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Abstract

The decays B+→ J/ψπ+π−K+ are studied using a data set corresponding to an in-
tegrated luminosity of 9 fb−1 collected with the LHCb detector in proton-proton
collisions between 2011 and 2018. Precise measurements of the ratios of branching
fractions with the intermediate ψ2(3823), χc1(3872) and ψ(2S) states are reported.
The values are

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−
= (3.56± 0.67± 0.11)× 10−2 ,

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (1.31± 0.25± 0.04)× 10−3 ,

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (3.69± 0.07± 0.06)× 10−2 ,

where the first uncertainty is statistical and the second is systematic. The decay
of B+→ ψ2(3823)K+ with ψ2(3823)→ J/ψπ+π− is observed for the first time with
a significance of 5.1 standard deviations. The mass differences between the ψ2(3823),
χc1(3872) and ψ(2S) states are measured to be

mχc1(3872) −mψ2(3823) = 47.50± 0.53± 0.13 MeV/c2 ,

mψ2(3823) −mψ(2S) = 137.98± 0.53± 0.14 MeV/c2 ,

mχc1(3872) −mψ(2S) = 185.49± 0.06± 0.03 MeV/c2 ,

resulting in the most precise determination of the χc1(3872) mass. The width
of the ψ2(3823) state is found to be below 5.2 MeV at 90% confidence level.
The Breit–Wigner width of the χc1(3872) state is measured to be

ΓBW
χc1(3872)

= 0.96+0.19
− 0.18 ± 0.21 MeV ,

which is inconsistent with zero by 5.5 standard deviations.
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1 Introduction

The observation of a narrow χc1(3872) state in the J/ψπ+π− mass spectrum
of B+→ J/ψπ+π−K+ decays by the Belle collaboration in 2003 [1] has led to a renewed
interest in the study of hadrons containing heavy quarks. Many new charmonium-like
states have since been observed [2]. Some of the new states are unambiguously inter-
preted as conventional cc states, some are manifestly exotic [3–9], while for the others
a definite interpretation is still missing [10–12]. Despite the large amount of experimental
data [13–40], the nature of the χc1(3872) state is still unclear. Several interpretations
have been proposed, such as a conventional χc1(2P) state [41], a molecular state [42–44],
a tetraquark [45], a ccg hybrid state [46], a vector glueball [47] or a mixed state [48,49].
Precise measurements of the resonance parameters, namely the mass and the width, are
crucial for the correct interpretation of the state. Comparison of the decays of beauty
hadrons with final states involving the χc1(3872) particle and those involving other char-
monium resonances can shed light on the production mechanism, in particular, on the role
of D0D∗0 rescattering [50].

A recent analysis of D0D0 and D+D− mass spectra, performed by the LHCb collabora-
tion [51], led to the observation of a new narrow state, ψ3(3842), interpreted as a spin-3
component of the D-wave charmonium triplet, ψ3(1

3D3) state [52, 53], and a precise
measurement of the mass of the vector component of this triplet, the ψ(3770) state.
Evidence for the third, tensor component of the triplet, the ψ2(3823) state1, was re-
ported by the Belle collaboration in the B→ (ψ2(3823)→ χc1γ) K decays [55]. This was
confirmed by the BES III collaboration with a significance in excess of 5 standard de-
viations [56]. The partial decay widths of the ψ2(3823) resonance are calculated to be
Γψ2(3823)→χc1γ = 215 keV [57], Γψ2(3823)→χc2γ = 59 keV [57], Γψ2(3823)→ggg = 36 keV [58], and
Γψ2(3823)→J/ψππ ' 160 keV [59], corresponding to a total width of 470 keV and a branching
fraction Bψ2(3823)→J/ψππ of 34% [60]. The predicted width is much smaller than the upper
limit of 16 MeV at 90% confidence level (CL) set by the BES III collaboration [56].

In this paper, a sample of B+→ (Xcc→ J/ψπ+π−) K+ decays2 is analysed, where Xcc

denotes the ψ2(3823), χc1(3872) or ψ(2S) state and the J/ψ meson is reconstructed in
the µ+µ− final state. The study is based on proton-proton (pp) collision data, correspond-
ing to an integrated luminosity of 1, 2, and 6 fb−1, collected with the LHCb detector at
centre-of-mass energies of 7, 8, and 13 TeV, respectively. This data sample allows studies of
the properties of the ψ2(3823) and χc1(3872) states produced in B decay recoiling against
a kaon. The presence of the ψ(2S) state in the same sample provides a convenient sample
for normalisation and reduction of potential systematic uncertainties. A complementary
measurement using inclusive b→ (χc1(3872)→ J/ψπ+π−) X decays and a data set, cor-
responding to an integrated luminosity of 1 and 2 fb−1, collected at the centre-of-mass
energies of 7 and 8 TeV, is reported in Ref. [61]. This gives a determination of the resonance
parameters for the χc1(3872) state with an unprecedented precision, including searches for
the poles of the complex Flatté-like amplitude.

