

Recent results on heavy baryon spectroscopy at the LHCb detector

Emmy Gabriel on behalf of the LHCb collaboration

> LHC seminar May 4th 2020

Motivation

- Hadron spectroscopy studies the masses and decays of hadrons
- The properties of these hadrons are a result of quantum chromodynamics (QCD)
- QCD describes the theory of strong interactions between quarks and gluons, binding quarks and antiquarks into hadrons

Expected spectrum of ground state hadrons known to be well explained by the constituent quark model. Λ_c^+

SU(4) flavour multiplets of ground state baryons containing the four lightest quarks (u, d, s & c): (can be expanded to SU(5) including bottom quark)

Emmy Gabriel

het

2

Motivation

However, understanding the structure and properties of hadrons from QCD remains a challenge.

→ non-perturbative long distance effects involved.

Why study hadron spectroscopy?

- provides great experimental place to test theoretical models probing QCD
- increase understanding of the nature of exotic hadrons
- excited states as input to other analyses
- measure the masses and widths of excited baryons

Plethora of new spectroscopy results from the LHC in the past years!

Motivation

These results have lead to a big effort from the theory community to understand the structure of the many newly discovered hadrons.

- Constituent quark model
- Quarks and diquarks
- Tightly bound vs. molecular
- Combination of the above?

Emmy Gabriel

het

HQET = heavy quark effective theories. Can be used to predict the masses of heavy mesons/baryons.

We can validate HQET by measuring excited heavy meson properties.

Heavy baryon model: Diquark system (q,q) Static heavy quark (Q)

Outline

Many interesting recent results...

... this talk will focus on a selection of recent results from LHCb.

- Charmed baryons
 - Excited Ξ_c^0 states NEW! arXiv:2003.13649

- Beauty baryons
 - Precise measurement of Σ_b^\pm / $\Sigma_b^{*\pm}$ properties <u>PRL 122 (2019) 012001</u>
 - Excited Ω_b^- resonances PRL 124 (2020) 082002
 - The $\Lambda_b^0 \pi^+ \pi^-$ mass spectrum PRL 123 (2019) 152001 arXiv:2002.05112
- Doubly charmed baryons <u>JHEP 10 (2019) 124</u> •

Emmy Gabriel

- New Ξ_{cc}^{++} decay modes <u>PRL 121 (2018) 062002</u>
- Measurements of Ξ_{cc}^{++} properties: \longrightarrow
- Search for the Ξ_{cc}^+ baryon Sci.China Phys.Mech.Astron. (2020) 63 221062

lifetime measurement PRL 121 (2019) 052002 production at 13 TeV Chin.Phys. C44 (2020) 022001 precision mass measurement JHEP 02 (2020) 049

The beginning of the story... 5 charming baryons

Nik hef

Discovery of five narrow excited Ω_c^0 states in the $\Xi_c^+ K^-$ spectrum. $\Omega_c(3000)^0$, $\Omega_c(3050)^0$, $\Omega_c(3066)^0$, $\Omega_c(3090)^0$, $\Omega_c(3119)^0$

Beautiful Ω_b^- baryons decaying to $\Xi_b^0 K^-$

Beautiful Ω_b^- baryons

The discovery of five narrow excited Ω_c^0 states lead to a surge in theoretical interpretations.

 \longrightarrow New predictions for $\Xi_b^0 K^-$ resonances.

Search for analogous Ω_b^{**-} resonances in the $\Xi_b^0 K^-$ spectrum using full Run I + II data set [9 fb⁻¹]. <u>PRL 124 (2020) 082002</u>

Emmy Gabriel

Nik|hef

Beautiful Ω_b^- baryons

Emmy Gabriel

Nik hef

```
\begin{array}{cccc} \Omega_b^- \to \ \Xi_b^0 \ K^- \\ & \stackrel{\scriptstyle \label{eq:gamma_b}}{\longrightarrow} \ \Xi_c^+ \ \pi^- \\ & \stackrel{\scriptstyle \label{eq:gamma_b}}{\longrightarrow} \ p K^- \pi^+ \end{array}
```

