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Or l�a, o�u il n'y a point de parties, il n'y a ni �etendue, ni �gure, ni divisibilit�e possible.

Et ces Monades sont les v�eritables Atomes de la Nature et en un mot les Elements des

Choses.

G.W. Leibnitz (La Monadologie-3)
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1 N = 2 Algebra and Topological Field Theory

1.1 N = 2 Algebra and BRST-cohomology

Given the N = 2 supersymetric algebra

(Q�)2 = 0 (1)

fQ+; Q�g = H

a topological �eld theory (TFT) can be de�ned by declaring one of the two SUSY gener-

ators, let us say Q+, to be a BRST-charge. The physical Hilbert space H of the TFT is

de�ned as the BRST cohomology and the physical observables �i are constrained by the

symmetry requirement

[Q+; �i] = 0 (2)

We can provide the Hilbert space H with an inner product h ; i such that the ad-

joint of Q+ is Q�. This allow us to associate with each cohomology class a "Hodge-

representative"1 satisfying

Q+jii = Q�jii = 0 (3)

From (1.b) we observe that this basis is one to one related to the vacuum states

Hjii = 0 (4)

In these lectures we will mostly reduce our study to two dimensional topological �eld

theories [1], [2]. Physically, topological invariance means that the only space-time depen-

dence of correlation functions will be on its topology, which in two dimensions is simply

given by the genus. Topological invariance is certainly a much larger symmetry that the

more familiar conformal invariance, this however does not mean that all topological �eld

theories are massless or, equivalently, with a traceless energy-momentum tensor. As we

will see it is possible to write down lagrangians which are manifestly independent of the

metric, and in this sense topological, possessing dimensionful coupling constants. The

1Hodge's theorem for compact manifolds without boundary stablish that any p-form can be uniquely

decomposed as a sum of exact, co-exact and a harmonic form. The harmonic form (3) is the Hodge-

representative.
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renormalization group can be directly applied to these topological theories. The critical

points of the renormalization group ow will de�ne topological conformal �eld theories,

which will be characterized by two chiral, Q� and �Q�, N=2 algebras.

1.2 Two Dimensional TFT's: Operator Formalism

In two dimensions, a TFT can be nicely described using the operator formalism [3]. Let

H be the physical Hilbert space and let us choose as a basis the Hodge-representatives

de�ned by equation (3). Given now a generic Riemann surface �g of genus g with n punc-

tures p1; :::; pn, the operator formalism de�nition of the corresponding TFT will consist

in associating with these geometrical data a quantum state j�g; p1; :::; pni satisfying

Q+j�g; p1; :::; pni = 0 (5)

�j�g; p1; :::; pni = Q+j�i

where by � we mean any change of the metric and the positions of the punctures. Condi-

tion (5.1) implies that j�g; p1; :::; pni 2 
nH, and condition (5.2) reects the topological

nature of the theory, namely, any geometrical change is represented by Q+-exact forms

and therefore all the geometrical dependence of the state j�g; p1; :::; pni can be mapped

into the same BRST-cohomology class. Hence we can associate with any genus g and any

number of punctures n a Hodge-representative state jg; ni as follows

jg; ni =
X

i1;:::;in

C i1:::in
g ji1i 
 :::
 jini (6)

where we sum over the basis (3) of the physical Hilbert space H, and with the constants

C i1:::in
g depending only on the topological data, namely the genus and the number of

punctures. To de�ne the theory reduces now to �x these constants. In order to do it we

will imposse, as usual, consistency with sewing.

A topological sewing can be de�ned by two operations � and �̂ such that

jg; ni = jg1; n1i � jg2; n2i; n1 + n2 = n + 2

jg; ni = �̂jg�1; n+2i (7)
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Using (6), we can de�ne the �-operation as follows

jg; ni =X
i

(
X
j

Cg1
i1:::in1�1

j
Cg2

j in1+2:::in1+n2 )ji1i 
 :::
 jin1+n2i (8)

with

Cg
i1:::in

j
� Cg

i1:::in l�lj (9)

where we have introduced a "sewing metric" �ij. The �-operation can be analogously

de�ned as follows

jg; ni =X
i

X
j

Cg�1
i1:::in j

j
ji1i 
 :::
 jini (10)

Using (8) and (10), we get the following type of sewing equations

Cg
i1:::in = Cg1

i1:::ik
j
Cg2

j ik+1:::in =
X
j

Cg�1
i1:::inj

j
(11)

An inmediate consequence of sewing is that all constants Cg
i1:::in can be written as

products of the elementary three point functions C ijk
0 . The sewing equations (11) will

be automatically ful�lled if the elementary three point constants satisfy the associativity

condition X
m

C0
ij
mC0

mkl =
X
m

C0
ik
mC0

mjl (12)

The net result of the sewing construction is that a TFT is completely determined by

a set of constants C0
ijk and the sewing metric �ij . In the previous discussion, we have

not considered the dependence of C0
ijk on the coupling constants of the theory. Before

entering into that problem, we will like to use the previous formalism for the explicit

construction of correlation functions.

1.3 Observables and Hodge-representatives

Let us consider a physical observable �i satisfying condition (2). As it is in general the case

for local quantum �eld theory, we would like to associate with this observable a physical

state, i.e. a BRST cohomology class and more in particular a Hodge-representative in this

class. This can be done as follows. Let as take a hemisphere with the �eld �i inserted on

it at the point p. In this way we obtain at the boundary a physical state jiip satisfying

4



Q+jiip = 0. When we change the position of the insertion, the state we will obtain will

di�er from the former one by Q+-exact forms. A simple way to project on the Hodge-

representative, will be by gluing the hemisphere to an in�nitely long cylinder with �xed

perimeter �. Using now relation (1.b), we can project on the harmonic representative by

taking the limit

jii = lim
T!1

e�THjiip (13)

The state jii satisfy
Q+jii = Q�jii = 0 (14)

By the construction we have used [4], the state jii associated with the observable �i will
in principle depend on the perimeter of the cylinder �. This statement can sound a priori a

bit strange. In fact if for di�erent values of � we obtain di�erent harmonic representatives

we will be in contradiction with the topological invariance as introduced in equation (5),

namely the di�erence of two harmonic forms is not a Q+-exact form and, on the other

hand, a change of the perimeter seems to be an innocent geometrical variation. What is

the solution to this puzzle? To get the solution we need to understand the perimeter �

used to map physical observables into Hodge-representatives as a renormalization group

point or scale. In this sense, changes of � will produce in general variations in the

coupling constants2. Now the cohomology class is de�ned relative to Q+ which will

depend explicitely on these couplings. Therefore changing � we will get, in general,

di�erent harmonic forms in di�erent cohomology classes. After this comment we can

try to connect the operator formalism construction presented in section 1.2, with the

de�nition of correlation functions for physical observables.

By means of the sewing procedure we have reduced the problem of de�ning the states

jg; ni to that of de�ning a topological metric �ij and the set of elementary three point

functions C ijk
0 . Our task will be now to get these building blocks of the TFT directly from

the algebra of observables. Let us consider two physical observables �i; �j inserted on the

hemisphere, and let us project on a Hodge-representative by gluing an in�nite cylinder

of �xed perimeter �. The state ji; ji� obtained by this procedure is by construction a

physical state and can be projected on a basis of H

ji; ji� =
X

Ck
ij(�)jki� (15)

2A more detailed characterization of the RG in topological �eld theories will be presented in section

1.6
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The constants Ck
ij(�) de�ne the cohomology ring structure for a particular set of Hodge-

representatives, namely the ones de�ned at the renormalization point �.

Now we can use these cohomology ring constants, and sewing, to de�ne any correlator

of physical observables

h�i�j�k�li0 =
X
nm

Cn
ij�nmC

m
kl =

X
n

Cn
ijCnkl (16)

From (16) we get in particular

�ij = h�i�ji0 (17)

It should be stressed that the sewing metric or topological metric, �ij de�ned by two

point correlators on the sphere, does not coincide with the inner product of H relative

to which the adjoint of Q+ is Q�. The dependence on the renormalization group point

� of these correlators should be constrained to satisfy, as usual in quantum �eld theory,

renormalization group equations

d

d�
(C i1:::in

g ) = 0 (18)

It will be important for the rest of our study to have control on the �-dependence of

the Hodge-representative states. To do that, it is convenient to pass from the abstract

discussion we are developping until now to some concrete cases of TFT.

1.4 Twisting N=2 Super Conformal Field Theories

In the previous section we have presented the general structure of a TFT. To materialize

this structure in one concrete case, we will de�ne TFT's associated with N = 2 super

conformal �eld theories (SCFT).

The chiral algebra of a N = 2 SCFT [5] is generated by the identity, the energy

momentun tensor T (z), two supersymmetric currents G� and a U(1) current J(z). In

terms of the corresponding Laurent expansions

T (z) =
X
n

Lnz
�n�2; J(z) =

P
Jnz

�n�1; G�(z) =
X
n

G�n z
�n�3=2 (19)
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The N = 2 algebra is given by

fG�r ; G+
s g = 2Lr+s � (r � s)Jr+s + (c=3)(r2 � 1=4)�r+s;0

[Lm; Ln] = (m� n)Lm+n + (c=12)m(m2 � 1)�m+n;0

[Ln; G
�
r ] = (n=2 � r)G�n+r ; [Ln; Jm] = �mJm+n (20)

[Jm; Jn] = (c=3)m�m+n;0 ; [Jn; G
�
r ] = �G�n+r

where r and s are intergers or half intergers depending if the representation is in the NS

or R sectors. The same holds for the antiholomorphic components �G�n ,
�Jn and �Ln.

In order to build a TFT we want, �rst, to use one of the two SUSY currents to de�ne

a BRST charge. This is not possible inmediately because the SUSY currents have spin

3=2 instead of 1, as should be the case for de�ning a BRST-charge. Second, we need

an energy-momentum tensor that can be written as an exact form in order to implement

topological invariance. The two things can be achieved by twisting [2, 6] the theory, which

consists in changing the energy-momentum tensor T (z) to T t(z), de�ned by

T t(z) = T (z) +
1

2
@J(z) (21)

This change in the energy-momentum tensor corresponds to couple the U(1) current to a
background gauge �eld equal to half the spin connection. The net result of this background

�eld is to change the spin s of any �eld of charge q to s� q=2. This is the e�ective change
of the spin coming from the holonomy contribution for a charge q coupled to a U(1) gauge
�eld equal to one half the spin connection.

After twisting, the SUSY current G+ of positive charge q = 1 and spin 3=2, becomes

a one form and can be used to de�ne a BRST charge

Q+ =
I
G+(z)dz (22)

Moreover, from the algebra relations (20) we get

T t(z) =
I
G+(w)G�(z)dw (23)

which makes the twisted energy-momentum tensor (21) a Q+-exact form.

Therefore, by twisting the N = 2 SCFT we have obtained a topological conformal

�eld theory with two BRST charges

Q+ =
Z
G+(z)dz; �Q+ =

Z
�G+(z)dz (24)
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and a traceless energy-momentum tensor T t(z), �T t(�z) which are, relative to Q+ and �Q+,

exact forms.

Before leaving this section, let us note that we could have done the twist coupling

the U(1) charge to minus one half of the spin connection. In this case, the G� current

becomes the BRST charge. This can be done independently in the left and right sectors.

Physical Hilbert Space and Observables: Chiral Ring [8]

The Hilbert space of the original N = 2 SCFT is, as usual in CFT's, a direct sum of

irreps of the chiral algebra. Each irrep is associated with a primary �eld which represents

the observables of the theory and is characterized by a weight � and a U(1) charge q.
As an example we can mention the case of Ak+1 minimalmodels. The central extension

in this case is given by

c =
3k

k + 2
(25)

with k an interger number, called level. The irreps ful�lling the Hilbert space are

parametrized by

weights : �l;m =
l(l+ 2)�m2

4(k + 2)
l = 0; :::; k ;m = �l;�l+2; :::; l�2; l

U(1)charges : qm =
m

k + 2
(26)

Each of these irreps is associated with a primary �eld �l;m(z). Denoting jl;mi the weight
vector, the map between observables and states is given by

jl;mi = �l;m(0)j0i (27)

When we twist the theory, the Hilbert space of the N = 2 SCFT collapses into Q+-

cohomology classes. The best way to understand this truncation is by using a Coulomb

gas representation where the BRST charge of the N = 2 SCFT is de�ned in terms of

the screening currents [7]. By the twist we modify the theory in such a way that the

energy-momentum tensor becomes, relative to this BRST charge, an exact form.