1A hint for this state was reported in 1994 by the E705 experiment in studies of the J/ψπ+π− final
state in pion-lithium collisions with a statistical significance of 2.8 standard deviations [54].

2Inclusion of charge-conjugate states is implied throughout the paper.
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2 Detector and simulation

The LHCb detector [62, 63] is a single-arm forward spectrometer covering
the pseudorapidity range 2 < η < 5, designed for the study of particles containing
b or c quarks. The detector includes a high-precision tracking system consisting of
a silicon-strip vertex detector surrounding the pp interaction region [64], a large-area
silicon-strip detector located upstream of a dipole magnet with a bending power of about
4 Tm, and three stations of silicon-strip detectors and straw drift tubes [65, 66] placed
downstream of the magnet. The tracking system provides a measurement of the mo-
mentum of charged particles with a relative uncertainty that varies from 0.5% at low
momentum to 1.0% at 200 GeV/c. The momentum scale is calibrated using samples
of J/ψ→ µ+µ− and B+→ J/ψK+ decays collected concurrently with the data sample
used for this analysis [67, 68]. The relative accuracy of this procedure is estimated to
be 3 × 10−4 using samples of other fully reconstructed b hadrons, Υ and K0

S mesons.
The minimum distance of a track to a primary pp-collision vertex (PV), the impact param-
eter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is the component of
the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors (RICH) [69].
Photons, electrons and hadrons are identified by a calorimeter system consisting of scin-
tillating-pad and preshower detectors, an electromagnetic and a hadronic calorimeter.
Muons are identified by a system composed of alternating layers of iron and multiwire
proportional chambers [70].

The online event selection is performed by a trigger [71], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a software
stage, which applies a full event reconstruction. The hardware trigger selects muon
candidates with high transverse momentum or dimuon candidates with a high value of
the product of the pT of each muon. In the software trigger two oppositely charged muons
are required to form a good-quality vertex that is significantly displaced from every PV,
with a dimuon mass exceeding 2.7 GeV/c2.

Simulated events are used to describe the signal shapes and to compute efficiencies,
needed to determine the branching fraction ratios. In the simulation, pp collisions are
generated using Pythia [72] with a specific LHCb configuration [73]. Decays of unstable
particles are described by the EvtGen package [74], in which final-state radiation is
generated using Photos [75]. The ψ2(3823)→ J/ψπ+π− decays are simulated using
a phase-space model. The χc1(3872)→ J/ψπ+π− decays are simulated proceeding via
the S-wave J/ψρ0 intermediate state [34]. For the ψ(2S) decays the model described in
Refs. [76–79] is used. The interaction of the generated particles with the detector, and
its response, are implemented using the Geant4 toolkit [80] as described in Ref. [81].
To account for imperfections in the simulation of charged-particle reconstruction, the track
reconstruction efficiency determined from simulation is corrected using data-driven tech-
niques [82].

3 Event selection

Candidate B+→ J/ψπ+π−K+ decays are reconstructed using the J/ψ→ µ+µ− decay mode.
A loose preselection similar to Refs. [37, 83–93] is applied, followed by a multivariate
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classifier based on a decision tree with gradient boosting (BDT) [94].
Muon, pion and kaon candidates are identified by combining information from the RICH,

calorimeter and muon detectors [95]. The transverse momentum of muon (hadron) candi-
ates is required to be larger than 550 (220) MeV/c. To allow for efficient particle identifi-
cation, kaons and pions are required to have a momentum between 3.2 and 150 GeV/c.
To reduce combinatorial background, only tracks that are inconsistent with originating
from any reconstructed PV in the event are considered. Pairs of oppositely charged muons
consistent with originating from a common vertex are combined to form J/ψ→ µ+µ− can-
didates. The reconstructed mass of the pair is required to be between 3.0 and 3.2 GeV/c2.

