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1 Introduction

At the CERN LHC [1], an efficient classification of hadronic decays of heavy standard-model (SM)
particles (objects) that are reconstructed within a single jet would provide a significant improve-
ment in the sensitivity of searches for physics beyond the SM (BSM) and in measurements of SM
parameters. The understanding of jet substructure in highly Lorentz-boosted W/Z/H bosons (where
H is the Higgs boson) and top (t) quark jets has advanced dramatically in recent years, both exper-
imentally [2] and theoretically [3]. For a particle with a Lorentz boost of γ, the angular separation
between its decay products scales as θ ∼ 2/γ in radians. A knowledge of the radiation patterns of
these jets and their substructure is an important topic in theoretical and experimental research.

In this paper, we present studies using the CMS detector [4] at the LHC to evaluate and compare
the performances of a variety of algorithms (“taggers”) designed to distinguish hadronically decaying
massive SM particles with large Lorentz boosts, namely W/Z/H bosons and t quarks, from other
jets originating from lighter quarks (u/d/s/c/b) or gluons (g). We refer to such jets as “boosted
W/Z/H/t jets,” or “W/Z/H/t-tagged jets”. The machine-learning (ML) algorithms include the
energy correlation functions tagger (ECF), the boosted event shape tagger (BEST), the ImageTop
tagger, and the DeepAK8 tagger. Algorithms without ML techniques have also been evaluated and
are included for comparison. An alternative approach for jet clustering and identification, named
the “heavy object with variable R (HOTVR)”, where the heavy object is a W/Z/H boson or t quark,
is also studied.

The theoretical and experimental understanding of jet substructure has gained significant
precision in recent years. The CMS Collaboration has made many relevant measurements of jet
substructure, including measurements of the cross section of highly Lorentz-boosted t quarks [5],
jet mass in tt [6], dijet [7, 8], samples enriched in light-flavors [7], and substructure observables
in jets of different light-quark flavors [9] in resolved tt events. Similar measurements by the
ATLAS Collaboration are found in refs. [10–14]. Overall, the systematic effects of jet substructure
are well understood and, after correcting for detector effects, the results are generally consistent
with theoretical expectations as expressed in simulations. Residual differences between data and
simulation can be adjusted using scale factors.

ML-based approaches can be tailored to suit the needs of individual analyses. Some analyses
require as pure a sample as possible, with optimized signal efficiency for a fixed background
rejection. Others require well-behaved background estimates as a function of kinematic variables.
A characteristic example is the use of jet mass sidebands for the background estimation. In this
case, removing dependencies on the jet mass is collectively referred to as “mass decorrelation”,
as described in ref. [15]. This paper provides tools derived from a strong program of previous
study [16–20] for both the jet-mass-decorrelated and nominal scenarios.

The paper is organized as follows. A brief description of the CMS detector is presented in
section 2. The Monte Carlo (MC) simulated events used for the results are discussed in section 3,
and details of the CMS event reconstruction and the event selections used for the studies are
summarized in sections 4 and 5, respectively. Section 6 presents an overview of the methods
currently used in CMS for heavy-resonance (i.e., W/Z/H bosons and t quarks) identification, and
describes a set of novel algorithms that utilize ML methods and observables for this task. Our
discussion of the CMS methods builds on the work documented in refs. [16–20]. Section 7 details

– 1 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

the analyses performed to understand the complementarity between the algorithms using simulated
events. The performance of the algorithms is validated in data samples collected in proton-proton
(pp) collisions at

√
s = 13TeV by the CMS experiment at the LHC in 2016, and corresponding to an

integrated luminosity of 35.9 fb−1. The results, along with the effect of systematic uncertainties in
their measurement, are presented in section 8, followed by a discussion of the results and a summary
in section 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6m internal diameter,
providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,
a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters
extend the pseudorapidity (η) coverage provided by the barrel and endcap detectors [4]. Muons are
measured in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted
or late-converting photons in the tens of GeV energy range. The remaining barrel photons have
a resolution of about 1.3% up to |η | = 1, rising to about 2.5% at |η | = 1.4. In the endcaps, the
resolution of unconverted or late-converting photons is about 2.5%, while the remaining endcap
photons have a resolution between 3 and 4% [21].

