
AIDA-2020-CONF-2020-018

AIDA-2020
Advanced European Infrastructures for Detectors at Accelerators

Conference/Workshop Paper

PODIO: recent developments in the Plain
Old Data EDM toolkit

Gaede, F. (DESY) et al

27 May 2020

The AIDA-2020 Advanced European Infrastructures for Detectors at Accelerators project
has received funding from the European Union’s Horizon 2020 Research and Innovation

programme under Grant Agreement no. 654168.

This work is part of AIDA-2020 Work Package 3: Advanced software.

The electronic version of this AIDA-2020 Publication is available via the AIDA-2020 web site
<http://aida2020.web.cern.ch> or on the CERN Document Server at the following URL:

<http://cds.cern.ch/search?p=AIDA-2020-CONF-2020-018>

Copyright c© CERN for the benefit of the AIDA-2020 Consortium

http://aida2020.web.cern.ch
http://cds.cern.ch/search?p=AIDA-2020-CONF-2020-018

PODIO: recent developments in the Plain Old Data EDM
toolkit

Frank Gaede1,∗, Benedikt Hegner2,∗∗, and Graeme A. Stewart2,∗∗∗

1DESY, 22607 Hamburg, Germany
2CERN, 1211 Geneva 23, Switzerland

Abstract. PODIO is a C++ toolkit for the creation of event data models (EDMs)
with a fast and efficient I/O layer. It employs plain-old-data (POD) data struc-
tures wherever possible, while avoiding deep object-hierarchies and virtual in-
heritance. A lightweight layer of handle classes provides the necessary high-
level interface for the physicist. PODIO creates all EDM code from simple
instructive YAML files, describing the actual EDM entities. Since its original
development PODIO has been very actively used for Future Circular Collider
(FCC) studies. In its original version, the underlying I/O was entirely based on
the automatic streaming code generated with ROOT dictionaries. Recently two
additional I/O implementations have been added. One is based on HDF5 and the
other uses SIO, a simple binary I/O library provided by LCIO. We briefly intro-
duce the main features of PODIO and then report on recent developments with a
focus on performance comparisons between the available I/O implementations.
We conclude with presenting recent activities on porting the well-established
LCIO EDM to PODIO and the recent EDM4hep project.

1 Introduction

PODIO is a C++ toolkit for the creation of event data models (EDMs) with a fast and effi-
cient I/O layer. It was developed in the AIDA2020 project to address the needs of the Future
Circular Collider (FCC) studies with the goal to be applicable also to the linear collider com-
munity and HEP in general. PODIO employs plain-old-data (POD) data structures wherever
possible, avoiding deep object-hierarchies and virtual inheritance for optimal performance.
We will provide an overview of the main features of PODIO and its design in section 2,
followed by a description of recent developments in section 3 and a presentation of the I/O
performance of different persistency solutions in section 4.

2 Overview

The key idea of PODIO is to use plain-old-data (POD) data structures wherever possible and
to avoid deep object-hierarchies and virtual inheritance. A lightweight layer of handle classes
provides the necessary high-level interface for the physicist, such as support for inter-object

∗e-mail: frank.gaede@desy.de
∗∗e-mail: benedikt.hegner@cern.ch
∗∗∗e-mail: graeme.andrew.stewart@cern.ch

relationships, convenient iteration through objects or automatic memory-management. An
intermediate layer is used for the inter-object relations. The in-memory pointers used for
these relations are converted to dedicated integer object-IDs: Ob jectID = CollectionID <<
32 + CollectionIndex when data is persistified. The three layers are shown in Figure 1 (left)
for an example hit class. PODIO creates all necessary C++ EDM code from simple instruc-

Figure 1. Left: the three layers of PODIO: the actual POD Layer with the data, the Object Layer for
relations and on top the lightweight User Layer with handles and collections. Right: simplified example
of a YAML file describing an MCParticle class with relations and additional C++ code.

tive YAML files, describing the actual EDM entities, see Figure 1 (right). This is done using
Python scripts together with code templates for the various types of objects in PODIO. Object
ownership in the generated code is handled via the collections and the event store. Before ob-
jects are added to a collection they are reference counted and garbage collected. An additional
Python interface is created from the YAML files using PyROOT [5]. A default EventStore
implementation is provided with PODIO that provides access to the event collections. HEP
frameworks can implement different ways of accessing the event data, more suited to their
own internal design.