To form the B+ candidates, the selected J/ψ candidates are combined with a pair of
oppositely charged pions and a positively charged kaon. Each B+ candidate is associated
with the PV that yields the smallest χ2

IP, where χ2
IP is defined as the difference in the ver-

tex-fit χ2 of a given PV reconstructed with and without the particle under consideration.
To improve the mass resolution for the B+ candidates, a kinematic fit [96] is performed.
This fit constrains the mass of the µ+µ− pair to the known mass of the J/ψ meson [2] and
constraints the B+ candidate to originate from its associated PV. In addition, the mea-
sured decay time of the B+ candidate, calculated with respect to the associated PV,
is required to be greater than 75µm/c. This requirement suppresses background from
particles originating from the PV.

A BDT is used to further suppress the combinatorial background. It is trained using
a simulated sample of B+→ (ψ2(3823)→ J/ψπ+π−) K+ decays as the signal. For the back-
ground, a sample of J/ψπ+π+K− combinations with same-sign pions in data, passing
the preselection criteria and having the mass in the range between 5.20 and 5.35 GeV/c2, is
used. The k-fold cross-validation technique [97] with k = 13 is used to avoid introducing
a bias in the BDT evaluation. The BDT is trained on variables related to the reconstruction
quality, decay kinematics, decay time of B+ candidate and the quality of the kinematic
fit. The requirement on the BDT output is chosen to maximize ε/(α/2 +

√
B) [98],

where ε is the signal efficiency for the B+→ ψ2(3823)K+ decays obtained from simulation;
α = 5 is the target signal significance in units of standard deviations; B is the ex-
pected background yield within narrow mass windows centred at the known B+ and
ψ2(3823) masses [2]. The mass distribution of selected B+→ J/ψπ+π−K+ candidates
is shown in Fig. 1. The data are fit with a sum of a modified Gaussian function with
power-law tails on both sides [99, 100] and a linear polynomial combinatorial background
component. The B+ signal yield is (547.8± 0.8)× 103 candidates.

4 Signal yields, masses and widths

The yields for the B+→ (Xcc→ J/ψπ+π−) K+ decays are determined using
a two-dimensional unbinned extended maximum-likelihood fit to the J/ψπ+π−K+ mass,
mJ/ψπ+π−K+ , and the J/ψπ+π− mass, mJ/ψπ+π− , distributions. The fit is performed simul-
taneously in the three non-overlapping regions

• 3.67 ≤ mJ/ψπ+π− < 3.70 GeV/c2 ,

• 3.80 ≤ mJ/ψπ+π− < 3.85 GeV/c2 ,

• 3.85 ≤ mJ/ψπ+π− < 3.90 GeV/c2 ,
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Figure 1: Distribution for the J/ψπ+π−K− mass for selected B+ candidates (points with error
bars). A fit, described in the text, is overlaid.

corresponding to the B+→ ψ(2S)K+, B+→ ψ2(3823)K+ and B+→ χc1(3872)K+ de-
cays. For each of the three regions the J/ψπ+π−K+ mass is restricted to
5.20 ≤ mJ/ψπ+π−K+ < 5.35 GeV/c2. To improve the resolution on the J/ψπ+π− mass and
to eliminate a small correlation between mJ/ψπ+π−K+ and mJ/ψπ+π− variables, the mJ/ψπ+π−

variable is computed using a kinematic fit [96] that constrains the mass of the B+ candi-
date to its known value [2]. In each region, the fit function is defined as a sum of four
components:

1. signal B+→ XccK
+ decays parameterised as a product of the B+ and Xcc signal

templates described in detail in the next paragraph;

2. contribution from the decays B+→ (J/ψπ+π−)NR K+ with no narrow intermediate
Xcc state, parameterised as a product of the B+ signal template and a linear function
of mJ/ψπ+π− ;

3. random combinations of Xcc and K+ candidates, parameterised as a product of
the Xcc signal template and a linear function of mJ/ψπ+π−K+ ;

4. random J/ψπ+π−K+ combinations, described below.
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The templates for the B+ signals are described by a modified Gaussian function with
power-law tails on both sides of the distribution [99, 100]. The tail parameters are
fixed to the values obtained from simulation. The narrow Xcc signal templates are
parameterised with S-wave relativistic Breit–Wigner functions convolved with the mass
resolution. Due to the proximity of the χc1(3872) state to the D0D∗0 threshold, modelling
this component as a Breit–Wigner function may not be adequate [101–105]. However,
the analysis from Ref. [61] demonstrates that a good description of data is obtained with
a Breit–Wigner lineshape when the mass resolution is included. The mass resolution is
described by a symmetric modified Gaussian function with power-law tails on both sides of
the distribution, with the parameters fixed to the values from simulation. In the template
for the B+ signal, the peak-position parameter is shared between all three decays and
allowed to vary in the fit. The mass resolutions used in the B+ and Xcc signal templates are
fixed to the values determined from simulation, but are corrected by common scale factors,
fB+ and fXcc