Our task now will be to associate a Hodge-representative to each cohomology class

and to de�ne the corresponding physical observables. As usual, we can take as Hodge-

representative the harmonic or vacuum forms of the twisted theory

Q+jii = Q�jii = 0 (28)
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These Hodge-representatives are precisely the Ramond vacua of the original N = 2

SCFT3. In other words, each cohomology class of the twisted theory has as Hodge-

representative a Ramond vacua of the untwisted theory. It is well known that the NS

and R realizations of a N = 2 superconformal algebra are connected by the spectral ow

transformation U1=2

U1=2 L0 U�11=2 = L0 � J0

2
+

c

24

U1=2 J0 U�11=2 = J0 � c

6
(29)

U1=2 G��1=2 U�11=2 = G�0

The Ramond vacuum states are de�ned by

L0jiiR =
c

24
jiiR

G+
0 jiiR = 0 (30)

It is easy to see, using (29), that NS w.v. satisfying � = q=2 are one to one related to

Ramond vacua (30). These NS w.v. are associated in the N = 2 SCFT with local primary

�eld �i that verify

[G+
�1=2; �i] = 0 (31)

Fields satisfying (31) are called chiral �elds. Summarizing, each cohomology class of

the twisted theory is associated with a chiral primary �eld. Indeed, equation (31) corre-

sponds to the BRST-invariance condition in the twisted theory, and it can be proved that

any general chiral �eld can be decomposed into the sum of a chiral primary �eld and a

Q+-exact one. The consistency of the twisting procedure requires that the operator prod-

uct expansion for chiral primary �elds is, up to Q+-exact forms, another chiral primary

�eld. This is in fact the case. In the twisted theory and due to the fact that the energy-

momentum tensor is Q+-exact we can, up to Q+-exact forms, reduce our study of the

operator product �i(z)�j(w) between two chiral primary �eld to the "topological limit"

z ! w. In this limit and by U(1) charge conservation, the only possibility is another

chiral primary �eld �k such that

�i�j = Ck
ij�k ; qk = qi + qj (32)

We reobtain in this way the ring structure we have already discussed in section 1.3. This

ring of observables is known as the chiral ring [8]. Analogously, there exist an antichiral

3For the minimal models (25)-(27), solutions to (28) correspond to l = m.
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ring of observables when we choose G� to de�ne a BRST charge, and an spectral ow

transformation U�1=2 connecting antichiral �elds with Ramond vacua.

It is nice to see that the topological theory de�ned by the twisting mechanism im-

plements in a natural way the spectral ow transformation. In fact if we de�ne the

Hodge-representative jii by inserting on the hemisphere the chiral �eld �i and projecting

on the zero energy sector by gluing an in�nitely long cylinder, the state we get at the

boundary will have charge qi�c=6, where c=6 comes from the contribution of the twist to

the functional integral representation of the state jii. Now from (29) we see that this is

precisely the charge of the state U1=2�ij0i obtained from the NS sector by spectral ow.

The anomaly of the U(1) current generated by the twist imposses the following selec-

tion rule for non vanishing correlators h�i1 :::�inig
X
i

qi = ĉ(1 � g) ; ĉ = c=3 (33)

In particular the topological metric �ij = hjjii de�ned for Hodge-representatives, i.e.

Ramond vacua, will be non vanishing only if

qi + qj = ĉ (34)

or in other words, when the sum of the Ramond charges is equal to zero.

1.5 Deformations Preserving Topological Invariance: Coupling

Constants and the t�t-equations

Physical observables of an N = 2 SCFT are associated with chiral super�elds, of compo-

nents

�i = (�
(0)
i (z; �z); �

(1)
i (z; �z); ��

(1)
i (z; �z); �

(2)
i (z; �z)) (35)

where

�
(2)
i = fQ�; [ �Q�; �(0)i ]g (36)

and therefore

[Q+;

Z
�
�
(2)
i ] = 0 (37)
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Similarly, for antichiral �elds ���i we can de�ne, relative to the SUSY charge Q+

��
(2)
�i

= fQ+; [ �Q+; ��
(0)
�i
]g (38)

which trivialy implies

[Q+;

Z
�

��
(2)
�i
] = 0 (39)

Moreover, for Q+ being the BRST charge, ��
(2)
�i

becomes a pure BRST �eld.

Using (36) and (38) we de�ne a deformed theory parametrized by the coupling con-

stants (ti; �t�i) as follows

L(ti; �ti) = LN=2
0 +

X
i

ti

Z
�
�
(2)
i +

X
�i

�t�i

Z
�

��
(2)
�i

(40)

This deformed theory can be transformed into a TFT again by the twisting mechanism.

Let us �x a set of values (t0; �t0) for the coupling constants. If some of the non vanishing

coupling constants correspond to relevant deformations, then the theory de�ned by (40)

will represent a massive deformation of the N = 2 SCFT, LN=2
0 . For these massive

deformations, the only conserved U(1) current correspond to the fermion number current

(the di�erence between the left and right charges at the conformal point). The TFT at

this point in the space of couplings is obtained by twisting with respect to the conserved

fermion number current

LT = L(ti; �ti) +
1

2

Z
j A (41)

for A the U(1) spin connection and j the fermion number current. The antitopological

twist is de�ned by

LT �

= L(ti; �ti)� 1

2

Z
j A (42)

Physical observables of (41) are associated with the chiral �elds �i and the ones of (42)

with the antichiral �elds ���i.

If the deformed theory (40) is massive, the N = 2 algebra generated by Q�, �Q� will

contain non vanishing central terms of the type

fQ+; �Q+g = � ; fQ�; �Q�g = �� (43)

The N = 2 algebra (1) is then de�ned by

Q� =
1p
2
(Q� + �Q�) (44)
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After the twisting (41) ((42)), Q+ (Q�) becomes the corresponding BRST charges.

For each point (t; �t) in the coupling space, we have de�ned a BRST charge Q+ and

therefore we can �ber the coupling space by the cohomology ring. The study of this

bundle will be the main task for the rest of this section.

Let ji; t;�t;�i to be the state de�ned by inserting on the hemisphere the �eld �i and

projecting on a zero energy state by gluing the hemisphere to an in�nitely long cylinder of

perimeter �. This correspond to use for the hemisphere a metric g=e�dzd�z with �=e�.

Let us now introduce a set of "connections" Ai, A�i
4 as follows

@tijj; t; �t;�i = Ak
ij jk; t;�t;�i + Q+�exact

@�tijj; t; �t;�i = Ak
�ij jk; t;�t;�i + Q+�exact (45)

Therefore the covariant derivatives are given by

Di = @i �Ai ; �D�i = @�i �A�i (46)

Using the functional integral representation of ji; t; �ti and interpreting the partial deriva-

tive @i as the insertion and integration over the hemisphere of the operator �
(2)
i , we can

conclude, by contour deformation techniques and equation (37), that @ijj; t; �t;�i is also a
physical state. With the same techniques, it is easy to see that

Ak
�ij = 0 (47)

De�ning now

Aijk = hkj@ijji = Al
ij �lk (48)

for �lk the topological metric, we can derive, by standard functional integral arguments,

curvature equations for the connections Ai. From (47) we get

@�lAijk = @�lAijk � @iA�ljk (49)

4Properly speaking these connections are de�ned by

h�kj@i �Aijji = 0

with j�ki the antiholomorphic basis. The connection (45) is then de�ned by

Akij = Aij�kg
�kk

with g
�kk the inverse of the hermitian metric gi�j= h�jjii.
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which admits the functional integral representation

h�k (
Z
�L

Q+ �Q+ ���l) j(
Z
�R

Q� �Q��i) �ji � h�k (
Z
�L

Q� �Q��i) j(
Z
�R

Q+ �Q+ ���l) �ji (50)

where �L and �R represent the two hemispheres glued respectively to in�nitely long

cylinders of perimeter �. To compute the �rst component of (50), we contract the SUSY

currents. The result is

h�k (
Z
�L

���l) j(
Z
�R

@ �@�i) �ji (51)

which can be written as

� h�k (
Z
�L

���l) j(
I
C
@n�i) �ji (52)

for C the boundary of �R and @n the normal derivative along the cylinder. At the

boundary the state de�ned by inserting �j is projected on a zero energy state jji, therefore,
and taking into account that @n�i=[H;�i], we can rewrite (52) as

� h�k
Z
�L

���l j H
I
C
�i jji = �

Z
d� hkj

I
C�

���l H
I
C
�i jji (53)

We have used that the state obtained by inserting �k and ���l on the left hemisphere, after

gluing the cylinder, is anhilated by H. The integral over � in (53) is over the length of the

left cylinder, T . Moving H to the left in (53), we obtain

Z
d� hkj (@�

I
C�

���l)
I
C
�i jji (54)

The integration in � is now performed easily, getting contributions from the boundaries

at � = 0; T . The contribution at � = T cancels with an identical one coming from the

second term in (50). Then, we are left with

�
Z
hkj

I
C�

���l exp(�TH)
I
C
�i jji (55)

where the propagation of ���j along the in�nitely long left cylinder, explicited by the factor

exp(�TH), has the usual e�ect of projecting into the ground states. Therefore (55) can

be written in terms of the structure constants of the chiral ring

� ( �C�lCi)kj (56)

Using the same arguments for the second term in (50), we �nally obtain

@�lA
k
ij = �2[Ci; �C�l ]

k
j (57)
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with � the perimeter of the cylinder5. Equation (57), �rst derived by Cecotti and Vafa

[4], togheter with

[Di;Dj] = [ �D�i;
�D�j] = [Di; �C�j] = [ �D�i; Cj] = 0 (58)

[Di; Ci] = [Dj; Ci] ; [ �D�i; �C�j] = [ �D�j; �C�i]

which can be deduced by similiar techniques as (57), are known as the t�t-equations. To

contract the indices of the topological and antitopological structure constants in (57) we

use the metric gi�j of the physical Hilbert space H, namely

�Ck
�lj = gj�n �C

�n
�l �mg

�mk (59)

where

gi�j = h�jjii (60)

with h�jj the adjoint of the state jji. Recall that for the inner product of H introduced in

section 1.1, the adjoint of Q+ is Q�. The functional integral representation of the state

j�ji is obtained, using the twisted lagrangian (42), by inserting on the hemisphere the anti-

topological �eld ���j and projecting in the standard way on the zero energy representative.

Using this functional integral representation we can interpret the metric tensor gi�j as a

topological-antitopological correlator on the sphere, where we glue the two hemispheres

through an in�nitely long cylinder with �xed perimeter � and where we twist the theory

with +1
2
w on the right hemisphere and �1

2
w on the left, for w the spin connection. No-

tice that the correlator de�ned in this way is not a topological correlator. Its geometrical

meaning can be derived as follows. From the de�nition of the connection Ai we derive

Digj�k = 0 (61)

Di�ij = 0

From (61) and (47), we get

@igj�k = Al
ijgl�k (62)

5The previous derivation of the t�t-equation (57) admits a more geometrical interpretation in the

following terms. For �R one can consider �xed �i at the point 1 and reduce the integral over �i to

integrate the moduli �R2 [0;1], �R2 [0; 2�] (see section 2.4). The same for the part �L where one will

�x ���j at 1 and represent the integration over the insertion of ���j by the one of �L 2 [0;1], �L 2 [0; 2�].

These computations de�ne two contact terms (see section 2.4). The conmutator after interchanging �i

and ���j gives equation (57). Notice the di�erence in this construction with the de�nition of the 4-point

amplitude on the Riemann sphere where we only count with one moduli parameter.
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which means that A is the connection of the metric g

Al
ij = �gj�k(@ig�1)�kl (63)

Using (63) we can rewrite the t�t-equation (57) as equations for the metric g

@�l(g@ig
�1)kj = �2[Ci; g �C�lg

�1]kj (64)

As we will see in section 1.8, the geometrical picture emerging from these equations is

closely connected with the special geometry for special K�ahler manifolds.

1.6 Landau-Ginzburg Description

Let us consider Landau-Ginzburg N=2 quantum �eld theories. They are characterized

by a superpotentialW , the F-term, which is a holomorphic function of n chiral super�elds

XA, and a D-term de�ned by a K�ahler potentialK(XA; �XA). Using the canonical potential

K(XA; �XA) =
nX

A=1

XA
�XA (65)

the lagrangian reads

L =
Z
d2zd4

nX
A=1

�XA
�XA +

Z
d2zd2�+W (X) +

Z
d2zd2�� �W ( �X) (66)

De�ning the super�elds

XA = (xA;  A; � A; FA) (67)

�XA = (�xA; �A; ��A; �FA)

and after eliminating the F �elds, using for that the equations of motion

FA =
@ �W

@ �XA

; �FA =
@W

@XA

(68)

we get in components6

L =
Z
d2z(�j@xAj2 +  �@�A + � A@��A � j@AW j2 + @A@BW A � B + �@A �@B �W�A��B) (69)

6Here we assume that �W is the complex conjugate of W .
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The F-term of lagrangian (66) is given by

LF = @A@BW A � B (70)

and the �F-term by

L �F = �@A �@B �W�A��B � j@AW j2 (71)

with the rest de�ning the D-term.

After twisting the lagrangian L, the �elds  A, � A will become one forms and �A, ��A

zero forms. This is, as usual, the net e�ect of the coupling to a U(1) gauge �eld de�ned

as 1=2 of the spin connection. Moreover, in the twisted theory the �F and D-terms become

BRST-exact forms and, therefore, we can de�ne the topological �eld theory by the F-term

lagrangian (70). The BRST-cohomology is given by [9, 10]

RW =
C[XA]

[W 0(XA)]
(72)

i.e. the set of polynomials in the chiral super�elds XA modulo the ideal generated by

W 0(XA).

