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Future silicon trackers

4D tracking, very high fluences, very good position resolution
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Future trackers

There are many futures in Silicon trackers: let me pick 3 examples:

Future Circular Collider  tracker
• Position resolution:  7.5 - 9.5 µm
• Time resolution = 5 ps
• Radiation levels: up to ~1E17 n/cm2

CLIC
• Position resolution: 3µm in vertex and 7µm in tracker 
LHCb
• Position resolution: 5µm
• Time resolution = 5 ps
• Radiation levels: up to ~1E16 n/cm2

In this talk I will cover our R&D projects addressing:  
1. Extension of good time resolution to higher fluences
2. Use of silicon sensors in the range 1E16 – 1E17 n/cm2

3. Capability of obtaining very good position resolution
(<10 um) using large-pitch geometry
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1. Extension of UFSD timing performances to higher fluences
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Silicon as precise timing detector

Silicon sensors were never considered accurate timing devices

However, in the last 10 years there has been a very intense R&D 

At present, silicon sensors are the ONLY detector able to provide excellent timing capability  
(~ 30 ps) , good radiation hardness, good pixilation, and large area coverage

Important:
Sensors provide the current signals, read-out chips use them

Timing is the to combination of these two parts, 
that succeed and fail together



5N
. C

a
rti

gl
ia

, I
N

FN
 T

or
in

o,
 H

ST
D

12
 1

8/
12

 2
01

9

UFSD Time resolution

Low Gain Avalanche Diodes (LGAD), as first proposed and manufactured by CNM 
employ a thin layer of doping to generate the extra field needed for multiplication.

LGAD optimized for timing, the so called Ultra Fast Silicon Detectors, 
obtain 30-35 ps resolution up to 1-2E15 n/cm2

Can we extend the performances to higher fluences?

zoom Drift area with gain
0.5 – 2 um long

Gain implant
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Progresses in UFSD radiation hardness

Irradiation decreases the gain layer doping (acceptor removal)
Strong R&D in finding  the solution to this problem
• New gain implant design
• Defect engineering

4E14 1.5E15Fluence at which  80% of the gain layer is 
still active:
- 2016: 4E14 n/cm2

- 2019: 1.5E15 n/cm2

Almost a factor of 4 improvement 

UFSD 2016

UFSD 2019

What can we expect in the next 5 years? 
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Progresses in UFSD radiation hardness

Two main drivers:

1. Optimization of defect engineering, to 
extend the gain implant radiation hardness

4E14 1.5E15

UFSD 2016

UFSD 2019 UFSD@HSTD14

5E15

2. Improvement in the capability of Vbias to recover 
the field that has been lost due to acceptor removal ! ∝ #$∗&, $ = )

*

Deep gain implant 

Shallow gain implant

Deep gain implant
è Larger derivative

Shallow gain implant
è Smaller derivative

Vbias compensates the loss of Efield
due to the gain implant doping 
decrease. 
The compensation works better at
lower Efield (higher l derivative)

è In deeper gain layer, Vbias has a 
much stronger recovery capability
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Progresses in UFSD radiation hardness

Two main drivers:

1. Optimization of defect engineering, to 
extend the gain implant radiation hardness

4E14 1.5E15

UFSD 2016

UFSD 2019 UFSD@HSTD14

5E15

2. Improvement in the capability of Vbias to recover 
the field that has been lost due to acceptor removal ! ∝ #$∗&, $ = )

*

Deep gain implant 

Shallow gain implant

Deep gain implant
è Larger derivative

Shallow gain implant
è Smaller derivative

Vbias compensates the loss of Efield
due to the gain implant doping 
decrease. 
The compensation works better at
lower Efield (higher l derivative)

è In deeper gain layer, Vbias has a 
much stronger recovery capabilityèNot unreasonable to imagine an extension of good timing performances  by a factor of 2-3

èGoal: 30 ps at 5E15 n/cm2
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2. Use of silicon sensors in the range 1E16 – 1E17 n/cm2

Gregor K.: 
Extrapolation from low fluence data to higher fluence suggests that using 
silicon detector above 1E16 n/cm2  is mission impossible
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A new hope: saturation of displacement damage

Saturation is a key aspect of the R&D in the next few years, we should learn how to take 
advantage of this effect

The bottom line is:  Silicon detectors  irradiated at fluences  1E16 – 1E17 n/cm2

do not behave as expected, they behave better

Dark current saturation
I = aVF

a from linear to logarithmic

Trapping probability saturation
1/teff = bF

b from linear to logarithmic

Acceptor creation saturation
NA,eff = gcF

gc from linear to logarithmic

a(-23ºC) = 3.48 · 10-19/cm2

bh = 4.7±1.0/cm
be = 3.5±0.6/cm y = 4,23E+13ln(x) - 1,43E+15

0E+00

1E+14

2E+14

3E+14

0 5E+15 1E+16

N
A

,e
ff

[c
m

-3
]

Feq [cm-2]

55 um n-in-p

g = 0.02/cm

g = 0.03/cm

Log.  (55 um n-in-p)

Kramberger, Ljubljana Torino
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Why saturation?