, to account for a small discrepancy in the mass resolution between data and
simulation. The masses of the Xcc signal templates, as well as the Breit–Wigner widths for
the ψ2(3823) and χc1(3872) states, are free fit parameters, while the width in the template
for the ψ(2S) signal is fixed to its known value [2]. The combinatorial-background
component is modelled with a smooth two-dimensional function

E(mJ/ψπ+π−K+)× P3,4(mJ/ψπ+π−)× P2D(mJ/ψπ+π−K+ ,mJ/ψπ+π−), (1)

where E(mJ/ψπ+π−K+) is an exponential function, P3,4(mJ/ψπ+π−) is a three-body
phase-space function [106], and P2D is a two-dimensional positive bilinear function, which
accounts for small non-factorizable effects. For the considered fit ranges P3,4(mJ/ψπ+π−) is
close to a constant.

The J/ψπ+π−K+ and J/ψπ+π− mass distributions together with projections of the si-
multaneous unbinned maximum-likelihood fit are shown in Fig. 2. Signal yields NB+→XccK+ ,
calculated mass differences δmXcc

≡ mXcc
−mψ(2S), Breit–Wigner widths ΓXcc

and resolu-
tion scale factors are listed in Table 1. The fit model is tested using pseudoexperiments
and no bias is found in the results and their associated uncertainties. The masses of
B+ and ψ(2S) mesons are found to be compatible with their known values [2]. The fit
component corresponding to the B+→ (J/ψπ+π−)NR K+ is found to be negligible for
the ψ(2S) region, dominant for the ψ2(3823) region and small for the χc1(3872) region.
The fit component corresponding to the random XccK

+ combinations is negligible for all
fit regions. The statistical significance of the observed B+→ (ψ2(3823)→ J/ψπ+π−) K+

signal over the background-only hypothesis is estimated to be 5.1 standard deviations
using Wilks’ theorem [107]. The significance is confirmed by simulating a large number of
pseudoexperiments according to the background distribution observed in data.

The likelihood profiles for the Breit–Wigner widths of ψ2(3823) and χc1(3872) states are
presented in Fig. 3. From these profiles the Breit–Wigner width of the χc1(3872) state is
found to be inconsistent with zero by 5.5 standard deviations, while for the ψ2(3823) state
the width is consistent with zero.
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Figure 2: Distributions of the (left) J/ψπ+π−K+ and (right) J/ψπ+π− mass for selected
(top) B+→ ψ(2S)K+, (middle) B+→ ψ2(3823)K+ and (bottom) B+→ χc1(3872)K+ candidates
shown as points with error bars. A fit, described in the text, is overlaid.

5 Ratios of branching fractions

Ratios of branching fractions, RX
Y, are defined as

RX
Y ≡

BB+→XK+ × BX→J/ψπ+π−

BB+→YK+ × BY→J/ψπ+π−
, (2)
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where X, Y stand for either the ψ2(3823), χc1(3872) or ψ(2S) states. They are estimated
as

RX
Y =

NB+→XK+

NB+→YK+

× εB
+→YK+

εB+→XK+

, (3)

where N is the signal yield reported in Table 1 and ε denotes the efficiency of the cor-
responding decay. The efficiency is defined as the product of geometric acceptance,
reconstruction, selection, hadron identification and trigger efficiencies, where each sub-
sequent efficiency is defined with respect to the previous one. All of the contributions,
except that of the hadron-identification efficiency, are determined using simulated sam-
ples. The hadron-identification efficiency is determined using large calibration samples of
D∗+→ (D0→ K−π+)π+, K0

S→ π+π− and D+
s → (φ→ K+K−)π+ decays selected in data

Table 1: Parameters of interest and derived quantities from the simultaneous unbinned extended
maximum-likelihood two-dimensional fit. Results and statistical uncertainties are shown for
the three fit regions.

