EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

DD4hep a community driven detector description for HEP

Frank Gaede'*, Markus Frank®**, Marko Petric2***, and Andre Sailer?****

'DESY, 22607 Hamburg, Germany
2CERN, 1211 Geneva 23, Switzerland

Abstract. Detector description is an essential component in simulation, recon-
struction and analysis of data resulting from particle collisions in high energy
physics experiments and for the detector development studies for future exper-
iments. Current detector description implementations of running experiments
are mostly specific implementations. DD4hep [1] is an open source toolkit cre-
ated in 2012 to serve as a generic detector description solution. The main moti-
vation behind DD4hep is to provide the community with an integrated solution
for all these stages and address detector description in a broad sense, including
the geometry and the materials used in the device, and additional parameters
describing e.g. the detection techniques, constants required for alignment and
calibration, description of the readout structures and conditions data. In these
proceedings, we will give an overview of the project and discuss recent devel-
opments in DD4hep as well as showcase adaptions of the framework by LHC
and upcoming accelerator projects together with the road map of future devel-
opments.

1 Introduction

A detailed and realistic description of the detector geometry and its material properties is an
essential component for the development of almost all data processing applications in High
Energy Physics experiments. This is particularly evident for the case of Monte Carlo simula-
tions, where the exact knowledge of the position, shape and material contents of every detec-
tor component is crucial for the accuracy of the simulated detector response and underlying
physics. For the subsequent processing steps of digitization and reconstruction, typically a
different, higher level view onto the detector geometry is needed which includes information
like subdetector components or measurement layers. This should ideally be created from
the same source in order to avoid inconsistencies. The DD4hep [1] (Detector Description
for HEP) software package is a generic geometry toolkit that builds on top of the two most
widely used software packages in HEP: ROOT [2] and Geant4 [3]. Even though DD4hep
was developed in the context of the linear colliders with other future accelerator projects in
mind, it has from the start been designed to generically support the full experiment life cycle,
such that it can continuously be used also beyond the project-planning phase or be adopted
by running experiments.

*e-mail: frank.gaede @desy.de

**e-mail: markus.frank @cern.ch
***e-mail: marko.petric@cern.ch
****e-mail: andre.sailer@cern.ch

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

We will provide an overview of DD4hep and its main components in section 2, followed
by a description of recent developments in section 3 and an outlook into future plans in
section 4.

[anaysis |

detector
constructors

Figure 1. Schematic view of the component structure of DD4hep with the core component DDCore
and optional extensions such as DDG4, DDRec, DDCond and DDAlign.

2 Overview

The DD4hep toolkit follows a component-based design (see Figure 1) that provides a high
level of flexibility for the users. The core functionality is implemented in DDCore, where the
geometry of the detector is represented in memory as a hierarchy of geometrical shape ob-
jects holding material properties implemented using ROOT’s geometry system TGeo [4]. A
parallel geometry tree with touchable DetElements and an extension mechanism allows stor-
ing of additional data structures in order to provide relevant physical properties of individual
detector components such as alignment constants, measurement surfaces or visualization.
The standard input format consists of compact xml files with parameters and C++ detector
constructor modules. Support for other input formats has also been implemented (see sec-
tion 3.1). The DDG4 [5] component provides access to full simulations with Geant4. A large
number of useful plugins for such applications exists, dealing with various input and output
formats or handling of detailed associations of simulated hits to Monte Carlo truth particles.
DDRec [6] adds the functionality for event reconstruction, such as measurement surfaces
for tracking, dedicated high level sub detector descriptions or conversions between celllD
and position of hits. Support for accessing conditions data and applying mis-alignment to
detector elements is provided with DDAlign and DDCond [7].

3 Recent Developments

In this section we focus on new developments since DD4hep was last presented at CHEP
2018 [7].

3.1 Alternative input data sources

DD4hep was originally developed in the context of the linear collider studies and had adopted
an input format with compact compact xml files with parameters and C++ detector construc-
tor modules used before in the community. At the same time, it has been from the start
developed in a way that would allow the adaptation of other input sources for the detector ge-
ometry. The LHCb and CMS experiments, that had already implemented their own, different

EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

ways of defining the detector geometry, have shown an increasing interest in using DD4hep.
To facilitate their evaluation of DD4hep, dedicated plugins have been developed for both ex-
periments that allow one to instantiate the DD4hep detector geometry from their pre-existing
sources. Figure 2 shows examples of the CMS and LHCb detector models implemented in

Figure 2. Left:Model of the CMS tracking system in DD4hep. Right: a model of the LHCD detector in
DD4hep.