Probability of hitting a square of area 1 Å2 

that has not been hit before

What is the probability for a particle to hit a square of 1 Å2  that has not been hit before?

At 1E16 n/cm2 only 30% of particles will hit an “1 Å empty square”
Note: Silicon lattice has a cube of 5 Å; every cell has already been hit at 1E15.

Damage on damaged Silicon probably has different consequences. 

Overlapping clusters
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Use thin sensors

What does it happen to a 25-micron sensor after  a fluence = 5E16 n/cm2?
• Trapping is almost absent
• It can still be depleted
• Leakage current is low (small volume)

However:  Charge deposited ~ 0.25 fC
è Need a gain of at least ~ 5 in order to provide enough charge

Thanks to saturation effects, thin sensors 
can still be depleted and operated at Vbias ≤ 500 V

VFD = e|Neff|d2/2e

Saturation Reduce thickness

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60

V
F

D
[V

]

Thickness [µm]

g = 0.02/cm

g ~ ln(fluence)

Full depletion voltage at F = 1017 neq/cm2
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Evolution with irradiation

• Start with a thin LGAD, 20 – 35 µm thick

• 2·1015 – 5·1015 neq/cm2: with increasing fluence, the gain layer is deactivated

• 5·1015 – 1016 neq/cm2: compensate the decrease power of the gain layer by  

shifting the multiplication region to the bulk

• 1016 – 1017 neq/cm2: rely solely on bulk multiplication

→ Does bulk multiplication exist at these fluences?

depth
n++

p+

p

p++Efield Ec

particle

-
-
-
- +

+
+
+

- - - - - -+ + + + + +

depth
n++

p+

p

p++Efield Ec

particle

- +
+
+
+

- - - -+ + + +

new irradiated

- - -+ + +
- -
+ + 
-Irradiation
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Effect of irradiation (and temperature) on gain

!(#, %, ∅, ') ∝ *+(#,%,∅)∗'

Gain if : l(E, T, ldefect(f)) < gain layer length 
In new sensors, l (E,T, f) is governed by phonons: high temperature decreases the gain.

l(E2,T = 0K, f = 0)

High E field,  gain

E field region d

l(E2,T = 300K, f = 0)

2) High temperature è no gain

E field region d

l(E3,T = 300K, f = 0)

3) High temperature è higher 
field  E3>E2è gain

E field region d

Higher T
Higher field

l(E2,T = 0K, f = 3E15)

2) High fluence è no gain

E field region d

l (E3,T = 0K, f = 3E15)

3) High fluence è higher field 
E3>E2 è gain

E field region d
Higher fluence

Higher field

l(E,T, f) = a-1(E,T, f) 

Key point: Bias  compensates the 
effect of  temperature and fluence  
by changing the length of l
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Gain in the bulk: HPK 45 um sensors

! = # ∗ %&'%% (/∅

+ ∝ -.(0,2)∗4
. ∝ -' 567∗268∗∅ /0

Using data on multiplication in PiN and 
the measured bulk doping, a value of 
c can be determined

HPK 45 um

Adding Gain 
quenching
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Gain in the bulk: HPK 45 um sensors

! = # ∗ %&'%% (/∅

+ ∝ -.(0,2)∗4
. ∝ -' 567∗268∗∅ /0

Using data on multiplication in PiN and 
the measured bulk doping, a value of 
c can be determined

HPK 45 um

Adding Gain 
quenching

èAt 1E16 n/cm2 there is evidence of moderate gain 
quenching.

èWe are studying thinner sensors, irradiated to 1E16 –
1E17 n/cm2 to map the gain mechanism

è These studies will shed light on the possibilities of
using very thin sensors with moderate internal gain
as position detector at 1E16 -1E17 n/cm2
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3. Very good spatial resolution  (<10 um)

Very good position resolution is achieved either via very small pixels or exploiting 
charge sharing

Here I present a novel method that exploits charge sharing between pixels to 
achieve excellent  position resolutions
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AC – LGAD:  Resistive Silicon Detectors (RSD)

gain layer

AC coupling

n++ electrode

p++ electrode

è 100% fill factor
èSegmentation is achieved via AC coupling

18



RSD Signal formation: initial charge drift toward the n++ electrode
Act 1:  the e/h are drifting and they produce a  direct charge 
induction n++
1. The signal is immediately AC-coupled to the metal pad above (if 

there is one), with a shape identical to a equivalent DC LGAD
2. Large signal (gain 10-20): 5 - 10 fC
3. Very fast collection (1 ns)
4. No later spread, very vertical E field and drift