3 Recent Developments

Since its original development PODIO has been very actively used for Future Circular Col-
lider (FCC) studies. In its original version, the underlying I/O was entirely based on the
automatic streaming code generated with ROOT dictionaries. Recently, two additional I/O
implementations have been added. One is based on HDF5 [4] and the other uses SIO [6], a
simple binary I/O library provided by LCIO [2] (the Linear Collider I/O EDM).

3.1 HDF5 persistency

HDF5 is heavily used in many other science fields as well as by the machine learning commu-
nity. Providing the option to persistify the EDM in this way allows HEP data to be easily used
with tools based around that ecosystem. There was a Google Summer of Code project last
year with the goal to develop an implementation of an HDF5 I/O layer for PODIO. During
this project, prototype code for writing example data structures to HDF5 files was developed,
mapping events to hdf5-groups and collections to hdf5-datasets. It is not entirely clear if this
is the optimal way of storing HEP data, which is inherently heterogeneous, in HDF5 that was
originally developed for more regular, homogeneous data, such as images. Further work is
planned on this topic.

3.2 SIO persistency

SIO (Simple Input Output) is the underlying I/O layer of LCIO, used in the linear collider
community for more than 15 years. It can store binary records, holding complete events
using a simple mechanism to store pointers between objects via a unique-ID matching. SIO
has recently been re-implemented as a stand-alone package with build-in thread-safety and
the possibility to split the reading of events into three steps: the reading of compressed buffers
from the file, the decompression of the record and the unpacking of the data in the defined
structures and classes. With this feature one can use a lazy-unpacking strategy in parallel
processing frameworks such as MarlinMT [7], significantly improving I/O performance and
scaling. The implementation of the SIO persistency layer for PODIO exploits the array-of-
struct data layout with the goal of optimising the I/O performance. Complete events are stored
in one record and the unpacking is reduced to the minimum necessary for handling relations
and vector members (see section 3.3). A performance comparison of the new SIO layer with
the ROOT layer and LCIO is presented in section 4.

3.3 Vector Members

Vector Members in EDM data structures break the POD-ness and should, ideally, not be used
in PODIO. However, they are are used occasionally in many existing HEP event data models.
Therefore, the possibility to have them in PODIO was implemented. The implementation for
storing vector members follows the treatment of reference vectors:

• hold the vector in the Object Layer, store the start and end index in the POD Layer and
provide iterators in the User Layer;

• stream the vector members as one large vector per collection;

• after reading back from the files, vector members are kept in one large vector to minimize
copying.

This approach keeps the overhead introduced by vector members to a minimum. A warning
message is printed at the time of code generation, encouraging the users to avoid, or at least
reduce, the use of vector members.

3.4 pLCIO and EDM4hep

While PODIO was developed for the FCC community, from the start the goal was to be
also applicable to the linear collider community as well as HEP in general. Many features
in PODIO were introduced to allow porting of the LCIO EDM to PODIO. This has been
done now in the pLCIO package which implements the complete LCIO EDM (see Figure 2).
The original idea, to be able to create classes that are (almost) 100% backward compatible,
was not able to be realised. While it worked for most of the actual member functions of
the EDM classes, the handling of collections and collection types, the creation of objects
and the handling of user defined parameters would have to be modified in the large existing
code base that uses LCIO. However, we believe that a transition from LCIO to pLCIO would
be feasible at reasonable cost, given the performance advantages expected from PODIO.
Recently the particle physics community has decided to develop a common software stack
Key4hep [8] for future collider studies with a common event data model EDM4hep [9]. This
will be implemented using PODIO and combine the best features of the LCIO EDM and the
fcc-edm. The EDM4hep project has just started and is currently under rapid development. As
the idea is to preserve most, if not all, the data classes from LCIO, it will very likely replace
the pLCIO package.

Figure 2. Documentation for the pLCIO classes that
implement the complete LCIO event data model. While the
interface to access the EDM data classes and their attributes
is almost identical to the original LCIO, retrieving
collections and handling of meta data is not.

3.5 Other developments

Apart from the recent developments presented in the last sections, a few additional features
have been implemented in PODIO:

• code base compatible with C++ 14 and C++ 17

• implemented the support for I/O of std::array

• implemented ASCII streaming with operator<<(...) for all EDM classes and collec-
tions (see Listing 1)

s t d : : o s t r e a m& operator <<(s t d : : o s t r e a m& o , c o n s t C o n s t M C P a r t i c l e& v) ;
s t d : : o s t r e a m& operator <<(s t d : : o s t r e a m& o , c o n s t M C P a r t i c l e C o l l e c t i o n& v) ;

Listing 1. Example of streaming operators for individual objects and complete collections that print the
data items in a tabular format.