Parameter B+→ ψ(2S)K+ B+→ ψ2(3823)K+ B+→ χc1(3872)K+

NB+→XccK+ (81.14± 0.29)× 103 137± 26 4230± 70
δmXcc

[MeV/c2] — 137.98± 0.53 185.49± 0.06
ΓXcc

[MeV] 0.29 (fixed) 0 + 0.68
− 0.00 0.96 + 0.19

− 0.18

fB+ 1.052± 0.003
fXcc

1.048± 0.004
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for kaons and pions [69,108]. The ratios of the efficiencies are determined to be

εB+→χc1(3872)K+

εB+→ψ2(3823)K+

= 1.098± 0.003 ,

εB+→ψ(2S)K+

εB+→ψ2(3823)K+

= 0.778± 0.003 ,

εB+→ψ(2S)K+

εB+→χc1(3872)K+

= 0.708± 0.003 ,

(4)

where the uncertainty reflects the limited size of the simulated samples. Other sources
of systematic uncertainty are discussed in the following section. The ratios of the ef-
ficiencies differ from unity mostly due to the different pion momentum spectra in the
different Xcc→ J/ψπ+π− decays.

6 Systematic uncertainty

Due to the similar decay topologies, systematic uncertainties largely cancel in the ratios
RX

Y. The remaining contributions are listed in Table 2 and are discussed below.
The systematic uncertainty related to the signal and background shapes is investigated

using alternative parameterisations. A generalized Student’s t-distribution [109], an Apol-
lonios function [110] and a modified Novosibirsk function [111] are used as alternative
models for the B+ signal template. For the Xcc signal template, alternative parameterisa-
tions of the mass resolution, namely a symmetric variant of an Apollonios function [110],
a Student’s t-distribution and a sum of two Gaussian functions sharing the same mean are
considered. In addition, P-wave and D-wave relativistic Breit–Wigner functions are used
as alternative ψ2(3823) signal templates, and the Blatt–Weisskopf barrier factors [112] are
varied between 1.5 and 5 GeV−1. The width of the ψ(2S) state, fixed in the fit, is varied
between 270 and 302 keV [2]. The maximal deviations in the ratios RX

Y with respect to
the baseline fit model are taken as systematic uncertainties for each of the systematic signal
model sources. For the systematic uncertainty related to the modelling of the smooth
polynomial functions, pseudoexperiments with about 107 simulated events (approximately
100 times large than data sample are generated with the baseline fit model and fitted
with alternative background models. In this study the degree of the polynomial functions
is varied from the first to the second order, separately for each fit component and each
channel. In each case the ratio RX

Y is computed and the maximal difference with respect
to the baseline fit model is taken as a corresponding systematic uncertainty.

Since the decay model for ψ2(3823)→ J/ψπ+π− is unknown, a phase-space model
is used in simulation. To probe the associated systematic uncertainty the model dis-
cussed in Ref. [59] is used. This model accounts for the quantum-chromodynamics
multipole expansion [113], as well as the effective description of the coupled-channel effects
via hadronic-loop mechanism [114] with the interference phase Φ as a free parameter.
The π+π− mass spectrum and the angular distributions in the decay strongly depend
on the phase Φ, however, the efficiency for the B+→ (ψ2(3823)→ J/ψπ+π−) K+ decays
is found to be stable. It varies within 0.2% with respect to the efficiency computed for
the phase-space model when the unknown phase Φ varies in the range −π ≤ Φ < π.

An additional uncertainty arises from differences between the data and simula-
tion, in particular differences in the reconstruction efficiency of charged-particle tracks.
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The track-finding efficiencies obtained from the simulation samples are corrected using
data-driven techniques [82]. The uncertainties related to the correction factors, together
with the uncertainty in the hadron-identification efficiency due to the finite size of
the calibration samples [69, 108], are propagated to the ratio of total efficiencies using
pseudoexperiments.

The systematic uncertainty related to the trigger efficiency is estimated using large
samples of the B+→ J/ψK+ and B+→ ψ(2S)K+ decays by comparing the ratios of trigger
efficiencies in data and simulation [83]. The imperfect data description by the simulation
due to remaining effects is studied by varying the BDT selection criteria in ranges that lead
to ±20% change in the measured efficiency. The resulting variations in the efficiency ratios
do not exceed 1%, which is taken as a corresponding systematic uncertainty. The last
systematic uncertainty considered for the ratio RX

Y is due to the finite size of the simulated
samples.

For each choice of the fit model, the statistical significance of the observed
B+→ (ψ2(3823)→ J/ψπ+π−) K+ signal is calculated from fit to data using Wilks’ the-
orem. The smallest significance found is 5.1 standard deviations, numerically close to
the value obtained from the baseline fit model.

