EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

ROOT I/0 compression improvements for HEP analysis

4 seornox

Oksana Shadura'* Brian Paul Bockelman®** Philippe Canal®>*** Danilo Piparo and

Zhe Zhang"*

!'University of Nebraska-Lincoln, 1400 R St, Lincoln, NE 68588, United States
*Morgridge Institute for Research, 330 N Orchard St, Madison, WI 53715, United States
3Fermilab, Kirk Road and Pine St, Batavia, IL 60510, United States

*CERN, Meyrin 1211, Geneve, Switzerland

Abstract. We overview recent changes in the ROOT I/O system, enhancing it
by improving its performance and interaction with other data analysis ecosys-
tems. Both the newly introduced compression algorithms, the much faster bulk
I/O data path, and a few additional techniques have the potential to significantly
improve experiment’s software performance.

The need for efficient lossless data compression has grown significantly as the
amount of HEP data collected, transmitted, and stored has dramatically in-
creased over the last couple of years. While compression reduces storage space
and, potentially, I/O bandwidth usage, it should not be applied blindly, because
there are significant trade-offs between the increased CPU cost for reading and
writing files and the reduces storage space.

1 Introduction

In the past years, Large Hadron Collider (LHC) experiments are managing about an exabyte
of storage for analysis purposes, approximately half of which is stored on tape storages for
archival purposes, and half is used for traditional disk storage. Meanwhile for High Lumi-
nosity Large Hadron Collider (HL-LHC) storage requirements per year are expected to be
increased by a factor of 10 [1]].

Looking at these predictions, we would like to state that storage will remain one of the
major cost drivers and, at the same time, the bottlenecks for HEP computing.

The new storage and data management techniques, as well as a compression algorithms,
are likely will be more required to remove a storage and analysis computing cost bottleneck.
It will allow to handle expected data ratios and data volumes needed to be processed by
experiments during HL-LHC[1].

Looking into innovative compression algorithms could help to resolve some problems,
such as speeding up the user analysis, improving decompression speed, while maintaining the
same or better compression ratio. Zstandard [5] is a dictionary-type algorithm (LZ77) with
a large search window and fast implementations of entropy coding stage, using either fast

*e-mail: oksana.shadura@cern.ch
**e-mail: bbockelman@morgridge.com
***e-mail: pcanal @fnal.gov
¥ e-mail: dpiparo@cern.ch
fe-mail: zhan0915@huskers.unl.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

Finite State Entropy (tANS) or Huffman coding. Zstandard, referred to as ZSTD, is a much
more modern compressor then ZLIB, which was initially implemented in 1995, and offers
higher compression rates while using less CPU compared to other compression algorithms
(e.g. LZMA). ZSTD is available as a ROOT supported compression algorithm, starting from
ROOT v6.20 release [3]].

2 Background

Three years ago, Facebook [7]] open-sourced ZSTD, widely used in its software projects. It
is largely supported by the community and enhanced by ZSTD authors, who released a vari-
ety of advanced capabilities, such as improved decompression speed and better compression
ratios.

The initial promise of ZSTD was that it allows users to replace their existing data com-
pression implementation, such as ZLIB, for one with significant improvements on compres-
sion speed, compression ratio, and decompression speed. [6]

In addition to replacing ZLIB, ZSTD has taken over many of the tasks that tradition-
ally relied on fast compression alternatives. Fastest compression is still provided by fastest
compression settings of LZ4, while ZSTD provides a twice size better compression ratio and
still. According to reports from the community, it is slowly replacing the strong compression
scenarios previously served by XZ (LZMA) [2l], with the benefit of 10 times faster decom-
pression speed.