What is known as the Landau-Ginzburg representation of a TFT is to �nd a super-

potential W such that (72) coincides with the chiral ring. Given a superpotential W and

a basis f�i(XA)g of RW , the ring structure constants are de�ned by

�i(X) �j(X) = Ck
ij �k(X) modW 0 (73)

It is important at this point to realize the di�erent behaviour under scale transforma-

tions of the world sheet metric

g ! �2g (74)

of the F and �F lagrangians (70) and (71). While (70) is invariant under transformation

(74), the �F-term will transform7

L �F ! �2L �F (75)

Due to the invariance of (70), the scale transformations will act as automorphisms of

the chiral ring (72). This is consistent with the non-renormalization theorems for N =2

quantum �eld theories. These theorems, which are mainly based on the holomorphicity

7The transformation law (75) in the twisted theory comes from the fact that �A, ��A are, after twisting,

zero forms.
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of the superpotential, imply that F-terms are not corrected perturbatively and even non-

perturbatively. Hence the renormalization group transformation will preserve the chiral

ring structure (72) which only depends on F-terms.

Let us denote ji; t;�t;�i the state associated with the observable �i(XA). The functional

integral representation of this state can be formally written like

ji; t;�t;�i =
Z nY

A=1

dXAd �XA�i(X)exp(�
Z
H
LF )exp(�

Z
H
L �F ) (76)

where the integration in the exponents is on the hemisphere H used to de�ne the state.

The parameter �, as usual, represents the perimeter of the hemisphere. The transforma-

tion g ! �2g is now interpreted in two complementary ways. First, it changes the non

conformal part of the lagrangian in the way described above. Secondly and based on the

non renormalization of the superpotential W , the change z!�z, �!��1=2� amounts to

a change
R
dz2d�2W!�

R
dz2d�2W which can be compensated by changing the couplings

ti. This change of couplings in terms of the scale � would de�ne the renormalization

group �-functions for the di�erent couplings. Using these two facts and the equations of

motion for (69), we obtain [4]

�2
@

@�2
ji; t;�t;�i = �(

I
J5
0 +

n

2
)ji; t; �t;�i+Q+�exacts (77)

with �2����, � in general complex. The factor n
2
comes from the contribution of the zero

modes8.

At this point we can compose the previous computation with the one we will perform

for the twisted lagrangian (41). In that case the � dependence will come directly from

the twist term, which under dilatations transforms as

Z
j ^ d�!

Z
j ^ d(�+ �) (78)

with d� the spin connection for the metric gz�z=e
�dzd�z [12].

From equation (77) we can easily obtain the dependence on � of the t�t-metric at the

conformal point9

gi�i � (�2)�qi�
n
2 (79)

8The reader should be aware here that the only non conformal piece of the lagrangian (69) is the

�F -part.
9Recall that for Landau-Ginzurg models ĉ=

Pn

i=1(1�2qi), with qi the charge of the chiral �eld XA and

n the number of chiral �elds. This representation of ĉ can be derived using singularuty theory (see[11]).
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with qi the Ramond charge of the state jii.
We can now read equation (77) as de�ning a connection A

j
�i. The t�t-equation for this

connection is

@�lA
j
�i = �2[CW ; �C�l]

j
i (80)

where CW means multiplication by W in RW . At the conformal point we get @�lA
j
�i=0

since the quasi homogeneity of the superpotential implies CW =0.

1.6.1 Landau-Ginzburg Representation

In this subsection we will consider the problem of de�ning a Landau-Ginzburg represen-

tation for the TFT de�ned by the lagrangian

L = LN=2
0 +

X
i

ti

Z
�
(2)
i (81)

with LN=2 representing a twisted N=2 SCFT. We will consider all �ti-deformations equal

to zero.

For a minimal N=2 SCFT at level k (25)-(27), the chiral ring is de�ned by

�i�j = �i+j i+ j � k

= 0 i+ j > k (82)

This is isomorphic to the ring RW for

W =
Xk+2

k + 2
(83)

with only one chiral super�eld X. The isomorphism is de�ned by

�i ! X i (84)

We consider now the deformed lagrangian (81) and look for a superpotential W (X; t)

such that the corresponding Landau-Ginzburg lagrangian is equivalent to it. This in

particular will mean that

h�i1(X; t):::�is(X; t)iW (X;t) = h�i1(X):::�is(X)iL (85)

for

�i(X; t) = �@W
@ti

(86)
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and where the l.h.s. of (85) is computed with the Landau-Ginzburg F-term lagrangian10

and the r.h.s. with the lagrangian (81).

Next we will follow the discussion in ref.[13] for determining W (X; t). Let us assume

�1 = X (87)

and de�ne the perturbed ring structure as

X�i = �i+1 +
X
j

aijtj�i+n+1�j (88)

where we assign U(1) charge 1� qi to the couplings ti. The constants aij are given by

aij = h�1�i�j
Z
�
(2)
2k+1�i�ji0 (89)

We can determine the value of aij by the following argument. For the perturbed theory

de�ned by tj=0 8j 6= 1, t1 � t, we get

�i�j = �i+j i+ j � k

= taij�i+j�k�1 i+ j > k (90)

Impossing associativity to (90), with aij again given by (89), we obtain

aij = 0 i+ j � k

= � i+ j > k (91)

for � some undetermined constant. Introducing this solution into (88), we obtain polyno-

mials in X and t for representing the chiral �elds �i. The only thing that remains now,

is to get the superpotential with respect to which (88) is the ring multiplication. A nice

way to interpret (88) is as diagonalizing the matrix (C1)
j
i de�ned by the multiplication

rule, namely

�1� = C1
j
i�j = X�i (92)

and therefore we can de�ne W by the characteristic equation determining the eigenvalues

of (C1)
j
i

W 0(X; t) = det(X�ji � C1
j
i (t)) (93)

This conclude the derivation of the superpotential associated with the deformed la-

grangian (81). The result however will depends on the renormalization constant �. A

10See subsection 1.6.2 on residue formulae.
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change in the scale � can be represented by a change ti ! �ti in the couplings (see equa-

tion (88)). For a generic correlator the dependence on � will be �s with s the number of

integrated �elds entering into the correlator. If we also scale the �elds �i as �i ! ��qi�i,

we get an overall factor �(�
P

qi)+s. By U(1)-charge conservation, this factor is equal

to �ĉ=2(2�2g) and therefore can be cancelled by introducing the string coupling constant

coe�cient �2g�2 for �=��ĉ=2.

1.6.2 Residue Formulae

Here we summarize the way to compute correlators in Landau-Ginzburg theory. We will

assume for the rest of this section that �W is the complex conjugate of W . We consider

the lagrangian

L = LD + LF + ~�L �F (94)

where LD, LF and L �F were de�ned in section 1.6. In the infrared limit ~�!1 the main

contribution to the Landau-Ginzburg action comes from critical con�gurations [14]

@W

@XA

= 0 (95)

and the only contribution to the expectation values will come from zero modes. For the

bosonic part of L �F , we get Z Y
dXA exp(�~�j@iW j2) (96)

which by gaussian integration around the critical points (95), gives us

~��n(H �H)�1 (97)

with H=det(@A@BW ), the hessian of W . The fermionic contribution contains two pieces,

one from the constant zero mode �
(0)
A and the other from the g holomorphic one forms

 
(0)
A , if we are computing the correlator in a genus g Riemann surface. Hence the fermion

zero mode contribution is
~�nHg �H (98)

and therefore we get for the correlator

h�i1 :::�isigW =
X

crit:points

�i1(X):::�is(X)Hg�1 (99)
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where �ij and H are evaluated at the critical points. Notice that the �nal result is ~�-

independent and therefore we can use (99) as the general de�nition of Landau-Ginzburg

correlators. At genus g=0 and for a "target space" of dimension one, we obtain

h�i1 :::�isig=0W = res(
�i1 :::�is
@W

) � 1

2�i

I

dX

�i1(X):::�is(X)

@W
(100)

with the contour � going around the critical points of W [14], [13]. Notice that at genus

zero, in order to get (100), we have already integrated over the �-zero modes. The result

(100) is not invariant under the scaling W ! �W .

1.7 Frobenius Manifolds

The concept of Frobenius manifolds [15] is an useful mathematical tool for formalizing

the structure of TFT's. Given a conmutative and associative algebra A, with unity and

non-degenerate invariant inner product

ha; bci = hab; ci (101)

we will say that it is Frobenius if for a basis ei (i=1; :::; n) of A, the tensors �ij and Cijk

de�ned by

hei; eji = �ij (102)

eiej = Ck
ijek

satisfy the following conditions

�ij = �ji

Cs
ijC

l
sk = C l

isC
s
jk (103)

Cijk = C l
ij�lk

and for e=(ei), the unit of A

esC i
sj = �

j
i (104)

Notice that (103) are the generic conditions that we have impossed on the topological

metric �ij and the ring structure constants Cijk of a TFT.
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A Frobenius manifoldM is a manifold which locally is a Frobenius algebra. This means

that at each point x 2 M , there exits tensors �ij(x), C
k
ij(x) and unity ei(x) satisfying

conditions (103) and (104). We de�ne the invariant metric on M

ds2 = �ijdx
idxj (105)

relative to which the unit vector is covariantly constant.

For the metric (105), we can de�ne local coordinates ti on M such that [15]

�ij = cte (106)

We will call these coordinates coupling constants. The tensor Cijk(t) in these coordinates

satisfy the integrability condition (see equation (58))

@iCjkl = @jCikl (107)

which means that it can be represented

Cijk = @i@j@kF (t) (108)

with F (t) being determined by the following set of equations

@3F (t)

@ti@tj@tk
�kl

@3F (t)

@tl@tm@tn
=

@3F (t)

@ti@tm@tk
�kl

@3F (t)

@tl@tj@tm

@3F (t)

@ti@tj@tk
= Cijk (109)

For �ij the topological metric and Cijk the genus zero three point function of a TFT it

is easy to derive, by means of standard Ward identities, equations (106)-(107) [13], using

for such purppose the lagrangian

L = L(0) +
X
i

ti

Z
�
(2)
i (110)

Thus the coordinates ti can be identi�ed with the coupling constants in (110).

As an example we will consider the Frobenius manifold associated with the Landau-

Ginzburg superpotential for minimal models (see section 1.6.1). Let M be de�ned by the

following set of polynomials

M = fW (X; gi) = Xk+2 � (k + 2)
kX
i=0

giX
ig (111)
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The invariant inner product will be given by the residue formula derived in the previous

section

hf; gi = res(
fg

W 0
) (112)

We can �nd the at coordinates ti using the condition �ij=cte and the inner product

(112). The result is

ti = � 1

k + 1 � i
res(W

k+1�i
k+2 ) (113)

which de�nes the change from the Landau-Ginzburg coordinates gi into the coupling

constants ti. We will come back to equation (113) in a future section.

t�t-equations and Topological-Antitopological Fusion

It is known [15] that the t�t-equations can be interpreted as the zero curvature condition

for the system of linear di�erential equations

ri	 = �r�i	 = 0 (114)

for

ri = @i + (g@ig
�1)� �Ci (115)

�r�i = @�i � ��1 �C�i

with � a spectral parameter.

The mathematical meaning of (114) and (115) as a way to fuse a topological and

antitopological theory was pointed out by Krichever in [16]. Given two topological theories

characterized by Ci and �C�i respectively as ring structure constants, we de�ne

(@i � �Ci)� = 0 (116)

(@�i � ��1 �C�i)�� = 0

with �(t; �) and ��(t; ��1). The essential singularities in (116) are in �=0 and �=1. The

t�t fusion corresponds to the Riemann-Hilbert problem of de�ning a functional 	(�; t; �t)

such that at �=0 behaves like � and at �=1 like ��. The solution to this problem is

determined by equations (114) and (115). The t�t-equations admit now the interpretation

of the isomonodromy equations for (114) and (115).
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1.8 t�t-equations and Special Geometry

It is clear that the t�t-equations provide an extra geometrical structure on the space of

topological �eld theories. In general the space of couplings constants is a complexmanifold

with coordinates (ti; �ti)
11 and we can de�ne in addition to the topological metric �ij the

hermitian metric

ds2 = gi�jdt
id�t

�j (117)

In section (1.5) we introduced a connection Ai such that both gi�j and �ij are covariantly

constant. This connection can be written in terms of gi�j as in (62). Moreover, Ai de�nes

a connection for the bundle obtained by �bering the space of couplings with the BRST

cohomology. The t�t-equations satis�ed by the connection Ai are, structuratly, very similar

to the ones de�ning special K�ahler geometry [17]. Before entering into a more detailed

technical discussion , let us try to undertand intuitively the physical origin of this K�ahler

structure. The pieces we need for this discussion have been already introduced in the

previous sections and are intimately connected with the meaning of renormalization group.