The systematic uncertainties on the mass differences between the ψ2(3823), χc1(3872)
and ψ(2S) states are summarized in Table 3. An important source of systematic un-
certainty is due to the signal and background shapes. Different parameterisations of
the signal templates and non-signal components, described above, are used as the al-
ternative fit models. The maximal deviation in the mass differences with respect to
the baseline results is assigned as the corresponding systematic uncertainty. The un-
certainty in the momentum-scale calibration, important for mass measurements, e.g.
Refs. [51,67,68,84,89,92,93,115–124], largely cancels for the mass differences. The as-
sociated systematic uncertainty is evaluated by varying the momentum scale within its
known uncertainty [68] and repeating the fit. The J/ψπ+π− mass is computed constrain-
ing the mass of the B+ candidate to the known value, mB+ = 5279.25± 0.26 MeV/c2 [2].
The uncertainty on the B+ meson mass is propagated to the measured mass differences.

The main source of systematic uncertainty for the Breit–Wigner widths Γψ2(3823) and

Table 2: Relative systematic uncertainties (in %) for the ratios of branching fractions RX
Y.

Source Rψ2(3823)
χc1(3872)

Rψ2(3823)
ψ(2S) Rχc1(3872)

ψ(2S)

Signal and background shapes
B+ signal template 0.6 0.5 0.1
Xcc signal template 0.3 0.2 0.2
Polynomial components 2.5 2.7 0.2
ψ2(3823) decay model 0.2 0.2 —
Efficiency corrections < 0.1 0.2 0.2
Trigger efficiency 1.1 1.1 1.1
Data-simulation agreement 1.0 1.0 1.0
Simulation sample size 0.3 0.4 0.4

Sum in quadrature 3.0 3.2 1.6
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Table 3: Systematic uncertainties (in MeV/c2) for the mass splitting between the ψ2(3823),
χc1(3872) and ψ(2S) states.

Source mψ2(3823) −mψ(2S) mχc1(3872) −mψ(2S) mχc1(3872) −mψ2(3823)

Signal and background shapes
B+ signal template 0.023 0.002 0.023
Xcc signal template 0.115 0.005 0.110
Polynomial components 0.070 0.001 0.070

Momentum scale 0.004 0.009 0.005
B+ mass uncertainty 0.021 0.029 0.008

Sum in quadrature 0.138 0.031 0.133

Γχc1(3872) is due to the signal and background shapes. The maximal Γχc1(3872) deviation of
0.21 MeV is taken as the systematic uncertainty. For all the fits, the Γψ2(3823) parameter
is found to be consistent with zero, and an upper limit is obtained from analysis of
the likelihood profile curve. The maximal value of the upper limits is conservatively
taken as the estimate that accounts for the systematic uncertainty

Γψ2(3823) < 5.2 (6.6) MeV at 90 (95)% CL. (5)

The systematic uncertainty due to the mismodelling of the experimental resolution in
simulation is accounted for with the resolution scale factors fB+ and fXcc

and therefore is
included as a part of the statistical uncertainty. A small dependency of the scale factor
fXcc

on the dipion momentum for the ψ(2S)→ J/ψπ+π− decay is reported in Ref. [61].
Such effect causes a bias in the effective scale factor for different decays due to slightly
different dipion spectra. Such bias is found to be negligible with respect to the statistical
uncertainty for the factor fXcc

.
The analysis is carried out by neglecting any interference effects between the Xcc reso-

nances and other components. Such an assumption can bias the measurement of the mass
and width-parameters associated to the Xcc states. To account for such interference
effects a full amplitude analysis is required, which is beyond the scope of this study.
However, to estimate the possible effect of this assumption on the χc1(3872) mass and
width-parameters, the background-subtracted J/ψπ+π− mass distribution in the χc1(3872)
region is studied with the sPlot technique used for background subtraction [125] using
the J/ψπ+π−K+ mass as the discriminative variable. The distribution is fit with a model
that accounts for the signal, coherent and incoherent backgrounds

F(m) = N
(∣∣ABW(m) + bc(m) eiδ(m)

∣∣2 ~R
)

+ b2i (m) , (6)

where ABW(m) is a Breit–Wigner amplitude, convolved with the mass resolution function
R, and N stands for a normalisation constant. The coherent and incoherent background
components bc(m) and b2i (m) are parameterised with polynomial functions. The relative in-
terference phase δ(m) is taken to be constant for the narrow 3.85 ≤ mJ/ψπ+π− < 3.90 GeV/c2

region, δ(m) ≡ δ0. An equally good description of data is achieved for totally inco-
herent (bc(m) ≡ 0) and coherent (b2i (m) ≡ 0) background hypotheses, as well as for any
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intermediate scenarios with the phase δ0 close to π
2
. The latter reflects a high symmetry

of the observed χc1(3872) lineshape. For all scenarios, variations of the mass and width
parameters are limited to 50 keV/c2 and 150 keV, respectively.