- $\Xi_c^+ \to p K^- \pi^+$ are selected using :
- Particle identification requirements on final state hadrons
- Requirements on the topology of the decay

 $\Xi_b^0 \to \Xi_c^+ \pi^-$ events are selected using a boosted decision tree

Further background reduction is achieved through a particle identification requirement on the bachelor kaon

PRL 124 (2020) 082002

PRL 124 (2020) 082002

Beautiful Ω_b^- baryons

Simultaneous unbinned extended maximum likelihood fit to wrong-sign (WS) and right-sign (RS) spectra

Four signal peaks seen Modeled using S-wave relativistic Breit-Wigner convoluted with Gaussian resolution function

Global significances account for look-elsewhere effect

Emmy Gabriel

het

 $\begin{array}{cccc} \Omega_b^- \to \ \Xi_b^0 \ K^- \\ & \stackrel{\scriptstyle \ }{ } \ & \stackrel{\scriptstyle \ }{ } \ \Xi_c^+ \ \pi^- \\ & \stackrel{\scriptstyle \ }{ } \ & \stackrel{\scriptstyle \ }{ } \ p K^- \pi^+ \end{array}$

PRL 124 (2020) 082002

Beautiful Ω_b^- baryons

$\begin{array}{cccc} \Omega_b^- \to \ \Xi_b^0 \ K^- \\ & \stackrel{\scriptstyle \ }{ } \ & \stackrel{\scriptstyle \ }{ } \ \Xi_c^+ \ \pi^- \\ & \stackrel{\scriptstyle \ }{ } \ & \stackrel{\scriptstyle \ }{ } \ p K^- \pi^+ \end{array}$

Results:

	$\delta M_{\rm peak} [{ m MeV}]$	Mass [MeV]	Width [MeV]
$\overline{\Omega_b(6316)^-}$	$523.74 \pm 0.31 \pm 0.07$	$6315.64 \pm 0.31 \pm 0.07 \pm 0.50$	< 2.8 (4.2)
$\Omega_b(6330)^-$	$538.40 \pm 0.28 \pm 0.07$	$6330.30 \pm 0.28 \pm 0.07 \pm 0.50$	< 3.1 (4.7)
$\Omega_b(6340)^-$	$547.81 \pm 0.26 \pm 0.05$	$6339.71 \pm 0.26 \pm 0.05 \pm 0.50$	< 1.5 (1.8)
$\Omega_b(6350)^-$	$557.98 \pm 0.35 \pm 0.05$	$6349.88 \pm 0.35 \pm 0.05 \pm 0.50$	< 2.8 (3.2)
			$1.4^{+1.0}_{-0.8}\pm0.1$

Possible interpretations:

Emmy Gabriel

Nik hef

- Excited Ω_b⁻ states
 -L=1 angular momentum excitations of the ground state
 -n=2 radial excitations
- Decay of higher mass excited Ω_b^- state:

 $\Omega_b^{**-} \to \Xi_b^{\prime 0} (\to \Xi_b^0 \pi^0) K^-, \text{ where } \pi^0 \text{ is undetected} \\ \text{ and assuming } m(\Xi_b^{\prime 0}) > m(\Xi_b^0) + m(\pi^0)$

Beautiful Ω_b^- baryons

Nik

hef

Emmy Gabriel

Similar spectra are observed in $\Xi_b^0 K^-$ & $\Xi_c^+ K^$ as expected from heavy quark symmetry.

 Ω_b^- are higher mass partners of the Ω^- baryon $\longrightarrow \Omega^-$ famously predicted by the 'Eightfold Way' \longrightarrow would also expect Ξ_c^0 higher mass partners

Search for Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$

More charmed baryons?

Look at a different charmed mass spectrum to better understand the discovery of five narrow excited Ω_c^0 states.

Search for analogous Ξ_c^0 resonances in the $\Lambda_c^+ K^-$ spectrum using 2016-2018 data [5.6 fb⁻¹].