First of all, and reducing the discussion to Landau-Ginzburg theories, we observe two

interconnected phenomena

i) A reparametrization W ! �W in the superpotential induces a ow of the coupling

constants.

ii) A world sheet reparametrization g ! �g modi�es the �F-part of the Landau-

Ginzburg lagrangian. Recall that the �F-term is the non conformal part of the twisted

LG lagrangian.

From i) and ii) follows that a rescaling g ! �g of the world sheet metric induces both a

change in t and �t couplings. A point of view to understand the physical meaning of the

t�t-equation is as the lifting of this renormalization group ow on the t�t plane to the �ber

de�ned by the set of harmonic or zero energy states. If now we think the "vacuum", the

state of Ramond charge �ĉ=2, as de�ning a line subbundle, i.e. we assume conservation

of charge, it is natural to translate the (t�t) geometry into the characterization of the �rst

Chern class of the vacuum subbundle. Mathematically this picture will become clear if

the "(t�t)-plane" de�nes a K�ahler Hodge manifold.

To check this intuitive picture requires to be able to de�ne the vacuum as a line bundle

11Notice the di�erence between the Frobenius manifold de�ned in the previous subsection, which con-

tains only the couplings (ti), and the full space of coupling constants (ti; �ti).
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on the space of theories. This can be done in a very particular case, namely when we are

working on the moduli space of a N =2 SCFT. In this case and due to the independent

left and right conservation of U(1) current we can decomposse the bundle de�ned by the

BRST cohomology into di�erent charge sectors. Moreover we get the constraint on the

t�t-metric

gi�j = 0 if qi + q�j 6= 0 (118)

Introducing the unit of the ring by

C
j
i0 = C

j
0i = �

j
i (119)

we get from the t�t-equations, reduced to marginal �elds

[@�j(g@ig
�1)]00 = Ck

i0gk�l
�C
�l
�j�0g

�00 =
gi�j

g0�0
(120)

Taking into account that

g0�0 = h�0j0i (121)

we can use (120) to de�ne a K�ahler potential and a Zamolodchikov metric [18] as

Gi�j � gi�j

g0�0
(122)

K = �logh�0j0i

in such a way that

Gi�j = @�j@iK (123)

i.e. the standard de�nition of K�ahler metric. Using (122) we obtain the decompossition

of the connection Ai= (@ig)g
�1 into two pieces. The �rst is the K�ahler connection on the

moduli space, de�ned as usual by

�kij = (@iGj�k)G
�kk (124)

and a second piece corresponding to the U(1) connection of the line bundle generated by

the vacuum

� @iK (125)

which as usual for the Hodge-K�ahler manifolds, is de�ned in terms of the K�ahler potential

K. Comparing (79) (section 1.6) with (121) we observe that K is determined by the

contribution of fermionic zero modes.
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The ĉ=3 case and special geometry

We will introduce �rst some generalities on special K�ahler manifolds. On a Hodge-

K�ahler manifold we introduce �elds �p�p of K�ahler weight (p; �p) by the following transfor-

mation rule

�p�p ! �p�pe
�

p

2
fe�

�p

2
�f (126)

with the U(1) gauge connection transforming like

@iK ! @iK + @if (127)

for f , �f respectively holomorphic and antiholomorphic functions. The covariant deriva-

tives of these �elds are de�ned by

Di�p�p = (@i +
p

2
@iK � �i)�p�p (128)

�D�i�p�p = (@�i +
�p

2
@�iK)�p�p

If �p�p is covariantly holomorphic

�D�i�p�p = 0 (129)

Then we can de�ne the holomorphic �eld ~�p�p as

~�p�p = e
�p

2
K�p�p (130)

which is a (p � �p; 0) �eld. A Hodge-K�ahler manifold is special if there exits a symmetric

tensor Wijk of K�ahler weight (2;�2), such that [17]

�D�lWijk = 0 (131)

DiWjkl = DjWikl

Ri�j
l

k
= Gk�j�

l
i +Gi�j�

l
k �Wikn

�W�j�n �mG
�nnG �ml

Using (130), we can de�ne a holomorphic tensor Cijk as

Cijk = e�KWijk (132)

which has weight (4; 0). From the integrability condition (131.b), we can �nd a "covariant"

prepotential Ŝ verifying

Wijk = DiDjDkŜ (133)

26



with Ŝ again of K�ahler weight (2;�2). Analogously we have

�W�i�j�k = �D�i
�D�j

�D�k
�S (134)

with �S of weight (�2; 2). De�ning the holomorphic tensor �C�i�j�k of weight (0; 4) as

�C�i�j�k � e�K �W�i�j�k (135)

and using eK �D�i
�S=@�ie

K �S, we get

�C�i�j�k = e2K �D�i
�D�j@�kS (136)

for

S � eK �S (137)

The covariant prepotential S allow us to integrate the special geometry relation (131.c).

Let us de�ne
�C lk
�i � e2K �C�i�l�kG

�llG
�kk (138)

with the property
�C lk
�i = @�iS

lk (139)

where

Slk = G
�ll@�l(G

�kk@�kS) (140)

Using this and the holomorphicity of Cijk, we can write (131.c) as

@�j�
l
ik = Gk�j�

l
i +Gi�j�

l
k � Cikn

�Cnl
�j = (141)

= @�j(@kK�
l
i + @iK�

l
k � SlnCikn)

Integrating (141) we obtain

�lik = @iK�
l
k + @kK�

l
i � SlnCikn + f lik (142)

with f lik a holomorphic tensor.

After this brief description of the special geometry, our next task will be to identify the

K�ahler metricGi�j with the Zamolodchikov metric and the tensor Cijk with the three point

function. It is only in the particular case ĉ=3, where we have non vanishing three point

functions on the sphere for marginal �elds, that all the indices in (141) can be marginal.

After identiying the line bundle of the Hodge-K�ahler manifold with the one generated by
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the vacuum, we can de�ne the state j0i by a holomorphic section of weight (2; 0). In this

case the �rst Chern class can be de�ned in terms of the norm of j0i as

@i@�j(logkj0ik2)dzi ^ d�zj (143)

and we get

h�0j0i = e�K (144)

in agreement with equation (122). Summarizing, in order to map the t�t-geometry of the

moduli space of ĉ=3 N=2 SCFT's into the special K�ahler geometry we need to identify

the vacuum state with the trivializing holomorphic section of the Hodge line bundle.

For Landau-Ginzburg theories we can write (144) as

h�0j0i =
Z nY

A=1

dXAd �XA exp(W � �W ) (145)

which makes explicit the t, �t dependence.

2 Topological Strings

2.1 Topological Gravity and Gravitational Descendents

Topological gravity is the topological theory associated with the moduli space of Riemann

surfaces Mg;n. There are many good reviews on this subject so we will concentrate the

discussion on some technical points that will be relevant for our future analysis.

The aim of topological gravity is to get a topological �eld theory representation of

Mumford-Morita cohomology classes [19]. Given a Riemann surface �g;n with genus g

and n marked points, we can consider its cotangent line bundle at one of the points,

namely pi. When we move the moduli parameters of the surface, this de�nes a line

bundle over Mg;n. Let's denote by �i the �rst Chern class of this bundle. The physical

observables of topological gravity �n(pi), called gravitational descendents, are one to one

related with the n-power of the two form �i in such a way that

h�n1(p1):::�ns(p1)ig =
Z
Mg;s

�n11 ^ :::^ �nsn (146)
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From (146) we see that these amplitudes will be non vanishing only when it is ful�lled

the following selection rule
sX
i=1

ni = 3g � 3 + n (147)

The simplest, from a physical point of view, way to realize this topological �eld theory

is to use the topological gauge theory for the group ISO(2) [20]. After �xing the gauge,

the corresponding action is given by

S =
Z
�@ �@�+ �@ �@ + b�@c+ �b@�c+ � �@ + ��@� (148)

where � is the Liouville �eld,  its superpartner, � and � are Lagrange multipliers conju-

gate to � and  , and (b; c) and (�; ) are respectively the ghost and superghost �elds. The

ghost number assignations are the following: zero for �, 1 for  , 1 for c and 2 for . The

main ingredient to build a topological �eld theory is the existence of a supersymmetric

charge QS which behaves, BRST-improved, as an exterior derivative of the moduli space

under study. It is under QS that all the �elds are arranged into supermultiplets.

For the action (148) the BRST charge is de�ned by

Q = QS +Qg (149)

being QS=
H
(@� + b) and Qg=

H
c((TL +

1
2
Tgh) + (GL +

1
2
Ggh) respectively the N=2

and the the gauge BRST charge. TL and Tgh are the energy momentum tensors of the

Liouville and the ghost sectors, and GL, Ggh the corresponding super stress tensors. The

topological nature of the action (148) is clear from the following relations

TL = fQS; GLg (150)

Tgh = fQS; Gghg

Physical observables are de�ned by the BRST cohomology of (149). In topological

gravity this cohomology turns out to be very simple. In fact all physical observables are

given by interger powers of a �eld 0

0 = fQ; � � g = 1

2
fQ; fQS � �QS; �gg (151)

where Q is the total BRST charge, i.e. left plus right. Therefore we can de�ne

�n = n0 (152)
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From (151) it looks that all observables of topological gravity are BRST-trivial. The

reason this is not the case is because we are interested in equivariant cohomology where

we de�ne the BRST cohomology on gauge invariant objects. This doesn't include 0,

since ( � � ) is not a gauge invariant quantity. We will come back to the discussion on

equivariant cohomology later.

The observables �n given by (152) are zero forms on the Riemann surface. We can

de�ne 1 and 2 forms by the following recursive relations

d�n = �BRST�
(1)
n ; d�(1)n = �BRST�

(2)
n (153)

The new operators �(1)n and �(2)n can be integrated respectively over a one dimensional

submanifold or the whole surface �, giving also BRST invariant objects.

We want now to �nd a functional integral representation for correlators h�n1 :::�nsig.
Instead of presenting the complete derivation we will, qualitatively, motivate the �nal

result.

The �rst thing will be to write the action (148) in a covariant way. The formulation

of the (�; �) system in (148) presents problems because the Liouville �eld � behaves in-

homogeneously under coordinate transformations. In order to solve this, we can interpret

� as the conformal factor for the metric g=e�ĝ. It can be shown that the physical quan-

tities are independent of the metric ĝ chosen. Under these conditions the conjugate �eld

� gets coupled to the scalar curvature R(ĝ). Using
R p

ĝR̂=2g�2, we must cancell this

background curvature by inserting operators

Y
k

e�k�(zk) (154)

in a set of points fzkg and in such a way that the constants �k satisfy

X
k

�k = 2g � 2 (155)

Since the action (148) is supersymmetric, in order to de�ne a measure onMg;n, we need

to integrate �rst the superpartners m̂i of the moduli parameters mi. The integration of

the supermoduli can be easily done because in this rigid supersymmetry the supermoduli

is split. The integration of the (3g�3) odd moduli parameters m̂i produces the insertion

of super stress tensors folded to Beltrami di�erentials �a, ���a

3g�3Y
a;�a=1

G(�a) �G(���a) (156)
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where G = GL+Ggh. In a similiar way, the integration over the superpartners of the

puncture moduli will produce insertions of the supertranslation generator

sY
i;�i=1

I
Ci

(b+G)
I
Ci

(�b+ �G) (157)

with the contour Ci de�ned around each puncture.

For the external states we must use

j�ni = �nP j0i (158)

where P =c�c�()�(�) is the puncture operator that reduces the number of di�eomorphisms

to those which leaves the puncture �xed. Let's recall that the measure overMg;n includes

the necessary factors to project out the zero modes of the ghosts b�b and �(�)�( ��). Due

to this, when we integrate the moduli of a puncture the operator P is reduced to 1.

Acting now with (157) on (158), we get as net result for the external insertions �n in the

amplitudes
sY
i=1

Z
�
�(2)ni

(159)

where �(2)ni
is given by (153) and has ghost number ni�1.

Combining now (154), (156) and (159) we obtain for the amplitudes the following

integral representation

h�n1 :::�nsig =
Z
Mg;s

Z
e�S

Y
k

e�k�(zk)
3g�3Y
a;�a=1

G(�a) �G(���a)
sY

i=1

Z
�
�(2)ni

(160)

By ghost number counting this will be non vanishing only if

sX
i=1

(ni � 1) = 3g � 3 (161)

in agreement with equation (147).

Let us next consider the coupling of topological matter to topological gravity [19].

The gravitational descendants �n(�i) associated with the chiral primary �elds are simply

de�ned by

�n;i = �i�n ; n � 0 (162)

Generic amplitudes h�n1(�i1):::�ns(�is)ig are again de�ned by equation (160). The only

additional information we need to take into account is the extra U(1) background charge,
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modifying the selection rule (161) to

sX
i=1

(qi + ni � 1) = 3g � 3 + ĉ(1� g) (163)

Therefore, we obtain

h�n1;i1:::�ns;isig =
Z
Mg;s

Z
e�S

Y
k

e�k~�(zk)
3g�3Y
a;�a=1

G(�a) �G(���a)
sY

j=1

Z
�
�
(2)
nj ;ij

(164)

where ~� is matter-modi�ed conjugate of the Liouville �eld.

