ \hline Jet \ (R) \\ \hline Jet \ ($	loose e & one μ , $p_T > 18$, 15 GeV	15, 10	17, 14	2.6	5
Three leptons Three $\frac{1}{1}$	$e \& \text{one } \mu, p_T > 27, 9 \text{ GeV}$	22 (e, i)	26, 8	21	4
Three leptons Three $\frac{1}{1}$ Two lo Two $\frac{1}{1}$ Three	$\tau, p_{\rm T} > 40,30 {\rm GeV}$	20 (i), 12 (i) (+jets, topo)	35, 25	5.7	93
Three leptons Three μ Three μ Three μ Two μ Two lo Signle photon One lo Two photons Jet (R) Single jet Jet (R) Jet (R) Jet (R) Jet (R) Jet (R) Two (R) T	τ & one isolated μ , $p_T > 30$, 15 GeV	12 (i), 10 (+jets)	25, 14 (i)	2.4	17
Three leptons	τ & one isolated e , $p_T > 30$, 18 GeV	12 (i), 15 (i) (+jets)	25, 17 (i)	4.6	19
Three leptons $ \begin{array}{c} \text{Three } \\ \text{Two } \mu \\ \text{Two lo} \\ \text{Signle photon} \end{array} $	e very loose $e, p_{\rm T} > 25, 13, 13 {\rm GeV}$	20. 2 × 10	24. 2 × 12	1.6	0.1
Three leptons	$e \mu$, each $p_T > 7 \text{ GeV}$	3×6	3×6	0.2	7
	μ	20	$20, 2 \times 4$	16	9
Signle photon Two lo Two photons Two photons Two photons Two γ , Two iss Jet (R) Two (R)	μ & one loose $e, p_{\rm T} > 2 \times 11, 13 \text{GeV}$	$2 \times 10 \ (\mu)$	2 × 10, 12	2.2	0.5
Two lot Two photons Two photons Two γ , Two is	loose <i>e</i> & one μ , $p_{\rm T} > 2 \times 13$, 11 GeV	2 × 8, 10	2 × 12, 10	2.3	0.1
Two photons $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	loose γ , $p_{\rm T} > 145$ GeV	24 (i)	140	24	47
Two photons $\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	loose γ , each $p_{\rm T} > 55$ GeV	2 × 20	2 × 50	3.0	7
Single jet	$\gamma, p_{\rm T} > 40, 30 {\rm GeV}$	2 × 20	35, 25	3.0	21
Single jet	isolated tight γ , each $p_{\rm T} > 25$ GeV	2 × 15 (i)	2 × 20 (i)	2.0	15
$b-\text{jets} \qquad \begin{array}{c} \text{Jet } (R) \\ \text{One } b \\ \text{Two } b \\ \text{Two } b \\ \text{Two } b \\ \end{array}$ $\begin{array}{c} \text{Multijets} \qquad \begin{array}{c} \text{Four je} \\ \text{Six jets} \end{array}$	$R = 0.4$), $p_{\rm T} > 435 {\rm GeV}$	100	420	3.7	35
$b-\text{jets} \qquad \begin{array}{c} \text{One } b \\ \text{Two } b \\ \text{One } b \\ \text{Two } b \\ \text{Two } b \\ \end{array}$ $\text{Multijets} \qquad \begin{array}{c} \text{Four je} \\ \text{Five je} \\ \text{Six jets} \end{array}$	$R = 1.0$), $p_T > 480 \text{ GeV}$	111 (topo: $R = 1.0$)	460	2.6	42
b -jets $\begin{array}{c} \operatorname{Two} b \\ \operatorname{One} b \\ \operatorname{Two} b \\ \operatorname{Two} b \end{array}$ Multijets $\begin{array}{c} \operatorname{Four} \mathrm{je} \\ \operatorname{Five} \mathrm{je} \\ \operatorname{Six} \mathrm{jet} \end{array}$	$R = 1.0$), $p_{\rm T} > 450$ GeV, $m_{\rm jet} > 45$ GeV	111 (topo: $R = 1.0$)	$420, m_{\text{jet}} > 35$	2.6	36
b -jets $\begin{array}{c} \operatorname{Two} b \\ \operatorname{One} b \\ \operatorname{Two} b \\ \operatorname{Two} b \end{array}$ Multijets $\begin{array}{c} \operatorname{Four} \mathrm{je} \\ \operatorname{Five} \mathrm{je} \\ \operatorname{Six} \mathrm{jet} \end{array}$	$b \ (\epsilon = 60\%), p_{\rm T} > 285 \ {\rm GeV}$	100	275	3.6	15
b-jets One b Two b Two b Two b Multijets Five je Six jets	$b \ (\epsilon = 60\%), p_T > 185, 70 \text{ GeV}$	100	175, 60	3.6	11
$\begin{array}{c} \operatorname{Two} b \\ \operatorname{Two} b \end{array}$ $\begin{array}{c} \operatorname{Four} \mathrm{je} \\ \operatorname{Five} \mathrm{je} \\ \operatorname{Six} \mathrm{jet} \end{array}$	$b \ (\epsilon = 40\%) \ \& \text{ three jets, each } p_{\text{T}} > 85 \ \text{GeV}$	4 × 15	4 × 75	1.5	14
Multijets Four je Six jets	$b \ (\epsilon = 70\%) \ \& \ \text{one jet}, \ p_{\text{T}} > 65, 65, 160 \ \text{GeV}$	2 × 30, 85	2 × 55, 150	1.3	17
Multijets Five je Six jets	$b \ (\epsilon = 60\%) \ \& \text{ two jets, each } p_{\text{T}} > 65 \text{ GeV}$	$4 \times 15, \eta < 2.5$	4 × 55	3.2	15
Multijets Five je Six jets	jets, each $p_T > 125 \text{ GeV}$	3 × 50	4×115	0.5	16
Six jets	jets, each $p_T > 95 \text{ GeV}$	4 × 15	5 × 85	4.8	10
	ets, each $p_{\rm T} > 80 {\rm GeV}$	4 × 15	6×70	4.8	4
	ets, each $p_{\rm T} > 60$ GeV, $ \eta < 2.0$	4 × 15	$6 \times 55, \eta < 2.4$	4.8	15
$E_{ m T}^{ m miss}$ $E_{ m T}^{ m miss}$	ss > 200 GeV	50	110	5.1	94
	$\mu, p_T > 11, 6 \text{ GeV}, 0.1 < m(\mu, \mu) < 14 \text{ GeV}$	11, 6	11, 6 (di-μ)	2.9	55
Two u	μ , $p_T > 6$, 6 GeV, 2.5 < m(μ , μ) < 4.0 GeV	$2 \times 6 (J/\psi, \text{topo})$	$2 \times 6 (J/\psi)$	1.4	55
	μ , $p_T > 6$, 6 GeV, 4.7 < m(μ , μ) < 5.9 GeV	$2 \times 6 (B, topo)$	$2 \times 6 (B)$	1.4	6
	μ , $p_T > 6$, 6 GeV, $7 < m(\mu, \mu) < 12$ GeV	$2 \times 6 (\Upsilon, topo)$	2 × 6 (Y)	1.2	12
Main Rate B-physics and Light State	_			86	1750 200