One of the advanced features of Zstandard is a training mode. It can use a "dictionary"
format to make compression of files of an already known type in a more efficient way, for
example since baskets within a branch hold similar data, using a common dictionary could
be very efficient. If a dictionary is "trained" on an example set of email messages, anyone
with access to the dictionary will be able to more efficiently compress another email file.
The trick is that the commonalities are kept in the dictionary file, and, therefore, anyone
wishing to decompress the email must have already had that same dictionary sent to them
[2]. A dictionary is a file that stores the compression settings for small files. Compression
dictionary is assembled from a group of typically small files that contain similar information,
preferably over 100 files. For the best efficiency, their combined size should be about one
hundred times the size of the dictionary produced from them. In general, the smaller the
file, the greater the improvement in compression. According to the ZSTD manual page, a
dictionary can only increase the compression of a 64KB file by 10 percent, compared with a
500 percent improvement for a file of less than 1KB [6]. The creation of the dictionary can
follow two different approaches: dictionary training or dictionary re-utilization. Training of
dictionary in ROOT is one of the future work items and will be not discussed in this paper.

3 Evaluation of simple ZSTD algorithm for LHC datatsets

In this section, we will try to focus on the evaluation of compression of most used analysis-
related formats in CMS, MiniAOD [8] and NanoAOD [9]], as well as a simple case of analysis
file used by the LHCb experiment.

The MiniAOD is a high-level CMS data file that was introduced in 2014 to serve the
needs of the mainstream physics analyses while keeping a small event size - only 30-50 KB
per event. It is not readable with bare ROOT (without custom I/O streamers and dictionary
support) and requires a special CMSSW setup to be able to read it. Meanwhile, NanoAOD
format consists of a flat, ROOT Ntuple-like format, readable with bare ROOT and containing
the per-event information that is needed in most generic analyses. It is mostly populated by

EPJ Web of Conferences 245, 02017 (2020)

CHEP 2019
nanoaod_ttjet_13tev_june2019.root (1620657 entries)
4.5
2 4 ’
°
5 7std-5 &
235 . vom - rywar—y zstd-6
w2 g @ A GEA Y
g &
A T
S 3 L
o
2.5
0 100 200 300 400 500 600
Decompression speed, MB/s
ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6
ZSTD-7 ZSTD-8 ZSTD-9 ZSTD-10 ZSTD-11 ZSTD-12
ZSTD-13 ZSTD-14 Vv ZSTD-15 ZSTD-16 ¢ ZSTD-17 m ZSTD-18
A ZSTD-19 Vv ZSTD-20 @ ZSTD-21 ¢ ZLIB-1 m ZLIB-6 A ZLIB-9

LZMA-1 LZMA-5 LZMA-9

Figure 1. Comparison of compression ratio and decompression speed for ZLIB, LZMA and ZSTD
algorithms for NanoAOD 2019 file

the basic types floats, double or int and its size per event is the order of 1KB. NanoAODs are
usually centrally produced or even produced on-demand with different variations of features
or columns required by different physics analysis groups. Users can as well easily extend
NanoAOD for their specific studies making a private production when needed. For CMS
NanoAOD files, using ZSTD could be a better compromise between size of file on a disk and
decompression speed for a faster analysis as well as better compression ratio and 2x faster
decompression than ZLIB and 6x faster compared to LZMA, while file compressed with
ZSTD is only 20 % bigger size (all results are shown on the Figure [T]and 2). 20 % bigger
size could be a significant difference for RAW data format, since these files are not accessed
that often, but for analysis-targeted NanoAOD files, the main priority is to enable a faster
analysis, improving speed for reading events.

For MiniAOD, measured time spend in decompressing on readback is 15x less compared
to LZMA, while the size of the file with ZSTD is only 10% bigger.

In case of LHCb, for the very simple NTuples with a simple structure, the best choice
could be LZ4 compression algorithm, offering 10x time faster read speed (all results are
shown on the Figure[3).