The action S in (164) is the unperturbed lagrangian LN=20 +Lgr, with Lgr given by

equation (148). Our next task will be to generalize (164) for a perturbed lagrangian.

The approach will consist in generalizing the Landau-Ginzburg description to topological

matter coupled to topological gravity.

2.2 Gravity and Landau-Ginzburg

In this section we will consider a TFT which posseses a Landau-Ginzburg description in

terms of a superpotential W , coupled to topological gravity. This study will help in a

better understanding of some results derived in section 1.6.

To start with, we will �rst present a crucial theorem due to Dijkgraaf-Witten. Let us

consider the lagrangian general perturbed lagrangian

L = LN=2
0 + Lgr +

kX
i=0

ti

Z
�
(2)
i +

1X
n=1

kX
i=0

ti;n�n(�i)
(2) (165)

where ti � ti;0 and the small phase space is de�ned by ti;n = 0, n � 0. The identity

operator, after coupling to gravity becomes the puncture operator P .

Let us de�ne the expectation values

ui � hP�ii ; i = 0; :::; k (166)

On the small phase space, we get

ui = �ijtj (167)
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Taking into account that �ij is invertible we can interpret ui as a new set of coordinates on

the small phase space. Moreover, for any correlator computed on the small phase space

we obtain

hABi = RAB(u0; :::; uk) (168)

for some functional RAB. The theorem proved in [21] assures that the correlator hABi
de�ned on the full phase space, i.e. for the lagrangian (165) with ti;n 6= 0, is given by

the same functional RAB where now the coordinates ui (166) are computed taking into

account the couplings ti;n. The proof of this theorem is based on the topological recursion

relations. What we need to show is that

@

@i;n
RAB =

@ul

@ti;n

@RAB

@ul
= h�n(�i)ABi (169)

Using the recursion relations for topological strings [19]

h�n(�i)ABi = nh�n�1(�i)�lih�lABi (170)

we obtain

nh�n�1(�i)�lih�lABi = nh�n�1(�i)�li@RAB

@tl;0
=

= nh�n�1(�i)�lih�lP�ki@RAB

@uk
= h�nP�ki@RAB

@uk
= (171)

=
@uk

@ti;n

@RAB

@uk

which concludes the proof of (168). The practical relevance of this theorem is that allow

us to get the form of the correlators on the full phase space by doing a much simpler

computation on the small phase space.

As an illustrative example let us compute the string anomalous dimension for the

critical points of one matrix models. We start with pure topological gravity, i.e. only one

primary �eld, the puncture P . The small phase space is the complex line parametrizing

the value of the cosmological constant t0. In the small phase space we get

u = hPP i = t0 (172)

and for a generic correlator

h�i�ji = 1

(i+ j + 1)!
h�i�jP i+j+1iti+j+10 (173)
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Using the puncture equation [21]

h�i�jP i = ih�i�1�ji + jh�i�j�1i (174)

we can rewrite (173) as

h�i�ji = 1

i+ j + 1
ui+j+1 (175)

The previous theorem tell us that, on the full phase space, (175) is the correct value for

h�i�ji if we replace u by the value of hPP i on the full phase space.

Taking into account all couplings we obtain

u = t0 +
1X
i=1

tihPP�ii (176)

and from (175)

u = t0 +
1X
i=1

tiui (177)

The k-th critical point [22] is de�ned by t1=1, tk=�1, and from (177) we get

u = t
1=k
0 (178)

The string anomalous dimension  is de�ned by

h1i = t2�0 (179)

Therefore, using (178) we have Kazakov's result

 = �1

k
(180)

De�ning the string coupling constant � by

h1i = ��2 (181)

we obtain

��2 = t
2+1=k
0 (182)

Dijkgraaf-Witten theorem underlines the equivalence of matrix models and minimal

topological strings. In fact, in the matrix model approach [23] we start with the KdV

operator

L = Dk+2 + (k + 2)
kX
i=0

viD
i (183)
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with D= d
dX

for a formal parameter X. The KdV ows are de�ned by

@L

@~tp
= [(L

p

k+2 )+; L] (184)

with L+ the positive powers of L. Identifying

vk = hPP i (185)

~tp = ti;nci;n ; p = (k + 2)n + i+ 1

ci;n = ((i+ 1)(i+ 1 + k + 2):::(i+ 1 + n(k + 2)))�1

we obtain from (184)
@vk

@ti;n
= ci;nres(L

(k+2)n+i+1

k+2 ) (186)

Denoting L̂�L 1
k+2 and integrating X, we get

hP�n(�i)i = ci;nres(L̂
(k+2)n+i+1) (187)

and similar relations for other correlators. From (187) we observe how the correlator on

the full phase space is de�ned by a functional of the (k + 1) "coordinates" vk appearing

in (183).

It is already clear the strong similarity of the matrix model formula (187) and the

residue formula we have derived in the previous chapter for Landau-Ginzburg minimal

models. Following references [13, 24, 25], we de�ne the map from matrix models into

Landau-Ginzburg theories as follows

L̂k+2 = W

�i = [L̂i@XL̂]+ (188)

�n(�i) = [L̂n(k+2)+i@XL̂]+cn�1;i

P = 1

which allows to represent the whole gravitational spectrum inside the matter theory12.

Using this map we will now compare the matrix model expression for correlators with the

one we will obtain, from residue formulae, in the Landau-Ginzburg framework.

For correlator h�iP�n(�j)i, we have in the matrix model formalism

h�iP�n(�j)i = @

@ti
hP�n(�j)i = cj;n

@

@ti
res(L̂(k+2)n+j+1) (189)

12For the extension of this map to W -gravity see [26].
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On the other hand, using (188) and the residue formulae, we get in the Landau-Ginzburg

formalism

h�iP�n(�j)i = cj;n�1

Z
(
L̂n(k+2)+j@XL̂)�i

W 0
dX = (190)

= cj;n�1

Z
L̂j+1+(n�1)(k+2) �i dX

It is worth recalling that working in the Landau-Ginzburg formalism, we are always at

genus zero. If we con�ne ourselves to the small phase space, we can use the relation

�i =
@L̂k+2

@ti
(191)

From this we get

h�iP�n(�j)i = cj;n�1

Z
dXL̂j+n(k+2)@iL̂ = (192)

= cj;n
@

@ti
res(L̂(k+2)n+j+1)

in agreement with (189). Notice that in principle (189) is a well de�ned expression on the

full phase space and the same for (190) if we replace �i by [L̂i@X L̂]+, however, only on

the small phase space we can use equation (191). We will come back to this point in the

next section.

2.3 Contact Terms and Gravitational Descendents

Let us consider the correlator h�i�j�k
R
�
(2)
l i in Landau-Ginzburg theories. From the

residue formulae we obtain

h�i�j�k
Z
�
(2)
l i =

@

@tl

Z
�i�j�k

W 0
dX = (193)

= �
Z
�i�j�k�

02
l

W 02
dX +

Z
1

W 0
[(
@�i

@tl
)�j�k + :::]

(194)

Using (188) and (191) we get

@�i

@tj
=

@

@tj
[L̂i@XL̂]+ = [

�i�j

W 0
]
0

+ � C(�i; �j) (195)
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which are known as contact terms. From the matter representation (188) of gravitational

descendents we can compute the contact term of a gravitational descendent with a primary

�eld, so we get in particular

C(�n(�i); P ) = [
W 0
RX
�n�1(�i)

W 0
]
0

+ = �n�1(�i) (196)

which is Saito's recursion relation [27]. To derive (196) we have used the following de-

composition of �n(�i)

�n(�i) = W 0

Z X

�n�1(�i) +
kX
l=0

al�l = ci;n�1[L̂
(k+2)n+i@XL̂]+ (197)

The part of �n(�i) projecting on chiral primary �elds can be easily obtained by noticing

that W 0
RX�n�1(�i) is a pure BRST object, namely

resW (F +GW 0) = resW (F ) (198)

for any functions F and G. In fact, from (198) we get

h�n(�i)�jP i =
kX
i=0

alh�l�jP i (199)

and from (189)
kX
l=0

al�l =
kX
l=0

cn;i
@

@tl
res(L̂(k+2)n+i+1) �k�l (200)

thus
kX
l=0

al�l =
kX
l=0

@

@tl
hP�n(�i)i �k�l (201)

The contribution to correlators from the piece of �n(�i) projecting on chiral �elds

originates recursion relations. Let's take the three point function

h�n(�i)�j�ki =
kX
l=0

@

@tl
hP�n(�i)ih�k�l�j�ki =

=
kX
l=0

hP�n(�i)�lih�l�j�ki (202)

while using (196) we obtain the recursion relation

h�n(�i)�j�ki =
kX
l=0

h�n�1(�i)�lih�l�j�ki (203)
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From the de�nition (195) it is clear that contact terms are symmetric

C(�i; �j) = C(�j; �i) (204)

Moreover, we can write

C(Pi; �j) � Ak
ijPk (205)

for Pi either chiral primary or gravitational descendent. Using again (195) we get

C(�k; C(Pi; �j)) =
@Al

ij

@tk
Pl +Al

ijC(�k; Pl) (206)

as the rule for compossing contact terms.

The reader should notice that the Landau-Ginzburg description of contact terms can

not be trivially extended to the computation of contact terms for two gravitational de-

scendents C(�n(�i); �m(�j)). The reason is again that we are assuming relation (191)

only on the small phase space.

2.4 Integral Representation of the Contact Terms

From the Landau-Ginzburg de�nition (195) of contact terms, it is clear that the contri-

bution to C(�i; �j) is the part in the product �i�j which goes as W
0F for some functional

F . This is a priori a bit paradoxical taking into account that for the matter theory, W 0F

is a pure BRST-object which decouples from any correlator. As it was �rst pointed out

by [24, 25], the reason for the contribution of cohomologically trivial objects of the pure

matter theory to the contact terms is that they are non-trivial in the equivariant coho-

mology which rules the spectrum after coupling to gravity. To see this more clearly, let

us introduce the following integral representation of the contact terms

jC(�i; �j)i =
Z
D
�
(2)
i j�ji (207)

where D is an in�nitesimal neigborhood of the point where the operator �j is inserted.

A "sewing"13 or cancel propagator argument representation of the contact term can

be de�ned working with �i and �j inserted on two �xed points of the hemisphere and

13We will refer to "sewing"-representation when the integration of a �eld over the Riemann surface is

transformed into integration over sewing parameters with all punctures �xed.
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integrating over the moduli (�; � ) with � 2 [0; 2�] and � 2 [0;1] as follows

jC(�i; �j)i =
Z 1
0

d�

Z 2�

0
d�e�T+e�T�G0;�G0;+�i(1)j�ji (208)

where we have inserted �i at the point 1. The notation � refers to light-cone type

components and G in (208) is the superpartner of the energy-momentum tensor. Formally

we can interpret (208) (compare with equation (164)) as a computation in the topological

matter theory coupled to topological gravity.

Let us now assume that in the product �i�j there is some piece of the type W 0F .

Using the SUSY transformations of the Landau-Ginzburg lagrangian, we can write

W 0F = Q(��F ) (209)

with � the fermionic zero-form and Q the BRST charge. Now we realize from the Landau-

Ginzburg representation of G0;� [24, 25] that

G0;�(��F ) 6= 0 (210)

moreover, using the conmutation relations between Q and G0;� we get from (208)

jC(�i�j)i =
Z 1
0
d�e��T+T+G0;�j i (211)

where Q(��F )�Q . After a �nite energy regularization we �nally obtain

jC(�i�j)i = G0;�j i (212)

as the result from the "sewing"-representation of (208).

The reader should notice that the key step in the derivation is equation (210), i.e. we

have in the product �i�j a BRST exact state Qj i such that G0;�j i 6=0. Using this fact

we can de�ne a notion of equivariant cohomology by the conditions

Qj�i = 0 (213)

G0;�j�i = 0

and to describe the previous computation by simply saying that the contribution to

C(�i�j) is determined by non trivial elements in the equivariant cohomology (213).

At this point we can make contact with the equivariant cohomology of the topological

matter theory coupled to topological gravity. Following [25], we will present a simple
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example. Let us consider, for all couplings ti=0, the �rst Landau-Ginzburg gravitational

descendant

�1(P ) = W 0x = Q(��x) (214)

This is non trivial in the equivariant cohomology (213). We want now to compare �1(P )

in representation (214) with the dilaton of the theory coupled to topological gravity (151)

0 =
1

2
Q̂(@c+ c@�� �@c� c�@�) (215)

with Q̂ the N = 2 BRST generator of the coupled theory. The equivariant cohomology

condition for the coupled theory is de�ned by the condition

(b0 +G0)�j i = 0 (216)

with G0 the total super energy momentum tensor. It is now easy to check that

(b0 +G0)�(��x+ @c+ c@�� �@c� c�@�) = 0 (217)

In summary, there exists a map between the "matter" equivariant cohomology de�ned by

(213) and the equivariant cohomology of the topological string obtained after coupling

topological matter to topological gravity.