1

0 2

3

-+
-+
-+
-+
-+
-+
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19



RSD Signal formation: the signal spread along the n++ electrode
Act 2:  the signal propagates on the n++, firing the near-by pads
1. The n++ is an almost ideal resistive divider
2. Lateral spread controlled by geometry: n++ resistivity and 

metal pad capacitance
3. The metal AC pads act as “pick-up” electrodes 
4. Signal gets smaller and delayed with distance
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Larger pads have longer signals

Longer electrodes ==> longer signal

20
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RSD Signal formation: the signal spread along the n++ electrode

The amplitude goes to zero when the distance is about twice the metal,
scaling variable: Distance/Pad size

A single hit, therefore, is visible in an area that is about 4x4 pad size

Act 2: The amplitude seen by each pad decreases as a 
function of the hit distance

a

Distance/Pad size

Pad size: 100 um

Pitch = 200 um
Pad size: 200 um

Pitch = 500 um

Distance [um]Distance [um]
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RSD Signal formation: the signal spread along the n++ electrode

The amplitude goes to zero when the distance is about twice the metal,
scaling variable: Distance/Pad size

A single hit, therefore, is visible in an area that is about 4x4 pad size

Act 2: The amplitude seen by each pad decreases as a 
function of the hit distance

a

Distance/Pad size

Pad size: 100 um

Pitch = 200 um
Pad size: 200 um

Pitch = 500 um

Distance [um]Distance [um]

The exploitation of this effect is the key to excellent position resolution.
Results will be presented by R. Arcidiacono and G. Paternoster in the 
next talks.



RSD Signal formation: slow discharge

Fast signal

Act 3: the signal discharges, according to the read-out RC. Small RC have larger and shorter 

positive lobes

Slow discharge

long RC
short RC

Hope50
Entries  50100
Mean    29.97
Mean y 0.183- 
Std Dev     5.773
Std Dev y   8.532
Constant   29.1
Slope    0.9665- 
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Hope50
Entries  50100
Mean    29.97
Mean y 0.183- 
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Std Dev y   8.532
Constant   29.1
Slope    0.9665- 

50-100 (red) 100-200 (blue)  200-500 (black)

Hope
Entries  501000
Mean    29.98
Mean y 0.6969- 
Std Dev     5.773
Std Dev y   8.943
Constant  4.229
Slope    0.1039- 

Hop
Entries  501000
Mean    29.98
Mean y 0.2336- 
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Std Dev y   9.887
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Putting things together
Timing: hopefully, good time resolution can be extended up to about 5E15 n/cm2

Position Sensors at 1E16 – 1E17 n/cm2 : we are exploring the use of thin Silicon with 
bulk multiplication.  A strong R&D about gain in irradiated detector is needed, too 
early to make predictions.

Excellent position resolution (<10 um): the AC evolution of LGAD provides natural 
sharing of signals among several pads. The exploitation of signal sharing is 
necessary to overcame the rule pitch/sqrt(12)

Conclusions: the requests put forward by the next projects are very challenging. 
The next 5-10 years are going to be very intense and a lot of fun. 
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Gain in Silicon

!(#, %, ∅, ') ∝ *+(#,%,∅)∗'

2) The presence of phonons and/defects create scattering centers, slowing the carriers down:
Scattering center è longer l(E,T, f) 

High field è
short distance

a(E,T, f) impact ionization coefficient
d = length of high E field

l(E,T, f) = a-1(E,T, f)  it is the mean free path necessary to 
achieve  multiplication.

1) The distance to acquire enough kinetic energy is shorter 
in high E field: higher E field  è shorter l(E,T, f) 

3) The effect of the scattering centers can be compensated using higher E field 
(i.e. shorter mean free path) :
Higher E è compensate scattering center
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Silicon at fluences about  1E16 – 1E17 n/cm2

Irradiation causes 3 main effects:
• Decrease of  charge collection efficiency due to trapping
• Doping creation/removal
• Increased leakage current, shot noise

Irradiation models developed in the fluence range 1E14 – 1E15 n/cm2 predict 
standard silicon detectors  (~ 200 um thick) will be almost impossible to operate

following Gregor’s statement @ HSTD12: looks like mission impossible

F ~ 5�1015 neq/cm2 VFD >> Vbias

not-depleted
750 V

Partially depleted at very high Vbias

new VFD << Vbias

200 V

Fully depleted at low Vbias

F ~ 1�1015 neq/cm2 VFD ~ 0.5 Vbias

500 V

Fully depleted at high Vbias

200 µm200 µm
100 µm
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Higher bias to recover gain

In the “gain model” currently implemented in simulators, there is no explicit 
dependence on the fluence 
è need to add a term to quench the gain in irradiated sensors

Much smaller derivative 
dl/dE at high field 

If the gain decreases (for temperature 
increase or fluence), the bias need to be 
increased to compensate 

! ∝ #$(&,()∗+
$ ∝ #, -./∗(.0∗∅ /&