In ROOT, the serialization of variable-sized data (for example the C-style arrays) pro-
duces two internal arrays: one array contains the branch populated by data of each of the
events while the other contains the offset of bytes (memory layout) for each of the events
in this branch. LZ4 compression algorithm achieves its performance by looking for byte-
aligned patterns, as opposed to ZLIB compression algorithm, which works on individual bits
and lacks the Huffman encoding pass, this results in the offset array sequence being effectively
incompressible using LZ4. ZSTD has no problems with compression of data that contains
the byte offset of each event in the branch data (all results are shown on the Figure).

https://doi.org/10.1051/epjconf/202024502017

EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

nanoaod_ttjet_13tev_june2019.root (1620657 entries)

Compression ratio

0 250 500 750 1000 1250 1500 1750 2000
Decompression speed, MB/s

e ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5 ZSTD-6
ZSTD-7 ZSTD-8 ZSTD-9 ZSTD-10 ZSTD-11 ZSTD-12
ZSTD-13 ZSTD-14 ZSTD-15 ZSTD-16 ZSTD-17 ZSTD-18
ZSTD-19 ZSTD-20 ZSTD-21 + ZLIB-1 u ZLIB-6 A ZLIB-9
LZMA-1 LZMA-5 LZMA-9 " LZ4-1 s LZ4-4 v LZ4-9

HIgNTnarts.com

Figure 2. Comparison of compression ratio and decompression speed for all compression algorithms
for NanoAOD 2019 file.

lhcb_B2HHH_MagnetDown.root (5135823 entries)

1.6

215 ’

&

5 :

7 1.4

¢

[*

S @

S 13

v
1.2
0 500 1000 1500 2000 2500
Decompression speed, MB/s

® ZSTD-1 ZSTD-2 ZSTD-3 ZSTD-4 ZSTD-5
ZSTD-7 ZSTD-8 ZSTD-9 ZSTD-10 ZSTD-15
ZSTD-20 A ZLIB-1 V ZLIB-6 ® ZLIB-9 LZMA-1
LZMA-9 ¥ LZ4-1 © LZ4-4 & LZ4-9

Figure 3. Comparison of compression ratio and decompression speed for all compression algorithms
for LHCD file.

EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

45
4.0
35

o 30

©

5 25

w

w

2 20

Q.

£

S 15
1.0
0.5
0.0

B zsTD-1 ZSTD-2 ZSTD-3 [ZSTD-4 | ZSTD-5 W ZSTD-6 ZSTD-7
W zZSTD-8 ZSTD-9 ZSTD-10 ZSTD-11 ZSTD-12 [ZSTD-13
ZLIB-1 ZLIB-6 ZLB9 MW LZMA9 W LZ4-1 H LZ4-4 LZ4-9

Figure 4. Comparison ratio comparison for custom analysis file with variable-sized data (containing
C-style arrays).

4 TTree: :kOnlyFlushAtCluster option, offering faster
decompression

TTrees can be forced to create only the new baskets at event cluster boundaries, using a
TTree: :kOnlyFlushAtCluster feature. It simplifies file layout and I/O at the cost of mem-
ory. For example for the TTree: :kOnlyFlushAtCluster feature tests shown in Figure [5]
NanoAOD 2017 was bigger only by 3.6 % of size, while decompression speed is improved
almost up to 200 MB/s [10].

TTree: :kOnlyFlushAtCluster is recommended for simple file formats such as ntuples
where it can show really interesting improvements, but not for more complex data types.

5 Limitations and Future work

Some time ago, Bitshuffie pre-conditioner was demonstrated as a possible pre-conditioner for
LZ4 implemented in case of lossless compression in ROOT. To improve the performance of
LZ4 in this case, we investigated the combination of LZ4 with various “pre-conditioners”.
Pre-conditioners transform the sequence of input bytes according to a simple, deterministic
algorithm before applying the compression algorithm. [10]

We investigated, inspired by the example of Blosc library [13]], a BitShuffle algorithm.
This pre-conditioner rearranges the input array’s bytes by reading through the data using
fixed strides. The resulting output of the pre-conditioner often contains long sequences of
repeated bytes, improving the compression ratio for LZ4. One of the issues exposed was that
it is difficult for ROOT to compress its buffers now due to its 9-byte header [10].

EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

NanoAOD 2017 compressed with ZSTD (compression level 5)
1000

750

500

250

Decompression speed, MB/s

[with kOnlyFlushAtCluster [l without kOnlyFlushAtCluster

Figure 5. Comparison of decompression speed for two file samples NanoAOD 2017, with and without
TTree: :kOnlyFlushAtCluster option.