Comment on the physical meaning of equivariant cohomology in string

theory

The physical motivation for the requirement of equivariant cohomology, comes from

the operator formalism de�nition of string amplitudes. As it is well known [3], string

amplitudes are de�ned by associating with a Riemann surface �g;s equiped with a set

f�sg of local coordinates around the punctures, a state j�g;sf�sgi 2 
sH with H the

Hilbert space of the matter and ghost system. On H it is de�ned a nilpotent BRST

operator Q. Physical amplitudes for a set of s-external states j�ii are de�ned by

Z
Mg;s

h�1j:::h�sj
3g�3Y
i;�i=1

b(�i)�b(���i)
sY

j;�j=1

I
b(Vj)�b( �V�j)j�g;sf�sgi (218)

where Vj , �V�j are vector �elds over the Riemann surface. To (218) we should imposse two

requirements

i) reparametrization invariance

ii) BRST-invariance
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The condition i) implies that (218) should be invariant under any change of local

coordinates. This means in particular invariance under change Vi ! Vi + �Vi with �Vi

a vector �eld that extends holomorphically inside the disc around the puncture and it is

zero at the puncture, i.e. a "vertical" vector �eld refered to the bundle M̂g;s !Mg;s with

M̂g;s the augmented moduli space. The requirements i) and ii) are satis�ed if we imposse

the equivariant cohomology condition on external states [28]

Qj�i = 0 (219)

b0;�j�i = 0

In abstract terms, the ingredients to de�ne the string amplitudes are a couple (Q; b)

such that

Q2 = 0 (220)

fQ; bg = T

for T the total energy-momentum tensor and the physical spectrum being de�ned by the

equivariant cohomology (219).

In standard string theory (Q; b) are respectively identi�ed with the BRST charge and

the b-ghost. However it is in principle possible to de�ne formally generalizations of string

theory where (Q; b) are more general solutions to (219). One particular case that we will

discuss later is to use the N=2 SUSY pair (1) (Q+; Q�).

2.5 Gravity and the t-part of the t�t-equations

A natural way to think about the geometry of the space of TFT's is as an indirect

description of the topological matter coupled to topological gravity (see for instance [24]).

The logic for this point of view is that any connection in the space of theories should be

determined by integrating �elds, which already implies to construct forms on the moduli

space of the Riemann surface. This is certainly a fruitful approach at least when we work

at genus zero. In this spirit we can easily derive the t-part of the t�t-equations from two

very natural string postulates

p:1) h�i1�i2:::
Z
�
(2)
is i = h

Z
�
(2)
i1
�i2:::�isi (221)

p:2) h�i1�i2 :::
Z
�
(2)
is�1

Z
�
(2)
is
i = h�i1�i2:::

Z
�
(2)
is

Z
�
(2)
is�1
i
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De�ning

h�i�j�k
Z
�
(2)
l i � @lh�i�j�kexp(L0+

X
a

ta

Z
�(2)a )i (222)

we will get from (221)

[@i; Cj] = 0 (223)

[@i; @j] = 0

which are the t-part of the t�t-equations (see equation 58). Now we can try to use p.1) and

p.2) as constrains on the Landau-Ginzburg description of the TFT L=L0+
P

i ti
R
�
(2)
i .

In fact assuming the existence of a superpotential W (X; t) and some polynomial repre-

sentation �i(X; t) of the chiral �elds �i, and using the residue formulae representation

h�i�j�k
Z
�
(2)
l i =

@

@tl

Z
�i�j�k

W 0
dX (224)

we can ask ourselves how much information we get from the string postulates (221), and

moreover if the Landau-Ginzburg representation (224) satis�es them in a natural way. In

fact, this is the case for

�i =
@W

@ti
(225)

@�i

@tj
= C(�i; �j)

with C(�i; �j) =C(�j; �i), the symmetric contact terms de�ned in the previous section.

The natural questions now will be

a) To get a string, i.e. gravitational, interpretation of the t�t-part of the t�t-equations.

b) To use the t�t-equations as a way to �nd, at least partially, the Landau-Ginzburg

description of more general lagrangians with �ti-couplings di�erent from zero.

2.6 Verlinde-Verlinde Contact Term Algebra [20]: Pure Topo-

logical Gravity

Saito's recursion relation (196) can be derived, using again cancel propagator arguments,

in the context of pure topological gravity. From (208) we get

jC(P; �n)i =
Z 1
0

d�

Z 2�

0
d�e�T+e�T�G0;�G0;+P (1)j�ni (226)
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Using the insertions of b0, �b0 and �(�0), �( ��0) associated to the moduli of each puncture,

we can set P =1 Z 1
0

d�

Z 2�

0
d�e�T+e�T�G0;�G0;+j�ni (227)

From the representation

j�ni = 0j�n�1i (228)

equation (215), and the operator product expansion

T (z)�(w) =
1

(z � w)2
+

@�

(z � w)
(229)

we reobtain Saito's recursion relatio (196)

jC(P; �n)i = j�n�1i (230)

Using now

�n = �(0)n P (231)

we can de�ne14

jC(�n; �m)i = �(0)n

Z
D
P (2)j�mi = j�n+m�1i (232)

for the rest of the contact terms. Notice that the structure of the contact terms (232) is

consistent with ghost number conservation

gh(
Z
�(2)n j�mi) = (n� 1) +m = gh(j�n+m�1i) (233)

In the derivation of (230) and (232) we have not included the curvature factor (154).

In order to include these contributions, we can use the following trick. Let us consider

the correlator h�n1 :::�nsig for all ti=015 and satisfying

sX
i=1

(ni � 1) = 3g � 3 (234)

In terms of the string coupling constant � we know that h�n1 :::�nsig goes like �2g�2+n with
(2g�2+n) the number of 3-vertex necessary for the sewing construction of �g;s. From

recursion relations and the puncture equation (177) we have [21], for all ti=0, that

�
@

@�
=

@

@t1
! �1 (235)

14We �x �n at the point zero and only integrate the puncture operator.
15Here the ti are the couplings in pure topological gravity
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and the dilaton equation

h�1�n1 :::�nsig = (2g � 2 + n)h�n1 :::�nsig (236)

De�ning

�̂n = e
2
3
(n�1)��n (237)

where the � is the conjugate of the Liouville �eld, we localize the curvature at the insertion

points. Therefore we expect to derive (236) exclusively from the contribution of contact

terms

h�̂1�̂n1:::�̂nsig =
sX
i=1

C(�̂1; �̂ni)h�̂n1 :::�̂nsig = (2g � 2 + n)h�̂n1 :::�̂nsig (238)

From (234) we obtain

jC(�̂1; �̂n)i = 1

3
(2n+ 1)j�̂ni (239)

In general the contact term algebra will be given by
Z
D
�̂(2)n j�̂mi = Am

n j�̂n+m�1i (240)

for certain coe�cients Am
n . From now on we will omit the superindex (2) in the expression

of contact terms (see (240)), in order to simplify notation. Assuming representation (232),

we obtain that Am
n will depend only on m

Am
n � Am (241)

with Am de�ned by Z
D
P̂ j�̂mi = Amj�̂m�1i (242)

From (239) we can conclude that

Am =
1

3
(2m+ 1) (243)

To check the previous argument, we should imposse the consistency conditions of type

(221.b) Z
D
�̂n1

Z
D
�̂n2 j�̂n3i =

Z
D
�̂n2

Z
D
�̂n1 j�̂n3i (244)

which implies

An3+n2�1
n1

An3
n2
�An3+n1�1

n2
An3
n1
= Cn2n1A

n3
n2+n1�1

(245)

with

Cn2n1 = An2
n1
�An1

n2
(246)
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The coe�cients Am
n given by (241) and (243) are clearly a solution with

Cn2n1 =
2

3
(n2 � n1) (247)

Notice that Saito's recirsion relation (196) becomes now

jC(P̂ ; �̂n)i = 1

3
(2n+ 1)j�̂n�1i (248)

An interesting exercise will be to derive relation (248) directly from the Landau-Ginzburg

description.

The consistency of the asymmetric contact term algebra with the string requirement

h�̂n�̂m
sY
i=1

�̂niig = h�̂m�̂n
sY
i=1

�̂niig (249)

imposse severe constrains on the correlators. From (240), (243) and (249), we conclude

2

3
(m� n)h�̂n+m�1

sY
i=1

�̂niig =
sX

i=1

RDi
+R� (250)

with RDi
the conmutator of the contact terms of �̂n and �̂m with the �̂ni , and R� the

conmutator for the node contribution. Equation (250) clearly shows one of the most

important results of pure topological gravity, namely that correlators are saturated by

the contribution of the boundary of moduli space. The contributions from the nodes

R� are of two types. One corresponds to the pinching of a handle, which results in a

correlator at genus g�1. The other corresponds to factorizations of the original surface

in two of genus g�r and r respectively. Therefore, equation (250) originates recursion

relations relating correlators at genus g and g0<g. These recursion relations are crucial

to show the equivalence between matrix models and topological strings [20, 19, 21].

2.7 The Gravitational Meaning of the t�t-equations

In section 2.5 we have pointed out the equivalence between moving in the space of theories

and coupling to topological gravity. Using this approach, we formally associate the t-part

of the t�t-equations with the string postulates p.1) and p.2). We can now try to extend our
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analysis to the whole "t�t-plane" of topological matter theories, i.e. considering a generic

family of TFT described by

L = L0 +
X
i

ti

Z
�
(2)
i +

X
�i

�t�i

Z
��
(2)
�i

(251)

and moving not only in t, but also in the �t direction. We will start performing this analysis

at genus zero. Intuitively we should expect to get from this study some extra information

concerning the contribution to topological amplitudes from the boundary of the moduli

space. The logic for this comes from the standard version of the BRST anomaly in string

theory. Notice that a variation in �t's naively implies coupling to a pure BRST state.

When we change the couplings ti, we are forced to compute correlators of the type

h�i1 :::�is
R
�
(2)
i i and we can always interpret the integration over the position of �

(2)
i in a

gravitational way, associated with the de�nition of a Mumford-Morita form on the moduli

space of the Riemann sphere with punctures. When we try to do the same for a variation

in �ti without changing the way in which we have twisted the lagrangian L0, we inmediatly

�nd some conceptual problems. The simplest one is the moduli interpretation of the

integration over the position of ��
(2)
�i . The reason for this is that ��

(2)
�i , as de�ned by (38),

involvesQ+ and, on the other hand, the integration over the moduli or sewing parameters

in the way described in section 2.4 involves the SUSY charge Q�, i.e.G0;�.

The approach we want to present here will consist in interpreting the variation in

the �t-direction in a standard gravitational way, in equal footing with the way we have

interpreted the variation in t-direction, but at the price of modifying the �eld ���i. Namely

we introduce a new �eld �̂�i by
16

Z
D

��
(2)
�i j�ji �

Z 1
0

d�

Z 2�

0
d�e�T+e�T�G�0;�G

�
0;+�̂�i(1)j�ji (252)

In other words, we use G�0 to de�ne the integration over the insertion ���i and we change

the �eld ���i to �̂�i in order to take into account that, in the l.h.s. of (252), ���i was de�ned

by equation (38) in terms of Q+. In a more compact notation we can write (252) as

Z
D

��
(2)
�i j�ii � jC(�̂�i; �j)i (253)

16The reader should notice an important di�erence between the contact term (252) and the one de-

scribed in (208) for Landau-Ginzburg models. In the case (208), the couple (Q;G) we use is not Hodge,

i.e. G has trivial cohomology, while in (252) we use for (Q;G) the N =2 SUSY Hodge system, i.e. G has

non trivial cohomology. See more on this phenomena in section 2.10.
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In order to characterize the operator �̂�i, we will use the following constructive path

[29]

i) We de�ne a t�t contact term algebra including contact terms between topological

and antitopological �elds.

ii) We will imposse on this contact term algebra consistency conditions of the type

(244)

iii) From both contact terms in the t and the �t direction, we will try to compute the

curvature of the t�t-"plane", i.e. to derive the t�t-equations.

We have only developped the previous program in the particular case of ĉ=3 theories

reducing the t and �t deformations to marginal directions, i.e. to the moduli space of the

ĉ=3 N=2. However we believe that this program can be extended to more general cases.