 $\begin{array}{c} \textbf{Decay chain:} \\ \Xi_c^0 \to \Lambda_c^+ K^- \\ & \downarrow p K^- \pi^+ \end{array}$

Mass spectrum has previously been studied by Belle (1, 2) and Babar (3, 4), where a peak was observed at similar mass and width: the $\Xi_c(2930)^0$ baryon.

Emmy Gabriel

Nik|hef

arXiv:2003.13649

 $\Xi_c^0 \to \Lambda_c^+ K^ \downarrow pK^{-}\pi^{+}$

Charmed Ξ_c^0 baryons

Select $\Lambda_c^+ \to p K^- \pi^+$ decays using multivariate boosted decision tree.

Input variables based on decay topology and p_T and particle identification information of the children.

About 125 million Λ_c^+ signal decays with a purity of 93% are selected for further analyses.

arXiv:2003.13649

Charmed Ξ_c^0 baryons

het

Large amount of combinatorial background due to the large number of kaon candidates from the primary vertex.

Background suppressed by simultaneously optimising selection requirements on the particle identification response of the bachelor kaon and the p_T of the bachelor kaon.

LHC seminar 04.05.2020

The $\Lambda_c^+ K^-$ mass spectrum

Emmy Gabriel

 $\Xi_c^0 \to \Lambda_c^+ K^ \downarrow pK^-\pi^+$

Marked are the current known Ξ_c^0 states with $m > m(\Lambda_{c}^{+}) + m(K^{-})$.

red - not yet observed in this decay mode blue - observed in this decay mode

arXiv:2003.13649

arXiv:2003.13649

Nik hef

Emmy Gabriel

 $\Xi_c^0 \to \Lambda_c^+ K^ \downarrow pK^{-}\pi^{+}$

LHC seminar 04.05.2020

 $\Xi_c^0 \to \Lambda_c^+ K^-$

 $\Xi_c^0 \to \Lambda_c^+ K^ \downarrow pK^-\pi^+$

The $\Lambda_c^+ K^-$ mass spectrum

Nik hef

Emmy Gabriel

arXiv:2003.13649

Charmed Ξ_c^0 baryons

Three signal peaks are observed with high significance.

Results:

Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma [{ m MeV}]$
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_{c}(2939)^{0}$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

Two structures seen in vicinity of previously observed $\Xi_c(2930)^0$

- limited statistics may have prevented distinction between two separate states previously
- different production mechanisms

The $\Xi_c(2965)^0$ is close to the $\Xi_c(2970)^0$

- $\Xi_c(2965)^0$ is lower in both mass and width
- B-factories have not observed the $\Xi_c(2970)^0$ in its decay to $\Lambda_c^+ K^-$
- More studies required...

arXiv:2003.13649

adapted from [PDG]

Charmed Ξ_c^0 baryons

Equal spacing rule

• Gell-Mann-Okubo formula for baryons:

 $m(\Omega_c^{**}) - m(\Xi_c^{**}) = m(\Xi_c^{**}) - m(\Sigma_c^{**})$

• E.g. for the states in the 3/2+ multiplet:

 $m(\Omega_c(2770)) - m(\Xi_c(2645)) \simeq m(\Xi_c(2645)) - m(\Sigma_c(2520)) \simeq 125 \text{ MeV}$

• And...

lef

 $m\left(\Omega_{c}(3050)^{0}\right) - m\left(\Xi_{c}(2923)^{0}\right) \simeq m\left(\Xi_{c}(2923)^{0}\right) - m\left(\Sigma_{c}(2800)^{0}\right) \simeq 125 \text{MeV}$ $m\left(\Omega_{c}(3065)^{0}\right) - m\left(\Xi_{c}(2939)^{0}\right) \simeq 125 \text{MeV}$

$$m\left(\Omega_c(3090)^0\right) - m\left(\Xi_c(2965)^0\right) \simeq 125 \text{MeV}$$