The idea of using pre-conditioners could be easily expended to be used with other algo-
rithms, such as ZSTD. The next goal of the project will be to validate the possibility to use
pre-conditioners in the ROOT compression layer used to compress both ROOT file formats
(TTree and RNTuple) for the fastest ROOT compression algorithms: LZ4, ZSTD.

Another interesting investigation could be to extend pre-conditioners to adopt a new
BYTE_STREAM_SPLIT [[14] encoding from Apache Arrow that improves compression ra-
tio and compression speed for certain types of floating-point data where the upper-most bytes
of values do not change much. The existing compressors and encodings in ROOT do not
perform well for such data due to noise in the mantissa bytes. The new encoding improves
results by extracting the well compressible bytes into separate byte streams which can be
afterward compressed by a compressor like ZSTD [13].

6 Conclusions

ZSTD has been successfully evaluated and it is ready to be used for compression of data
analysis formats by anyone who has interest in it. We would like to encourage the LHC
experiments to try ZSTD compression algorithm, which is already available in ROOT and
share their feedback about it.

7 Acknowledgments

This work has been supported by U.S. National Science Foundation grants OAC-1450323.

References

[1] Elsen, Eckhard. "A Roadmap for HEP Software and Computing R&D for the 2020s."
(2019): 16.
[2] XZ Utils. https://tukaani.org/xz/. Accessed 6 Mar. 2020.

EPJ Web of Conferences 245, 02017 (2020) https://doi.org/10.1051/epjconf/202024502017
CHEP 2019

[3] R. Brun, F. Rademakers, ROOT - An Object Oriented Data Analysis Framework,
Nucl. Inst. & Meth. in Phys. Res. A 389 (Proceedings AIHENP’96 Workshop,1997).

[4] Facebook Github organization. GitHub, https://github.com/facebook. Accessed 22
Feb. 2020.

[5] Facebook/Zstd. 2015. Facebook, 2020. GitHub, https://github.com/facebook/zstd.

[6] Collet, Y., and M. Kucherawy. "Zstandard Compression and the application/zstd Me-
dia Type." RFC 8478 (2018).

[7] “Zstandard: How Facebook Increased Compression Speed.” Facebook Engineering,
19 Dec. 2018, https://engineering.fb.com/core-data/zstandard,.

[8] Petrucciani, Giovanni, Andrea Rizzi, and Carl Vuosalo. "Mini-AOD: A new analysis
data format for CMS." Journal of Physics: Conference Series. Vol. 664. No. 7. IOP
Publishing, 2015.

[9] Rizzi, Andrea, Giovanni Petrucciani, and Marco Peruzzi. "A further reduction in
CMS event data for analysis: the NANOAOD format." EPJ] Web of Conferences.
Vol. 214. EDP Sciences, 2019.

[10] Shadura, Oksana, and Brian Paul Bockelman. "ROOT I/O compression algorithms
and their performance impact within Run 3." arXiv preprint arXiv:1906.04624
(2019).

[11] Canal, Philippe, Brian Bockelman, and René Brun. "ROOT 1/O: The fast and furi-
ous." Journal of Physics: Conference Series. Vol. 331. No. 4. IOP Publishing, 2011.

[12] "Bitshuffle" Github https://github.com/kiyo-masui/bitshuffle Accessed 15 Jul. 2020.

[13] "Blosc, an extremely fast, multi-threaded, meta-compressor library."
https://blosc.org/pages/ Accessed 15 Jul. 2020.

[14] "Apache BYTE_STREAM_SPLIT encoding." GitHub,
https://github.com/apache/arrow/blob/master/cpp/src/arrow/util/byte_stream_split.h
Accessed 15 Jul. 2020

[15] “Apache/Parquet-Format.” GitHub, https://github.com/apache/parquet-format. Ac-
cessed 6 Mar. 2020.

	Introduction
	Background
	Evaluation of simple ZSTD algorithm for LHC datatsets
	TTree::kOnlyFlushAtCluster option, offering faster decompression
	Limitations and Future work
	Conclusions
	Acknowledgments