7 Results and summary

The decay of B+→ (ψ2(3823)→ J/ψπ+π−) K+ is observed for the first time with
a significance of 5.1 standard deviations. The signal yield of 137± 26 candi-
dates, together with 4230± 70 B+→ (χc1(3872)→ J/ψπ+π−) K+ and (81.14± 0.29)× 103

B+→ (ψ(2S)→ J/ψπ+π−) K+ signal candidates, allows for a precise determination of
the ratios of the branching fractions

Rψ2(3823)
χc1(3872)

=
BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−
= (3.56± 0.67± 0.11)× 10−2 ,

Rψ2(3823)
ψ(2S) =

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (1.31± 0.25± 0.04)× 10−3 ,

Rχc1(3872)
ψ(2S) =

BB+→χc1(3872)K+ × Bχc1(3872)→J/ψπ+π−

BB+→ψ(2S)K+ × Bψ(2S)→J/ψπ+π−
= (3.69± 0.07± 0.06)× 10−2 ,

where the first uncertainty is statistical and the second is systematic. The last ratio is in
good agreement with, but significantly more precise than the value of (4.0± 0.4)× 10−2,
derived from Ref. [2]. Only two ratios RX

Y are statistically independent. The non-zero

correlation coefficients are +97% for Rψ2(3823)
χc1(3872)

and Rψ2(3823)
ψ(2S) , and −7% for Rψ2(3823)

χc1(3872)

and Rχc1(3872)
ψ(2S) . The product of branching fractions for the decay via the intermediate

ψ2(3823) state is calculated to be

BB+→ψ2(3823)K+ × Bψ2(3823)→J/ψπ+π− = (2.82± 0.54± 0.09± 0.10)× 10−7 ,

where the last uncertainty is due to the knowledge of the branching fractions for
B+→ ψ(2S)K+ and ψ(2S)→ J/ψπ+π− decays [2]. Combined with the calculated value
of Bψ2(3823)→J/ψππ [60] this yields BB+→ψ2(3823)K+ = (1.24 ± 0.25) × 10−6. This is smaller
but more precise than the value of (2.1± 0.7)× 10−5 derived from the measurement of
BB+→ψ2(3823)K+×Bψ2(3823)→χc1γ = (9.7±2.8±1.1)×10−6 by the Belle collaboration [55] and
the estimate for Bψ2(3823)→χc1γ [60]. Within a factorization approach the branching fraction
for the decay B+→ ψ2(3823)K+ vanishes, and a large value for this branching fraction

requires a large contribution of the D
(∗)+
s D(∗)0 rescattering amplitudes in the B+→ ccK+ de-

cays [60]. This measurement of the branching fraction for the B+→ ψ2(3823)K+ decay

allows for a more precise estimation of the role of the D
(∗)+
s D(∗)0 rescattering mecha-

nism [60].
Using a Breit−Wigner parameterisation, the mass differences between the ψ2(3823),

χc1(3872) and ψ(2S) states are found to be

mχc1(3872) −mψ2(3823) = 47.50± 0.53± 0.13 MeV/c2 ,

mψ2(3823) −mψ(2S) = 137.98± 0.53± 0.14 MeV/c2 ,

mχc1(3872) −mψ(2S) = 185.49± 0.06± 0.03 MeV/c2 .

Only two from three mass differences are independent. Two non-zero correlation coefficients
are−93% for mχc1(3872)−mψ2(3823) and mψ2(3823)−mψ(2S) and +10% for mχc1(3872)−mψ2(3823)

and mχc1(3872) −mψ(2S).
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The Breit–Wigner width of the χc1(3872) state is found to be

Γχc1(3872) = 0.96+0.19
− 0.18 ± 0.21 MeV ,

which is inconsistent with zero by 5.5 standard deviations. The width of the ψ2(3823) state
is found to be consistent with zero and an upper limit at 90% (95%) confidence level is
set at

Γψ2(3823) < 5.2 (6.6) MeV .