The LHCb Collaboration also pointed out several equalities of mass gaps,

- $m[\Omega_c(3050)^0] m[\Xi_c(2923)^0] \simeq 125 \text{ MeV},$ (7)
- $m[\Omega_c(3065)^0] m[\Xi_c(2939)^0] \simeq 125 \text{ MeV},$ (8)
- $m[\Omega_c(3090)^0] m[\Xi_c(2965)^0] \simeq 125 \text{ MeV},$ (9)
- $m[\Xi_c(2923)^0] m[\Sigma_c(2800)^0] \simeq 125 \text{ MeV},$ (10)

which strongly suggests that the $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$ should be the corresponding charmed strange partners of the $\Omega_c(3050)^0$, $\Omega_c(3065)^0$, and $\Omega_c(3090)^0$, respectively. Also, the $\Sigma_c(2800)^0$ may be the non-strange partner

Excerpt taken from arXiv:2004.02374 :

Emmy Gabriel

Studies of the $\Lambda_b^0 \pi^+ \pi^-$ system

$\Lambda_b^0 \pi^+ \pi^-$ system

The mass spectrum has been extensively studied at LHCb:

• Initially studied low mass (near threshold) region with 1 fb⁻¹ \rightarrow two narrow $\Lambda_b(1P)^0$ resonances [PRL 109 (2012) 172003]

Two new recent updates which I will cover in detail today:

High mass region with 9 fb⁻¹
 [PRL 123 (2019) 152001]

Emmy Gabriel

Nik hef

 Intermediate mass region with 9 fb⁻¹
 [arXiv:2002.05112]

Nik hef Emmy Gabriel

Excited Λ_b^0 baryons

<u>arXiv:2002.05112</u> PRL 123 (2019) 152001

Two recent studies follow very similar analysis strategies and selection requirements:

• Select $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ & $\Lambda_b^0 \to J/\psi p K^-$ samples using BDTs.

Add two prompt pions.

Emmy Gabriel

Nik hef

Excited $\Lambda_b^0\,\, {\rm baryons}\,$ - intermediate mass

Also: more precise measurement of low mass states using both $\Lambda_b^0 \to \Lambda_c^+ \pi^- \mbox{a} \ \Lambda_b^0 \to J/\psi p K^-$

LHC seminar 04.05.2020

arXiv:2002.05112

27

Nik hef

Emmy Gabriel

Excited Λ_h^0 baryons - high mass

PRL 123 (2019) 152001

Emmy Gabriel

Nik hef

- Mass region: 6.1 GeV < $\Lambda_b^0 \pi^+ \pi^- < 6.25$ GeV
- New structure observed around 6.15 GeV in $m(\Lambda_b^0 \pi^+ \pi^-)$. Structure is above $\Sigma_b^{(*)\mp} \pi^{\pm}$
- threshold.
- More statistics in sample where Λ_h^0 is reconstructed in $\Lambda_c^+\pi^-$ final state.

Excited Λ_b^0 baryons - high mass

Split data in three regions in $m(\Lambda_b^0\pi^{\mp})$:

- $\begin{array}{c} \Sigma_b^{\pm} \pi^{\mp} \\ \Sigma_b^{*\pm} \pi^{\mp} \end{array} \end{array}$

Nik hef

Non-resonant

Perform simultaneous fit in the three regions.

Two peak hypothesis favoured at 7σ significance.

 $m(\Lambda_b(6146)^0) = 6146.16 \pm 0.33 \pm 0.22 \pm 0.16 \text{ MeV}$ $m(\Lambda_b(6152)^0) = 6152.51 \pm 0.26 \pm 0.22 \pm 0.16 \text{ MeV}$ $\Gamma(\Lambda_b(6146)^0) = 2.9 \pm 1.3 \pm 0.3 \text{ MeV}$ $\Gamma(\Lambda_b(6152)^0) = 2.1 \pm 0.8 \pm 0.3 \text{ MeV}$

Emmy Gabriel

LHC seminar 04.05.2020

PRL 123 (2019) 152001

Excited $\Lambda_b^0\,\, {\rm baryons}\,$ - high mass

PRL 123 (2019) 152001

Possible interpretation of the newly observed Λ_b^{*0} states :

 $\Lambda_b (6152)^0$ couples to Σ_b^{\pm} & $\Sigma_b^{*\pm}$. $\Lambda_b (6146)^0$ couples primarily to $\Sigma_b^{*\pm}$.