DD4hep. The plugin for LHCb reads the geometry parameters from a dedicated database,
the one used for CMS reads the parameters from dedicated xml files before converting the
geometry to the underlying TGeo representation. Both experiments have now decided to use
DD4hep in the future [8, 9].

3.2 Reflections with left handed coordinates

Pairs of endcap detectors in HEP can be created either by simply rotating a copy of the
corresponding DetElement by 180°, as is done for the linear collider detectors, or, as is the
case in the CMS experiment, by reflecting the DetElement into a mirrored element with a left
handed coordinate system. In the later case, every point is transformed as:

10 0
=0 1 o]
00 -1

In practice this implies creating new copies of volumes for all volumes in the hierarchy of
the DetElement with left handed coordinates, placed at —z, as shown for an example volume
in Figure 3. Such reflections are now implemented in DD4hep through a new detector type:
DD4hep_ReflectedDetector that makes it very easy to define reflections in the compact xml
format, as shown in Listing 1.

<detector id="EcalEndcap_ID+100" name="EcalEndcapB"
type="DD4hep_ReflectedDetector"
sensitive="true" sdref="EcalEndcapA" readout="EcalEndcapBHits">
</detector>

Listing 1. Example XML code for creating a reflected detector EcalEndcapB with left handed coordi-
nates.

3.3 Additional shapes

The missing shapes provided by the ROOT TGeo that until recently have not been used in
DD4hep have now been implemented, as they are needed in the CMS detector model:

EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

Original Reflected

Figure 3. Example for a shape that is reflected (mirrored) into a left handed copy.

e TGeoCtub: A tube segment cut with 2 planes.
e TGeoScaledShape: A shape scaled by a scale transformation.

e TGeoArb8: An arbitrary trapezoid with less than 8 vertices standing on two parallel planes
perpendicular to Z axis.

with their corresponding Geant4 shapes, used in DDG4.

3.4 Surfaces and optical photons

The correct simulation of optical photons in Geant4 requires additional information on the
surfaces and optical properties of the volumes in the relevant detector elements. This informa-
tion is not normally present in the geometry model, where typically only material properties
are stored for every volume. Both Geant4 and ROOT-TGeo ! provide the functionality to
attach additional surface objects with optical properties to the volumes. This information
can now also be provided as input in the compact xml format in DD4hep (see Listing 2) and
suitable surface objects can be attached to the volumes in the detector constructor C+ code.

<opticalsurface name="/world/BubbleDevice#WaterSurface" finish="ground"
model="unified" type="dielectric_dielectric">
<property name="RINDEX" coldim="2" values="2.03%eV.1.35.4.136%eV_1.4"/>
<property name="SPECULARLOBECONSTANT" coldim="2" values="2.03%eV.0.30.4.136%eV.0.3"/>
<property name="SPECULARSPIKECONSTANT" coldim="2" values="2.03%eV.0.20.4.136%eV.0.2"/>
<property name="BACKSCATTERCONSTANT" coldim="2" values="2.03%eV.0.20.4.136%eV._0.2"/>
<opticalsurface>

Listing 2. Example XML code for defining an optical surface with properties.

If present in the TGeo geometry, the surfaces are then automatically translated to the Geant4
geometry in DDG4. All relevant optical physics processes are also available in DDG4: scin-
tillation, Cerenkov and transition radiation, reflection, refraction, absorption and wavelength
shifting. The complete treatment of optical photons and surfaces as defined in Geant4 is
thereby now available in DDG4.

3.5 Compatibility with Python 3

DD4hep provides Python bindings for most of its core components via PyROOT [10]. Ad-
ditional glue code facilitates the use within Python programs. This code has originally been

IThe implementation of optical properties in ROOT had actually been triggered by the request to have this
functionality in DD4hep.

EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

implemented with Python 2.7. In order to facilitate the transition for users to Python 3 all
Python code in DD4hep has been made compatible with both Python versions using the
python-modernize [12] tool together with the six [11] compatibility library that is shipped
with DD4hep. This is an important usability feature as it now allows users to decide whether
to use Python 2 or Python 3 in their software ecosystem, a decision that often depends on
many other packages and requirements.