The value of the Breit–Wigner width Γχc1(3872) agrees well with the value from the analysis
of a large sample of χc1(3872)→ J/ψπ+π− decays from the inclusive decays of beauty
hadrons [61]. Using the known value of the ψ(2S) mass [2], the Breit−Wigner masses for
the ψ2(3823) and χc1(3872) states are computed to be

mψ2(3823) = 3824.08± 0.53± 0.14± 0.01 MeV/c2 ,

mχc1(3872) = 3871.59± 0.06± 0.03± 0.01 MeV/c2 ,

where the last uncertainty is due to the knowledge of the ψ(2S) mass. These are the most
precise measurements of these masses.

The mass difference between χc1(3872) andψ(2S) states is more precise than the average
reported in Ref. [2]. It also agrees well with the measurement from Ref. [61]. Taking into
account a partial overlap of the data sets and correlated part of systematic uncertainty,
the LHCb average mass difference and the mass of the χc1(3872) state are

mχc1(3872) −mψ(2S)

∣∣
LHCb

= 185.54± 0.06 MeV/c2 ,

mχc1(3872)

∣∣
LHCb

= 3871.64± 0.06± 0.01 MeV/c2 ,

where the second uncertainty is due to the knowledge of the ψ(2S) mass. The difference be-
tween the mχc1(3872) mass, determined from the Breit–Wigner fit, and the D0D∗0 threshold
δE ≡ ( mD0 +mD∗0) c2 −mχc1(3872)c

2 is computed to be

δE = 0.12± 0.13 MeV ,

δE|LHCb = 0.07± 0.12 MeV ,

where the first value corresponds to the measurement performed in this analysis, while
the second one is an average with results from Ref. [61]. A value of 3871.70± 0.11 MeV/c2

is taken for the threshold mD0 +mD∗0 , calculated from Ref. [2,61], accounting for the cor-
relation due to the knowledge of the charged and neutral kaon masses between the mea-
surements. The uncertainty on δE is now dominated by the knowledge of kaon masses.
These are the most precise measurements of the χc1(3872) mass and δE parameter.
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F. Lazzari28,u, R. Le Gac10, S.H. Lee82, R. Lefèvre9, A. Leflat39,47, O. Leroy10, T. Lesiak33,
B. Leverington16, H. Li71, L. Li62, P. Li16, X. Li66, Y. Li6, Y. Li6, Z. Li67, X. Liang67, T. Lin60,
R. Lindner47, V. Lisovskyi14, R. Litvinov26, G. Liu71, H. Liu5, S. Liu6, X. Liu3, A. Loi26,
J. Lomba Castro45, I. Longstaff58, J.H. Lopes2, G. Loustau49, G.H. Lovell54, Y. Lu6,
D. Lucchesi27,n, S. Luchuk40, M. Lucio Martinez31, V. Lukashenko31, Y. Luo3, A. Lupato61,
E. Luppi20,g, O. Lupton55, A. Lusiani28,s, X. Lyu5, L. Ma6, S. Maccolini19,e, F. Machefert11,
F. Maciuc36, V. Macko48, P. Mackowiak14, S. Maddrell-Mander53, L.R. Madhan Mohan53,
O. Maev37, A. Maevskiy80, D. Maisuzenko37, M.W. Majewski34, S. Malde62, B. Malecki47,
A. Malinin78, T. Maltsev42,w, H. Malygina16, G. Manca26,f , G. Mancinelli10,
R. Manera Escalero44, D. Manuzzi19,e, D. Marangotto25,p, J. Maratas9,v, J.F. Marchand8,
U. Marconi19, S. Mariani21,47,21, C. Marin Benito11, M. Marinangeli48, P. Marino48, J. Marks16,
P.J. Marshall59, G. Martellotti30, L. Martinazzoli47, M. Martinelli24,i, D. Martinez Santos45,
F. Martinez Vidal46, A. Massafferri1, M. Materok13, R. Matev47, A. Mathad49, Z. Mathe47,
V. Matiunin38, C. Matteuzzi24, K.R. Mattioli82, A. Mauri49, E. Maurice11,b, M. Mazurek35,
M. McCann60, L. Mcconnell17, T.H. Mcgrath61, A. McNab61, R. McNulty17, J.V. Mead59,
B. Meadows64, C. Meaux10, G. Meier14, N. Meinert75, D. Melnychuk35, S. Meloni24,i, M. Merk31,
A. Merli25, L. Meyer Garcia2, M. Mikhasenko47, D.A. Milanes73, E. Millard55, M.-N. Minard8,
O. Mineev38, L. Minzoni20,g, S.E. Mitchell57, B. Mitreska61, D.S. Mitzel47, A. Mödden14,
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hUniversità di Genova, Genova, Italy

26
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