4 Performance Benchmarks

One of the main motivations to use PODs for PODIO, apart from a simplified EDM, was the
expected performance improvement that would be possible when reading data back from a
file. The default implementation of the I/O layer is based on auto-generated ROOT dictionar-
ies and uses a columnar-data layout, where every POD member gets stored in an individual
branch. This data layout has obvious advantages when reading individual data members of
small subset of the total available event data. In cases, like central reconstruction jobs, where
always the complete event is read, this might be a disadvantage. The SIO I/O layer, described
in section 3.2, stores complete events in one record using the array-of-structs data layout. In
order to compare the I/O performance of the different data storage methods, we use a small
program that writes and reads Monte Carlo generator events, using the MCParticle class from
LCIO and pLCIO respectively, with the ROOT and SIO based I/O layers in PODIO and for
comparison with the original LCIO library. The files used, contain 17061 generated tt̄-events
that are written and read completely. The test is carried out on a Mac-book with a solid state
disk and on a standard Ubuntu-PC with a classical spinning disk. The result is shown in Fig-
ure 3. The writing of the events with ROOT takes 75% of the time of SIO on the Mac (SSD)
and 99% on Ubuntu (spinning disk). LCIO is about 20% faster than ROOT, having manually
written streamer functions. For reading, ROOT takes more time, 150% and 186% compared
to SIO on Mac and Ubuntu respectively. LCIO needs 148% and 132% of the time of SIO
for reading. This clearly shows the advantage of the array-of-structs layout for reading full
events, as both use the same I/O system but a different data layout. That ROOT is significant
slower, is expected due to the columnar layout. Finally, ROOT files sizes are about 76% of

Figure 3. Performance comparison for writing, reading and the file size for the two PODIO I/O layer
implementations based on ROOT and SIO and the original LCIO for comparison. The files used, contain
17061 generated tt̄-events that are written and read completely.

those created with SIO. Also this is expected, as the compression, chosen to be the same for
ROOT and SIO, can achieve better performance with a columnar data layout. The improve-
ments in the reading speed of SIO compared to ROOT justify further studies to investigate if
different settings of the splitting level for branches can improve the reading performance or
if a dedicated POD storage layout could be implemented.

5 Conclusion

The PODIO event data model toolkit originally developed for FCC and the linear colliders
with all of HEP in mind, has been further improved. New features, like the ability to store
vector members and alternative I/O layers like HDF5 and SIO, have been implemented. In
particular the SIO implementation demonstrates the advantage of using PODs and the array-
of-structs data layout. Future plans for PODIO include the generalization of using alternative
I/O implementations and the investigation of using, optionally, a struct-of-array layout that
might be better suited to the default ROOT persistency. PODIO has been chosen as the
solution for the new EDM4hep package that aims at providing the standard EDM for all
future collider studies for the coming years. The PODIO developers are open for supporting
more HEP projects in the future and volunteer contributions at [11].

6 Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation programme under Grant Agreement no. 654168. We thank for the constant ef-
forts of the HEP Software Foundation in fostering more collaboration across experiments and
collaborations.

References

[1] R. Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl.
Instrum. Meth. A 389 (1997) 81.

[2] F. Gaede, T. Behnke, N. Graf and T. Johnson, “LCIO: A Persistency framework for linear
collider simulation studies”, eConf C 0303241 (2003) TUKT001

[3] F. Gaede, “Marlin and LCCD: Software tools for the ILC”, NIM 559, 177-180 (2006)
[4] https://www.hdfgroup.org/solutions/hdf5
[5] W. Lavrijsen, “Python in the Cling World,” J. Phys. Conf. Ser. 664 (2015) no.6, 062029.
[6] https://github.com/iLCSoft/SIO
[7] R. Ete, J. Benda, F. Gaede, H. Grasland “MarlinMT - parallelising the Marlin framework”

These proceedings
[8] A. Sailer, P. Mato Vila, G. Ganis, G.A. Stewart “Towards a Turnkey Software Stack for

HEP Experiments” These proceedings.
[9] https://github.com/key4hep/EDM4hep
[10] https://github.com/HEP-FCC/fcc-edm
[11] https://github.com/AIDASoft/podio