Consistent with a $\Lambda_b (1D)^0$ doublet with J^P = 3/2⁺ and 5/2⁺. [arXiv:1910.03318] [PRD 100 (2019) 054013]

Other interpretations such as excited Σ_b possible but less likely.

Emmy Gabriel

Nik hef

Excited $\Lambda_b^0\,\, {\rm baryons}\,$ - intermediate mass

• Simultaneous binned fit in six distributions, where background parameters are shared (200 keV bins)

arXiv:2002.05112

Nik hef

Emmy Gabriel

Excited $\Lambda_b^0\,\, {\rm baryons}\,$ - intermediate mass

- Cannot use trick from <u>PRL 123 (2019) 152001</u> to split data in three regions, as kinematic regions overlap in the region of the Λ_b^{**0} .
- Select signal region and use WS samples as background proxy.
 - Largest fraction from non-resonant decays

Nik hef

Emmy Gabriel

32

arXiv:2002.05112

Excited Λ_b^0 baryons -results

 Λ_b^{**0} state consistent with recent CMS search [Phys.Let.B 803 (2020) 135345]

Nik hef Emmy Gabriel

arXiv:2002.05112

Excited Λ_b^0 baryons -results

Five excited Λ_b^0 have now been found!

arXiv:2002.05112 PRL 123 (2019) 152001

State	Mass [MeV]	Width [MeV]
$\Lambda_b(5912)^0$	(1P) $5912.21 \pm 0.03 \pm 0.01 \pm 0.21$	< 0.28
$\Lambda_b(5920)^0$	(1P) 5920.11 \pm 0.02 \pm 0.01 \pm 0.21	< 0.20
Λ_b^{**0}	(2S) $6072.3 \pm 2.9 \pm 0.6 \pm 0.2$	$72\pm\!11\!\pm\!2$
$\Lambda_b(6146)^0$	(1D) 6146.16 \pm 0.33 \pm 0.22 \pm 0.16	$2.9 \pm 1.3 \pm 0.3$
$\Lambda_b(6152)^0$	(1D) $6152.51 \pm 0.26 \pm 0.22 \pm 0.16$	$2.1 \pm 0.8 \pm 0.3$

Interpretation:- $\Lambda_b(2S)^0$ state

- could be a superposition of several narrow states
- excited Σ_b interpretation disfavoured

hef Emmy Gabriel

Conclusion

Emmy Gabriel

Many interesting experimental baryon spectroscopy measurements from LHCb at the moment.

Unique experimental possibilities at LHCb, e.g. *heavy b-hadrons*. Many more interesting avenues to explore than what has been shown today, e.g. doubly heavy baryons and strange baryons.

Much more to come out of the full Run 1 + Run 2 dataset...

spin & parity measurements of new states search for other decay modes branching ratio measurements

... and more data to be taken after the Upgrade! **Stay tuned!**

BACKUP

arXiv:2003.13649

The $\Lambda_c^+ K^-$ mass spectrum

Could be due to:

- statistical fluctuation
- mis-modelling of feed-down decays
- partially reconstructed new baryon
- another new baryons
- combination of the above...

arXiv:2002.05112

3-body Breit-Wigner

Nik|hef

Emmy Gabriel

$$\begin{split} \mathfrak{S}(m|m_{0},\Gamma) \propto \frac{\Gamma \rho_{3}(m)}{\left(m_{0}^{2}-m^{2}\right)^{2}+m_{0}^{2}\Gamma^{2}\left(\frac{\rho_{3}(m)}{\rho_{3}(m_{0})}\right)^{2}}, & \mathsf{Kaellen} \\ \rho_{3}(m) \equiv \frac{\pi^{2}}{4m^{2}} \int_{4m_{\pi}^{2}}^{(m-m_{\Lambda_{b}^{0}})^{2}} \frac{dm_{\pi\pi}^{2}}{m_{\pi\pi}^{2}} \,\lambda^{1/2}\left(m_{\pi\pi}^{2},m^{2},m_{\Lambda_{b}^{0}}^{2}\right) \lambda^{1/2}\left(m_{\pi\pi}^{2},m_{\pi}^{2},m_{\pi}^{2}\right), & \frac{3\text{-body}}{\text{phase space}} \end{split}$$