Run-3 menu strategy would probably be not too far different from Run-2

- Inclusive and generic triggers, e.g.
 - -- single isolated $e/\mu > 26$ (27) GeV
 - -- $E_T^{miss} > 110 (200) \text{ GeV}$ ()=typical offline
- Dedicated triggers, targeting specific signature/physics
 -- e.g. LLP triggers
- Trigger-level Analysis (TLA)
 - -- High recording rate with trigger objects information only, e.g. low-mass di-jet resonance search
- Delayed stream
 - -- Separate recording with deferred offline processing e.x. B-physics

LLP Signatures

LLP Signatures and Run-2 Triggers

Dedicated LLP triggers

- Calo-Ratio": low EM (vs. Had) fraction jet
 → Target: LLP decays in Had Calo
- "MS vertex": muon clusters in Muon Spectrometer (MS)
 - → Target: Hadronic LLP decays in MS

Eur. Phys. J. C 79 (2019) 481

In Run-3 menu, these will likely stay with some adjustments, e.g. L1 seed for Calo-Ratio

Used in neutral LLP search 13 TeV Complementary coverage in decay length

Phys. Rev. D 99, 052005 (2019)

Dedicated LLP triggers -cont'd-

- "MS-only"
 - -- MS tracks w/o explicitly requiring to match to ID track
- "Narrow scan"
 - -- Pairs of collimated "MS-only" muons

Used in search for light neutral particles decaying into collimated leptons or light hadrons, 13 TeV

arXiv:1909.01246 (accepted by EPJC)

In Run-3, these trigger may need adjustment (e.g. to reduce CPU) with possible improvements in efficiency (e.g. lowering p_T threshold)

Dedicated LLP triggers -cont'd-

- "HIP"
 - -- Large fraction of high threshold of TRT (Transition Radiation Detector) hits
 - -- Target: heavily charged LLPs

Used in search for magnetic monopole and stable high-electric-charge object, 13 TeV

Phys. Rev. Lett. 124, 031802 (2020)

In Run-3, "HIP" trigger may need adjustment to the data taking condition in Run-3 (e.g. hit occupancy at high pileup condition).