2.8 t�t-Contact Term Algebra for ĉ=3 SCFT's

Let us consider the algebra of operators generated by: �i, �̂�i and the dilaton �eld �1 with

i = 1; ::; n for n the number of marginal deformations. We de�ne the following contact

term algebra [29]

Z
D
�i j�ji = �kij j�ki ;

Z
D
�̂�ij�̂�ji = ~�

�k
�i�jj�̂�kiZ

D
�̂�ij�ji = Gj�ij�1i ;

Z
D
�ij�̂�ji = eGi�j j�1iZ

D
�1 j�ii = a j�ii ;

Z
D
�ij�1i = bj�ii (254)

Z
D
�1j�̂�ii = cj�̂�ii ;

Z
D
�̂�ij�1i = dj�̂�iiZ

D
�1j�1i = ej�1i

In order to take into account the contribution of the curvature and the twist we introduce

the operator

e
1
2
~'(z) (255)

for ~'='+2�, where ' is the operator the bosonizes the U(1) current of the N=2 SCFT

and � the conjugate of the Liouville �eld. The contact term algebra for this operator is
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de�ned as follows
Z
D
�ije 1

2
~'(z)i = Aije 1

2
~'(z)i ;

Z
D
�̂�ije

1
2
~'(z)i = 0 (256)

Z
D
�1je 1

2
~'(z)i = aje 1

2
~'(z)i

The undetermined constants appearing in (254) and (256) will be now �xed by imposing

consistency conditions (244).

Before entering into a detailed description of the consistency conditions for the algebra

(254) (256), we would like to make some comments. The most interesting aspect of (254)

is the speci�c t�t-contact term

jC(�̂�i; �j)i = Gj�ij�1i (257)

where the topological-antitopological fusion really takes place. We can argue on (257) in

the following way. From the de�nition (252) of the �eld �̂�i we can formally write

�̂�i ! Q+
(+)"

1

Q�(�)
"���i (258)

and taking into account the ghost charges of Q+ and Q� to interpret �̂�i, at least at the

level of ghost charges, as having implicitely an n=2 gravitational descendent index. This

interpretation as gravitational descendent should be considered only as an heuristic way

to motivate (257). Even when (258) is purely formal, we notice that can give a hint on

the appearance of the dilaton in (257), because " 1
Q�" could be interpreted as a would-be

c-ghost �eld17.

After this general comment we proceed to solve the consistency conditions. For this,

we will assume

i) That Gi;�j is invertible.

ii) The value of a equals -1. This condition is based on the way the dilaton �eld

measures the curvature.

iii) The following derivation rules

�i�

��(t; �t) = @i�


��(t; �t) (259)

�̂�i�

��(t; �t) = (�1)F (���) @�i���(t; �t) ; F (���)=q�q��q�

17As a marginal comment we notice that for type B-models in the case ĉ=3, we can identify b�0 with

@ and the BRST charge with �@. Now we can use the fact that @, �@ de�ne a Hodge structure de�ned by

the (Q+; Q�) N =2 algebra. Using Hodge @ �@-lemma we de�ne 1

Q
�

(�)

as @
�

[30]. This is the basic lemma

needed to de�ne the kinetic part of the Kodaira-Spencer lagrangian.
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where �

�� stands for a generic contact term tensor, q� for the U(1) charge associated to

the corresponding �eld, and which de�nes the way the operators act on the coe�cients

appearing in the contact term algebra. Notice that in general these coe�cients will depend

on the moduli parameters (t; �t). The logic for this rule is the equivalence between the

insertion of a marginal �eld and the derivation with respect to the corresponding moduli

parameter. For this reason we will not associate any derivative with the dilaton �eld.

The derivation rule (259.b) is forced by the topological interpretation of the �t insertions

we are using. Once we decide to work with the operators �̂�i and to de�ne the measure

using only G� insertions, we must accommodate to this picture the coupling of the spin

connection to the U(1) current. Since the derivation @�i corresponds to the insertion of

an antitopological �eld, we need to change, in the neighborhood of the insertion, the sign

of the coupling of the U(1) current to the background gauge �eld de�ned by the spin

connection. This fact gives raise to the factor (�1)F (�) in (259.b).

Using i), ii) and iii), let us start by analizing the following consistency condition

Z
D
�1

Z
D
�ij�ji =

Z
D
�i

Z
D
�1j�ji (260)

Applying the contact term algebra (254), we get

b �kij j�ki � �kij j�ki = �2 �kij j�ki (261)

which, for a non vanishing �kij , implies that

b = �1 (262)

From the condition Z
D
�1

Z
D
�ij�1i =

Z
D
�i

Z
D
�1j�1i (263)

together with equation (262) and the derivation rules (259), we obtain

@iej�1i � ej�ii = j�ii (264)

being solved by

e = �1 (265)

To continue the study, we take the condition

Z
D
�̂�i

Z
D
�̂�jj�ki =

Z
D
�̂�j

Z
D
�̂�ij�ki (266)
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which leads to

( ~�
�l
�j�i Gk�l + @�iGk�j ) j�1i + d Gk�j j�̂�ii = ( ~�

�l
�i�j Gk�l + @�jGk�i ) j�1i+ d Gk�i j�̂�ji (267)

Using that Gi�j is invertible, and for a general number of marginal deformations, we get

from the above equation

d = 0 (268)

Moreover, the consistency condition
Z
D
�1

Z
D
�̂�ij�ii =

Z
D
�̂�i

Z
D
�1j�ii (269)

and equation (268) imply that

c = 0 (270)

From (262), (265), (268) and the consistency condition
Z
D
�i

Z
D
�̂�j j�1i =

Z
D
�̂�j

Z
D
�ij�1i (271)

we get easily
eGi�j = 0 (272)

The next conditions we will analyze involve the curvature operator e
1
2
~'(z)

Z
D
�i

Z
D
�̂�jje

1
2
~'(z)i =

Z
D
�̂�j

Z
D
�ije 1

2
~'(z)i (273)

Z
D
�i

Z
D
�jje

1
2
~'(z)i =

Z
D
�j

Z
D
�ije

1
2
~'(z)i

from which we get, assuming that �kij is symmetric in the lower indices18

Gi�j = @�jAi (274)

@iAj = @jAi

Equations (274) imply that the metric Gi�j is K�ahler, for a certain potential K(t; �t)

Gi�j = @i@�jK (275)

With this information, we can return to (267) and deduce that the tensor ~�
�k
�i�j is symmetric

in the lower indices
~�
�k
�i�j =

~�
�k
�j�i (276)

18The symmetry of �kij will assure that
R
D
�i
R
D
�jj�ki =

R
D
�j
R
D
�ij�ki is satis�ed.
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Using now Z
D
�i

Z
D
�̂�jj�̂�ki =

Z
D
�̂�j

Z
D
�ij�̂�ki (277)

we obtain that ~�
�l
�j�k

is only function of the antitopological variables

@i~�
�l
�j�k = 0 (278)

Condition (278), together with
R
D �̂�i

R
D �̂�j j�̂�ki =

R
D �̂�j

R
D �̂�ij�̂�ki allow to impose a vanish-

ing contact term for antitopological operators.

To conclude the study of the consistency conditions we will consider now the relation

Z
D
�i

Z
D
�̂�jj�ki =

Z
D
�̂�j

Z
D
�ij�ki (279)

Using equations (262) and (272), we obtain

Z
D
�i

Z
D
�̂�jj�ki = @iGk�j j�1i �Gk�j j�ii �Gi�j j�ki+ fact terms (280)

Z
D
�̂�j

Z
D
�ij�ki = �@�j�lik j�li+ �likGl�j j�1i

In order to motive the inclusion of factorization terms in (280), let us notice two

facts. The necessity of including factorization terms at the level of consistency conditions

(244) is already present in the simplest case of contact term algebra, i.e. in pure gravity.

Due to the asymmetry of the factors Am
n (241), it is not possible to satisfy the relationsR

P̂
R
�̂njP̂ i=

R
�̂n
R
P̂ jP̂ i without taking factorization terms into account. Second, the

heuristic argument (258) seems to indicate a hidden gravitational descendent index in the

operators �̂�i. Therefore, and due to the non vanishing correlation function Cijk at genus

zero for three marginal �elds, we should consider the possible existence of factorization

terms associated to the �̂�j insertions. We can write them generically as follows

fact terms = Bln
�j Cikn j�li (281)

From equations (279)-(281), we obtain that the coe�cient �kij is the connection for the

metric Gi�j, which we already know that is K�ahler

�kij = (@iGj�l)G
�lk (282)

and a (t; �t) type equation

@�n�
k
ij = Gi�n�

k
j +Gj�n�

k
i �Bmk

�n Cijm (283)
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The tensor Bln
�j can be derived from the contact term algebra by the following argu-

ment. Let's consider the consistency condition on a general string amplitude

h�̂�i�̂�j
sY
l=1

�lig = h�̂�j�̂�i
sY
l=1

�lig (284)

from (254) we get

( ~�
�k
�i�j � ~�

�k
�j�i )h �̂�k

sY
l=1

�l ig =
sX
l=1

RDl
+
X
nodes

R� (285)

where RDl
denotes the commutator of the contact terms of �̂�i and �̂�j with �l, and R� the

commutator of those at the nodes. Using now the symmetry of ~�
�k
�i�j
in the lower indices

(276), we can conclude
sX
l=1

RDl
=
X
nodes

R� = 0 (286)

The contribution at a node associated with the factorization of the surface, will be

de�ned by the tensor B��
�j as follows

h �̂�i�̂�j
Y
l2S

�l ig;� =
gX

r=0

X
X[Y=S

[B��
�j G��i h�1

Y
l2X

�lir h��
Y
n2Y

�nig�r +

+ @�iB
��
�j h��

Y
l2X

�l ir h��
Y
n2Y

�nig�r ] (287)

where S refers to the set of all punctures, X and Y is a partition of it, and the tensor B

can be chosen symmetric in the upper indices. Using now (286) we get

B��
�i
G��j = B��

�j
G��i (288)

@�iB
��
�j = @�jB

��
�i

By an analogous argument, we �nd from condition (279) and for a general string amplitude

@iB
��
�j +B

�
�j ��i +B

�
�j ��i � 2@iKB

��
�j = 0 (289)

Let's de�ne B��
�j = B�j����e

2KG���G
���. Then, equations (288) and (289) imply that B�i�j �� is

proportional to the three point correlation function for the antitopological �elds. Substi-

tuting this information into equation (283), we obtain the (t; �t)-equation

@�n�
k
ij = Gi�n�

k
j +Gj�n�

k
i � �Cmk

�n Cijm (290)

Notice that in order to get the special geometry relation (290) from the contact term

algebra, it was necessary to make use of the derivation rule (259.b). From (290) we can
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conclude that the metric Gi�j is the Zamolodchikov metric for the marginal deformations,

therefore obtaining the special geometry of the moduli space of N = 2, ĉ = 3 SCFT's

presented in section 1.8.

From the previous result we observe that the combined action on t de�ned by the

contact terms �kij , and on �t characterized by Gi�j , produces the whole t�t-connection, con-

cluding for the case ĉ=3 the steps i), ii) and iii) of section 2.7.

2.9 Holomorphic Anomaly: the Genus Zero Case

Let us write the t�t-equation in the condensed way

[Di;D�j ] = �[Ci; �C�j] (291)

If now we interpret Di, D�j as de�ning the motion in the space of theories

C0
i1:::is;j

� h�i1 :::�is
Z
�
(2)
j i � Djh�i1:::�isi (292)

C0
i1:::is;�j

� h�i1 :::�is
Z

��
(2)
�j i � D�jh�i1:::�isi

we get

D�jC
0
i1:::is;�i

= [Di;D�j ]C
0
i1:::is

+DiC
0
i1:::is;�j

(293)

and even if we start with holomorphic correlators C0
i1:::is

for a topological �eld theory,

we will �nd for the correlators of a neigborhood theory de�ned by C0
i1:::is;i

an anomalous

contribution coming from (291). This anomalous contribution, �rst discovered by [30], is

known as holomorphic anomaly. The physical origin of this anomaly is associated with

the fact that derivatives with respect to the couplings of pure BRST operators are not

any more pure BRST. In principle the anomaly (293), at least at genus zero, is a general

fact independently of the value of ĉ. However it is only for the special case ĉ=3 that we

can interpret this anomaly using the tools we have introduced in the previous section. For

ĉ=3 and reducing to marginal t and �t deformations, the only non-vanishing correlators

at genus zero are of the form

C0
i1i2i3;j1:::js

= h�i1�i2�i3
Z
�
(2)
j1
:::

Z
�
(2)
js
i0 (294)
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and therefore all of them should de�ne measures on the moduli space of Riemann surfaces

with n+3 punctures. In other words, the study of these correlators is strictly equivalent to

couple the matter theory to topological gravity. Using (292), correlators can be expressed

in terms of the three point functions

C0
i1i2i3;j1:::js

= Djs :::Dj1C
0
i1i2i3

(295)

Their anomalous piece can be computed applying succesive times equation (293) togheter

with the t�t-equation (291). In particular the t�t-equation can be seen as the simplest case

of the holomorphic anomaly, i.e. for the four point function Ci1i2i3;j.

2.10 Higher Genus and Quantum Geometry

Until now we have reduced our discussion to the case of genus zero. It is in this reduced

framework where we have connected the geometry of the space of theories with the physics

of topological strings. Once we have topological matter coupled to topological gravity,

nothing prevent us a priori for computing higher genus amplitudes. It is on the basis of

these amplitudes that some form of quantum geometry should appear in the future.