Normal Breit-Wigner lead to very large systematic due to choice of m_{ππ}
 3-body Breit-Wigner well-motivated for broad non-resonant decays, such as Λ_b(2S)⁰ → Λ⁰_b f₀(500)

The $\Lambda_c^+ K^-$ systematic errors

Source	$\Xi_c(2923)^0$		$\Xi_c(2939)^0$		$\Xi_c(2965)^0$	
	$m[{ m MeV}]$	$\Gamma \left[\mathrm{MeV} \right]$	$m[{ m MeV}]$	$\Gamma [{ m MeV}]$	$m[{ m MeV}]$	$\Gamma \left[\mathrm{MeV} \right]$
Alternative fit model	0.15	1.6	0.14	0.4	0.04	1.1
Resonance interferences	0.08	0.7	0.06	1.0	0.11	0.7
Momentum-scale	0.04		0.05	_	0.06	—
Energy losses	0.04		0.04		0.04	—
Resolution calibration	—	0.6	—	0.2	—	0.3
Total	0.20	1.8	0.17	1.1	0.14	1.3

arXiv:2003.13649

Beautiful Ω_b^- baryons systematic errors PRL 124 (2020) 082002

Source	Peak 1	Peak 2	Peak 3	Peak 4
	[MeV]	[MeV]	[MeV]	[MeV]
Momentum scale	0.01	0.02	0.02	0.03
Energy loss	0.04	0.04	0.04	0.04
Signal shape	0.02	0.02	0.02	0.02
Background	0.05	0.05	0.01	0.01
Total	0.07	0.07	0.05	0.05

Nik hef

Emmy Gabriel

Excited Λ_b^0 baryons systematic errors high mass <u>PRL 123 (2019) 152001</u>

Sourco	$\Lambda_b($	$6146)^{0}$	$\Lambda_b(6152)^0$	
Source	m	Γ	m	Γ
Momentum scale	80		80	
Signal model	50	50	50	50
Resolution model	15	270	< 10	310
Background model	30	30	30	20
Total	100	280	100	320
Including Λ_b^0 mass systematic	220	280	220	320

Excited Λ_b^0 baryons systematic errors intermediate & low mass <u>arXiv:2002.05112</u>

Sourco	$\Delta m_{\Lambda_h^{**0}}$	$\Gamma_{\Lambda_{h}^{**0}}$	Δm_{Λ_b}
Source	$[{ m Me}\ddot{ m V}]$	$[{ m MeV}]$	[MeV
Fit model			
Signal parameterisation	0.50	1.50	
Background parameterisation	n 0.03	0.25	
Fit range	0.10	0.30	
$\Lambda_b(1D)^0$ parameters			
Momentum scale uncertainty	0.08		0.01
Sum in quadrature	0.52	1.55	0.01

Nik hef

Emmy Gabriel

Comparison

Nik|hef

Emmy Gabriel

• $\Xi_c(2970)^0$ has been seen before, but not in this decay mode.

Collaboration	Decay Mode	Mass [MeV]	Width [MeV]	Significance
Belle	$\Lambda_c^+\pi^-K_S^0$	$2977.1 \pm 8.8 \pm 3.5$	-	1.5σ
Babar	$\Lambda_c^+ \pi^- K_S^0$	$2972.9 \pm 4.4 \pm 1.6$	$31\pm7\pm8$	1.7σ
Belle	$\Xi_c(2645)^+\pi^-$	$2965.7 \pm 2.4^{+1.1}_{-1.2}$	$15\pm 6\pm 3$	6.1σ
Belle	$\Xi_c(2645)^+\pi^-$	$2970.8 \pm 0.7 \pm 0.2^{+0.3}_{-0.4}$	$30.3 \pm 2.3^{+1.0}_{-1.8}$	$> 5\sigma$
	$\Xi_c'\pi^-$			
PDG			$28.1^{+3.4}_{-4.0}$	