4 Future Plans

With DDG4 and DDRec, DD4hep provides gateways to the simulation and reconstruction of
HEP events. Adding a component that deals with the digitization of the simulated detector
response before it can be reconstructed would be the logical next step in extending the func-
tionality of DD4hep. This digitization component (DDDigi) should ideally be kept separate
from the simulation step as much as possible, as this is important for the overall CPU and
memory usage and a potential re-use of simulated data with different digitization criteria.
This will naturally allow one to study the effects of detector segmentation, detector response
to energy depositions, charge sharing and eventually the formation of hits and clusters. At the
same time it needs to allow one to incorporate electronics effects, such as noise or cross-talk.
The work plan for development of the DDDigi component would be to:

e develop a suitable data model that is consistent with experiments’ models, i.e. that matches
existing input and output data formats

e investigate the implementation of different digitization types:

— detailed models for specialized studies, taking into account all known physics and elec-
tronics effects

— simplified/parameterized models for bulk productions

e develop a palette of digitization plugins for typical subdetector types in a parameterized
and flexible way that is valid for most readouts

5 Conclusion

DD4hep is fully functional for many years. DDCore, DDG4 and DDRec have long since
reached production quality and have been used for large scale Monte Carlo productions of
ILD and CLICdp. DDCore and partly DDG4 have also been used for the FCC CDRs. Other
experiments have started to use or evaluate DD4hep. More recently developed components,
such as DDAlign and DDCond, are yet pending integration in the experiments’ frameworks
in order to be fully exploited.

The recent adoption of DD4hep by LHCb and CMS has triggered a fair amount of activity,
including the addition of missing shapes, new features such as the reflection with left-handed
coordinates and, last but not least, bug fixes.

We will continue to improve and evolve DD4hep as a true community tool. The next
planned step is the implementation of the DDDigi component and the integration into the
Turnkey Software Stack [13] that is currently under development by the community.

6 Acknowledgements

This project has received funding from the European Union’s Horizon 2020 Research and
Innovation programme under Grant Agreement no. 654168.

EPJ Web of Conferences 245, 02004 (2020) https://doi.org/10.1051/epjconf/202024502004
CHEP 2019

References

[1] M. Frank, F. Gaede, C. Grefe and P. Mato, “DD4hep: A Detector Description Toolkit for
High Energy Physics Experiments,” J. Phys. Conf. Ser. 513 (2014) 022010.

[2] R.Brun and F. Rademakers, “ROOT: An object oriented data analysis framework,” Nucl.
Instrum. Meth. A 389 (1997) 81.

[3] S. Agostinelli et al. [GEANT4 Collaboration], “GEANT4: A Simulation toolkit,” Nucl.
Instrum. Meth. A 506 (2003) 250.

[4] R. Brun, A. Gheata and M. Gheata, “The ROOT geometry package,” Nucl. Instrum.
Meth. A 502 (2003) 676.

[5] M. Frank, F. Gaede, N. Nikiforou, M. Petric and A. Sailer, “DDG4 A Simulation Frame-
work based on the DD4hep Detector Description Toolkit,” J. Phys. Conf. Ser. 664 (2015)
no.7, 072017.

[6] A. Sailer et al. [CLICdp and ILD Collaborations], “DD4Hep based event reconstruction,”
J. Phys. Conf. Ser. 898 (2017) no.4, 042017.

[7] M. Frank, F. Gaede, M. Petric and A. Sailer, “Conditions and alignment extensions of the
DD4hep detector description toolkit,” EPJ Web Conf. 214 (2019) 02042.

[8] C. Vuosalo, I. Osborne, “CMS Experience with Adoption of the Community-supported
DD4hep Toolkit,” These proceedings.

[9] D. Muller, “Gaussino - a Gaudi-based core simulation framework,” These proceedings.

[10] W. Lavrijsen, “Python in the Cling World,” J. Phys. Conf. Ser. 664 (2015) no.6, 062029.

[11] https://pypi.org/project/six

[12] https://github.com/python-modernize/python-modernize

[13] G. Ganis, A. Sailer, S.A. Graeme, P. Mato Vila, “Towards a Turnkey Software Stack for
HEP Experiments,” These proceedings