One of the more important facts we have observed in the study of pure topological

gravity are the recursion relations, by means of which we can construct genus g amplitudes

in terms of genus (g�1) amplitudes. The origin of these recursion relations is the zero

contribution from the bulk. It would be certainly important to generalize these type of

recursion relations to generic topological strings. A way to begin this project, initiated in

[30], is to generalize the holomorphic anomaly to higher genus amplitudes.

For the case ĉ=3 a generic correlator Cg
i1:::is

for marginal �elds at genus g is de�ned

by

C
g
i1:::is

=
Z
Mg;s+1

h
I
Cz1

G� �G��i1:::
I
Czs

G� �G��is

3g�3Y
j;�j=1

G�(�j) �G
�(���j)i (296)

with �j, ���j the Beltrami di�erentials and where
H
Czi

G� �G��i= �
(2)
i (see equation (36)).

The correlator (296) have the same structure as a correlator in the bosonic string provided

we interpret the G�'s as the b;�b-ghosts. The di�erence however is that, as we have already

mention in section 2.1, the factor
Q3g�3
j;�j=1G

�(�j) �G
�(���j) is coming from the integration over

the supermoduli and therefore we are forced a priori to de�ne the string measures using
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a pair (Q; b) which in addition to the standard requirement fQ; bg = T de�nes Hodge

structure, i.e. the cohomology of Q is isomorphic to the cohomology of the �eld b. We

have already feel this fact in the computations at genus zero in the de�nition of contact

terms. From a physical point of view the �rst implication of de�ning string amplitudes

using a (Q; b) system which at the same time satis�es the N=2 algebra, i.e. it is Hodge,

is that the propagators
b0;+b0;�

L0 + �L0

(297)

which we are going to associate with the sewing operators in order to de�ne the string

amplitudes, project out all zero energy states. These simple reasoning seems a priori to

prevent any consistent way to de�ne genus g amplitudes for external zero energy states in

terms of amplitudes at genus (g�1) for again external zero energy states. The holomorphic

anomaly can be extended to genus g amplitudes and partially solves this puzzle.

We will derive the anomaly for correlators at any genus g using again the contact term

algebra introduced in section 2.8. Let us remember the expression of the t�t-amplitudes

with the help of the formal operators �̂�j

@�t Cg
i1:::is

=

=
Z
Mg;s+1

h
I
Cz

G� �G��̂�t

sY
i=1

I
Czi

G� �G��i

3g�3Y
a;�a=1

G�(�a) �G
�(���a) i�g;s+1

=

= h �̂�t
Y
i2S

�i ig (298)

where S notes the set of all punctures and we have introduced the last equality to simplify

the notation. The contributions to (298) can be written:

h �̂�t
Y
i2S

�i ig =
X
i2S

RDi
+
X
nodes

R� (299)

where RDi
is the contact term of �̂�t with the �i insertion, and R� the contact term

contribution that factorize the surface through a node. Let's start by analyzing the RDi

boundaries:

X
i2S

RDi
=

X
i2S

h �̂�t
Y
j2S

�j iDi
=
X
i2S

Gi�t h �1
Y
j 6=i

�j i =

=
X
i2S

Gi�t (2�2g�s+1) hY
j 6=i

�j i (300)

The internal nodes � are associated to the two types of boundaries of a Riemann surface

of genus g and s punctures. The �rst one, we will note it as �1, comes from pinching a
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handle, leading to a surface of genus g�1:

h �̂�t
Y
i2S

�i ig;�1
=

1

2
B

0��
�t h ����

Y
i2S

�i ig�1 (301)

where the factor 1
2
should be added to reect the equivalency between the order in which

the two new insertions �� are integrated. The factorization tensor B
0 satis�es the same set

of equations (288) and (289) that the tensor B, thus it is also proportional to the three

point correlation function. With an appropriate choice of normalization of the string

amplitudes, the proportionality constant between both factorization tensors can be set

equal to one [31].

The second ones, noted �2, come from the factorization of the surface into two surfaces

of genus r and punctures in the subset X, and genus g�r and punctures in Y respectively:

h �̂�t
Y
i2S

�i ig;�2
=

1

2

gX
r=0

X
X[Y=S

�C��
�t h��

Y
j2X

�jir h��
Y
k2Y

�kig�r (302)

Collecting now equations (300), (301) and (302), we obtain the equation for the �t-

dependence of any string amplitude:

@�t h
Y
i2S

�i ig =
1

2
�C��
�t h ����

Y
i2S

�i ig�1 +

+
1

2

gX
r=0

X
X[Y=S

�C��
�t h ��

Y
j2X

�j ir h ��
Y
k2Y

�k ig�r + (303)

+
X
i2S

Gi�t (2�2g�s+1) h
Y
j 6=i

�j ig

Notice that in our derivation of the holomorphic anomaly from the contact term algebra

we have only considered the contact terms of the antitopological operator �̂�t with the rest

of the operators �i but not the contact terms among the operators �i themselves. This

is equivalent to de�ne the correlators hQ �ii by covariant derivatives of the generating

functional. There are however some aspects of the previous derivation that should be

stressed at this point.

1) The correlators hQ �ii for topological operators can not be determined by the con-

tact term algebra, by contrast to what happen in topological gravity. In fact from the

contact term algebra we can only get relations of the type:

( �kij � �kji )h�k
Y
l2S

�l i =
X
l2S

RDl
+
X
nodes

R� (304)
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which does not imply (�kij��kji = 0) anything on the surface contribution. Moreover they

are compatible with making all contact terms RDl
equal to zero by covariantization.

2) If in the computation of h �̂�t Qi2S �i i we take into account all contact terms, i.e

contact terms between the �i operators, we will �nd, as a consequence of the derivation

rules (259) and the (t; �t) equations (290), that the holomorphic anomaly is cancelled,

reecting the commutativity of ordinary derivatives [@�i; @j] = 0.

3) We should say that from the contact term algebra we can not prove, at least directly,

that the correlators h �̂�t Qi2S �i i are saturated by contact terms. The fact we have proved

is that the contact term contribution dictated by the contact term algebra (254) (256) is

precisely the holomorphic anomaly.

4) The curvature of the initial surface is augmented by two units in both processes of

pinching a handle or factorizing the surface. In order to take this into account, the two

insertions ��; �� generated in these processes should include, in addition, an extra unit of

curvature. Therefore, the total balance of curvature for the new insertions is zero. This

can be seen as the reason for the zero contact term between the dilaton �eld �1 and the

antitopological operators �̂�i (see equations (268) and (270)).

To �nish this section, we will notice an important property of the holorphic anomaly

equation (303). Using the covariant prepotential S, Si=G
�ii@�iS, S

ij=G
�ii@�iS

j , introduced

in section 1.8, we can integrate (303) [30]. From this we get in particular a Feynman

diagram description of part of the boundary contributions to Cg
i1:::is

. Let us stress the

appearance in the Feynman rules of a new �eld, with the de�ning properties of the dilaton.

This fact has the origin in the pieces depending linearly on the curvature of the Riemann

surface in the expression of the holomorphic anomaly (303), or from the point of view of

the algebra (254), in the contact term between a topological and a antitopological �eld

(257).

It would be interesting at this point to reinterpret the Feynman propagator Sij as

a regularization of the Kodaira-Spencer propagator
�@y@
�

and to connect this regulariza-

tion with an e�ective and operative way for reproducing, using the cancel propagator

argument, the contact term algebra.
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2.11 Final Comments

In this section we will collect some concrete questions which we believe would be worth

to consider in more detail.

i) A direct derivation, using cancel propagator arguments, of the t�t-connection.

ii) To �nd a Landau-Ginzburg description of topological matter theories with t and �t

couplings di�erent from zero.

iii) A direct derivation of the renormalization group "�-functions" ti(�), �t�i(�) for �

the world-sheet scale.

iv) To extend the holomorphic anomaly for correlators involving gravitational descen-

dents and to massive topological �eld theories.

v) To �nd an e�ective regularization of the "Kodaira-Spencer" propagator
�@y@
�

in a

way consistent with the holomorphic anomaly.

vi) Based on the connection between t�t-equation and the thermodinamic Bethe ansatz

(TBA) [12], namely TBA as integral representation of t�t-equations for massive models,

to study, from the t�t-geometry, the integrability of the corresponding solitonic infrared

theory.

vii) To study in a more systematic way properties of strings de�ned for a pair (Q; b)

which satisfy Hodge relations, i.e. strings with non-trivial b-cohomology.

Acknowledgments

We would like to thank I. Krichever and A. Losev for many valuable discussions. This

work was partially supported by grant PB 92-1092, the work of C.G. by Swiss National

Science Foundation and by OFES: contract number 93.0083, and the work of E.L. by

M.E.C. fellowship AP9134090983.

58



References

[1] E. Witten, Comm. Math. Phys. 117 (1988) 353

[2] E. Witten, Comm. Math. Phys. 118 (1988) 411

[3] L. Alvarez-Gaume, C. Gomez, G. Moore and C. Vafa, Nucl. Phys. B303 (1988) 455

[4] S. Cecotti and C. Vafa, Nucl. Phys B367 (1991) 359

[5] N. Warner, "N =2 Supersymmetric Integrable Models and Topological Field Theo-

ries", lectures given at Trieste Summer School 1992, hepth 9301088

[6] T. Eguchi and S. K. Yang, Mod. Phys. Lett, A5 (1990) 1693

[7] G. Felder, Nucl. Phys. B317 (1989) 215

[8] W. Lerche, C. Vafa and N. Warner, Nucl. Phys. B324 (1989) 427

[9] C. Vafa and N. Warner, Phys. Lett B218 (1989) 51

[10] E. J. Martinec, "Criticality, Catastrophes and Compacti�cations", in Physics and

Mathematics of Strings, Memorial Volume for Vadim Knizhnik, ed. L. Brink, D.

Friedan and A. M. Polyakov, World Scienti�c, 1990

[11] V. I. Arnold, Singularity Theory, London Mathematical Lecture Notes Series, Vol.

53 (Cambridge U.P., Cambridge, 1981)

[12] S. Cecotti P. Fendley, K. Intriligator and C. Vafa, Nucl. Phys B386 (1992) 405

[13] R. Dijkgraaf, H. Verlinde and E. Verlinde, Nucl. Phys. B352 (1991) 59

[14] C. Vafa, Mod. Phys. Lett. A6 (1990) 337

[15] B. Dubrovin, Comm. Math. Phys. 152 (1993) 539

[16] I. Krichever, Soviet Math. Dokl. 22 (1980) 79

[17] B. de Witt and A. van Proeyen, Nucl. Phys. B245 (1984) 89;

A. Strominger, Commun. Math. Phys. 133 (1990) 163;

L. Castellani, R. D'Auria and S. Ferrara, Phys. Lett. B241 (1990) 57; Class. Quant.

Grav. 1 (1990) 317; R. D'Auria, S. Ferrara and P. Fr�e, Nucl. Phys. B359 (1991) 705

59



[18] A.B. Zamolodchikov, J.E.T.P. Lett. 43 (1986) 730

[19] E. Witten, Nucl. Phys. B340 (1990) 281

[20] H. Verlinde and E. Verlinde, Nucl Phys. B348 (1991) 457

[21] R. Dijkgraaf and E. Witten, Nucl. Phys B342 (1990) 486

[22] E. Br�ezin and V. Kazakov, Phys. Lett B236 (1990) 144;

M. Douglas and S. Shenker, Nucl. Phys. B335 (1990) 635;

D. J. Gross and A. Migdal, Phys. Rev. Lett. 64 (1990) 127; Nucl. Phys. B340 (1990)

333

[23] M. Douglas, Phys. Lett. B238 (1990) 176

[24] A. Losev, "Descendants Constructed from Matter Field and K. Saito Higher Residue

Pairing in Landau-Ginzburg Theories Coupled to Topological Gravity", TPI-MINN-

92/40-T; "Structures of K. Saito Theory of Primitive Form in Topological Theories

Coupled to Topological Gravity", preprint ITEP April 94

[25] T. Eguchi, H. Kanno, Y. Yamada and S.K. Yang, Phys. Lett. B305 (1993) 235

[26] W. Lerche and A. Sevrin, "On the Landau-Ginzburg Realization of Tological Grav-

ities", preprint CERN-TH.7210/94, hepth 9403183; W. Lerche and N. Warner, "On

the Algebraic Structure of Gravitational Descendents in CP (n� 1) Coset Models",

preprint CERN-TH.7442/94, hepth 9409069

[27] K. Saito, "On the Periods of Primitive Integrals", Harvard Lectures Notes (1980)

[28] J. Distler and P. Nelson, Comm. Math. Phys. 138 (1991) 273

[29] C. G�omez and E. L�opez, Phys. Lett B334 (1994) 323

[30] M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, "Kodaira-Spencer Theory of Grav-

ity, and Exact Results for Quantum String Amplitudes", HUTP93/A025; "Holomor-

phic Anomaly in Topological Field Theories", HUTP93/A008

[31] K. Li, Nucl. Phys. B354 (1991) 711; Nucl. Phys. B354 (1991) 725

60