 How come the width and mass measured in this analysis are smaller than previous measurements?
 Our measurement:

$$m\left(\Xi_c(2965)^0\right) = 2964.88 \pm 0.26(\text{ stat }) \pm 0.14(\text{ syst }) \pm 0.14(\text{ PDG }) \text{ MeV} \Gamma\left(\Xi_c(2965)^0\right) = 14.07 \pm 0.91(\text{ stat }) \pm 1.34(\text{ syst }) \text{ MeV},$$

Excited Λ_b^0 baryons

Two recent studies follow very similar analysis strategies and selection requirements:

- Select $\Lambda_b^0 \to \Lambda_c^+ \pi^-$ & $\Lambda_b^0 \to J/\psi p K^-$ samples using BDTs.
- Add two prompt pions.

Future prospects

Summary of expected signal yields in several important spectroscopy modes at LHCb:

		LHCb		Belle II
Decay mode	$23{ m fb}^{-1}$	$50{ m fb}^{-1}$	$300{ m fb}^{-1}$	$50{ m ab}^{-1}$
$B^+ \to X(3872) (\to J/\psi \pi^+ \pi^-) K^+$	14 k	30k	180k	11k
$B^+ \to X(3872) (\to \psi(2S)\gamma) K^+$	500	1k	7k	4k
$B^0 \to \psi(2S) K^- \pi^+$	340k	700k	$4\mathbf{M}$	140 k
$B_c^+ \to D_s^+ D^0 \overline{D}^0$	10	20	100	
$\Lambda_b^0 \to J/\psi pK^-$	340k	700k	$4\mathbf{M}$	
$\Xi_b^- \to J/\psi \Lambda K^-$	$4\mathbf{k}$	10 k	55k	
$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$	7k	15 k	90 k	< 6k
$\Xi_{bc}^+ \to J/\psi \Xi_c^+$	50	100	600	

Expected yields competitive with Belle II projections!

Study of $\Sigma_b^{(*)\pm}$ states

Nik hef

Emmy Gabriel

Two ground state I=1 triplets expected:

$${f J}^{{\sf P}}$$
 = 1/2+ (${\Sigma}_{b}$)
 ${f J}^{{\sf P}}$ = 3/2+ (${\Sigma}_{b}^{*}$)

Precise measurement of the $\Sigma_b^{(*)\pm}$ states (discovered by CDF [PRL 99 (2007) 202001]) LHCb measurement near $\Lambda_b^0 \pi^{\pm}$ threshold [PRL 122 (2019) 012001]

Mass and width measurement 5 times more precise compared to CDF result (3fb⁻¹)

$$\begin{split} m(\Sigma_b^-) &= 5815.64 \pm 0.14 \pm 0.24 \text{ MeV} , \ \Gamma(\Sigma_b^-) = 5.33 \pm 0.42 \pm 0.37 \text{ MeV} \\ m(\Sigma_b^{*-}) &= 5834.73 \pm 0.17 \pm 0.25 \text{ MeV} , \ \Gamma(\Sigma_b^{*-}) = 10.64 \pm 0.60 \pm 0.33 \text{ MeV} \\ m(\Sigma_b^+) &= 5810.55 \pm 0.11 \pm 0.23 \text{ MeV} , \ \Gamma(\Sigma_b^+) = 4.83 \pm 0.31 \pm 0.37 \text{ MeV} \\ m(\Sigma_b^{*+}) &= 5830.28 \pm 0.14 \pm 0.24 \text{ MeV} , \ \Gamma(\Sigma_b^{*+}) = 9.34 \pm 0.47 \pm 0.26 \text{ MeV} \end{split}$$

Study of $\Sigma_b^{(*)\pm}$ states

Expanding the $m(\Lambda_b^0 \pi^{\pm})$ region: observation of new states, $\Sigma_b (6097)^{\pm}$

Heavy quark limit predicts five $\Sigma_b(1P)$ states, several in mass region around 6100 MeV.

 $\Sigma_b (6097)^{\pm}$ could be one of these states, or a superposition. Other interpretations, such as molecular states may also be possible.