- "Late Muon"
 - -- L1: Jet or E_T^{miss} with muon in next bunch-crossing (BC), with L1Topo
- "Empty bunch"
 - -- Non p-p collision bunches, separated by > +-5 BCs to any colliding BCs
 - -- Target: stopped LLPs

In Run-3, Late Muon can be improved by making use of upgraded L1Muon / Topo

New LLP triggers feasibility in Run-3? [Personal Remarks]

- Disclaimer: below are personal remarks (to stimulate discussion / inspiration)
- As the resources (L1 rate, HLT CPU) are limited, new triggers would be ideal if:
 - -- target phase-space / topology is really uncovered by the other triggers
 - -- well motivated by theory
- Can we extend reach with dedicated LLP triggers, over conventional triggers?
 - -- Is there interesting phase space that is not yet explored due to topology assumptions by using conventional triggers (e.g. low E_T^{miss} , no ISR, no leptons)?

For example, tracking signatures direct detection in trigger (e.g. disappearing track, displaced vertex) useful? Although:

- * HLT farm is very CPU limited; impossible to run complicated offline tool as it is
- * It can be only on subset of L1 triggers

New LLP triggers feasibility in Run-3? [Personal Remarks] -cont'd-

- Disclaimer: below are personal remarks (to stimulate discussion / inspiration)
- Any uncovered topology?

-- Hadronic decays in EM calo (after ID) etc?

• Any uncovered phase-space?

-- Lower p_T object (e.g. lower p_T Calo-Ratio, lower p_T muon, etc.)

Any trigger-level analysis (TLA) application

also for LLPs?

Non-LLP example low-mass di-jet resonance search

High rate = down to lower mass, p_T ...

Disappearing tracks Multi-track vertices in ID Muon **Emerging jets** Displaced lepton, lepton-jets **Multi-iets** "MS-only", "Narrow scan" Trackless, displaced jets "Calo-ratio" (meta) stable charged particles Multi-track vertices in MS Etmiss, "HIP" "MS vertex"

Any ideas highly welcome!
= It's still not too late to
start up new trigger R&D
(in my personal view)

Summary

- Major upgrades in ATLAS Trigger, both on L1 and HLT, are actively under way, toward Run-3
- Many LLP signatures are covered by several dedicated triggers, for example for neutral LLP decays hadronic calorimeter or later, as well as by conventional triggers such as inclusive E_T^{miss} trigger
- Ideal if we could expand / enhance physics sensitivity for LLP search by exploiting new / improved triggers at Run-3

Backup Slides

Run-1 ATLAS Trigger

HLT (software-based) is sub-divided into L2 (before event building, "fast") and Event Filter (after event building, "precision")

Run-2 ATLAS Trigger

Explicit division of HLT (software-based) is removed, to allow for more flexibility.

(Run-3 is same, in architecture point of view, with upgrades in components)

calRatio: 2015-2016

- Targets LLP decays in HCal
 - High ratio of energy deposited in HCal to energy deposited in the ECal
 - Narrow shower
 - No associated activity in the tracker
- L1
 - High-E_T: 60 GeV τ trigger
 - Low-E_T: 30 GeV τ trigger w/ no ≥3 GeV ECal deposits nearby
 - Exploits L1Topo capabilities Introduced in mid-2016
- HLT
 - Tracking performed in Rols around jets with E_T > 30 GeV and E_{EM}/E_H < 0.06
 - Veto presence of tracks with $p_T > 2$ GeV within $\Delta R(jet) < 0.2$
 - Veto Beam-Induced Background (BIB) via cell timing/ position
- Offline strategy: use MVAs to discriminate against QCD and BIB background

calRatio: Run 3

- Lowest un-prescaled single-tau trigger threshold raised to 100 GeV in 2017
 - Recovering lost efficiency by also accepting 30 GeV L1 τ with E_{EM}/E_H < 0.1
- Future developments:
 - Cluster-level pileup removal
 - Port MVAs from offline to trigger

Muon Rol cluster

- Targets hadronic LLP decays in the MS
 - Resulting charged hadrons will be reconstructed as a cluster of muons
- L1: 2 muons with p_T > 10 GeV
- HLT: require at least 3 (4) L1 muons within $\Delta R < 0.4$ in barrel (endcaps)
- Offline strategy: reconstruct vertex from MS "tracklets"
- Trigger expected to remain throughout Run 3

Muon Narrow Scan

- Targets decays to collimated muons between IBL and MS
- L1: muon with p_T > 20 GeV
- HLT
 - Require reconstruction of L1 muon as as standalone MS muon
 - Scan within $\Delta R < 0.5$ for 2nd standalone MS muon (variable pt threshold)
- Offline strategy:
 - Use MVA to discriminate against cosmic muon background
 - Require ≥2 "dark photon jets" with ≥2 muons each (also an electron/pion channel which uses the calRatio trigger)
- Run 3:
 - Scan is slow, making rate somewhat high (even in 2016)
 - Increasing 2nd muon p_T threshold significantly reduces H(125) efficiency
 - Work ongoing to improve efficiency for Run 3