In the region |η | < 1.74, the HCAL cells have widths of 0.087 in η and 0.087 radians in azimuth
(φ). In the η-φ plane, and for |η | < 1.48, the HCAL cells map onto 5×5 ECAL crystals arrays to
form calorimeter towers projecting radially outwards from close to the nominal interaction point.
At larger values of |η |, the size of the towers increases and the matching ECAL arrays contain
fewer crystals.

Muons are measured in the η range |η | < 2.4, with detection planes made using three tech-
nologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to
tracks measured in the silicon tracker results in a relative transverse momentum (pT) resolution for
muons with 20 < pT < 100GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The
pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [22].

The silicon tracker measures charged particles within the pseudorapidity range |η | < 2.5.
It consists of 1440 silicon pixel and 15 148 silicon strip detector modules. Isolated particles of
pT = 100GeV emitted at |η | < 1.4 have track resolutions of 2.8% in pT and 10 (30) µm in the
transverse (longitudinal) impact parameter [23].

Events of interest are selected using a two-tiered trigger system [24]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon detectors
to select events at a rate of around 100 kHz. The second level, known as the high-level trigger
(HLT), consists of a farm of processors running a version of the full event reconstruction software
optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with the definition of the coordinate
system used and the relevant kinematic variables, is given in ref. [4].
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3 Simulated event samples

Simulated pp collision events are generated at
√

s = 13TeV using various generators described
below. They are used for the design and the performance studies of the heavy-resonance identifica-
tion algorithms to compare with data and to estimate systematic uncertainties. The signal samples,
enriched in one or more W/Z/H/-tagged jets, are obtained from the simulation of BSM processes.
The t and W jet signal samples are obtained from heavy spin-1 Z′ resonances decaying to either
a pair of t quarks (tt) or a pair of W bosons, respectively. These resonances are narrow, having
intrinsic widths equal to 1% of the resonance mass. The Z- and H-tagged jet samples are obtained
from decays of spin-2 Kaluza-Klein graviton resonances in the Randall-Sundrum model [25, 26]
to a pair of Z or H bosons, following the narrow-width assumption. The Z′ and graviton sam-
ples are simulated at leading order (LO) with MadGraph5_amc@nlo 2.2.2 [27] interfaced with
pythia 8.212 [28, 29] with the CUETP8M1 underlying event tune [30] for the fragmentation and
hadronization description. Signal events are generated over a wide range of pT for different Z′

and graviton mass values. The background sample is represented by jets produced via the strong
interaction of quantum chromodynamics (QCD), referred to as “QCD multijet” processes. The
QCD multijet events are generated using pythia in exclusive p̂T bins using the NNPDF2.3 LO [31]
parton distribution function (PDF) set.

A variety of MC simulations are needed for the study of the performance of the tagging algo-
rithms in data. The tt process is generated with the next-to-leading-order (NLO) generator powheg
v2.0 [32–34] interfacedwith pythia for the fragmentation and hadronization description. Simulated
events originating from W+jets, Z+jets, and γ+jets, are generated using MadGraph5_amc@nlo
at LO accuracy using the NNPDF3.0 LO [31] PDF set. The WZ, ZZ, ttW, and ttγ+jets processes
are generated using MadGraph5_amc@nlo at NLO accuracy, the single t quark process in the
t W channel and the WW process are generated at NLO accuracy with powheg, all using the
NNPDF3.0 NLO PDF set. In all of these cases, parton showering and hadronization are simulated
in pythia. Double counting of partons generated using pythia and MadGraph5_amc@nlo is
eliminated using the MLM [35] and FxFx [36] matching schemes for the LO and NLO samples,
respectively.

The systematic uncertainties associated with the performance of the taggers are evaluated using
simulated events produced with alternative generation settings. For the tt process, an additional
sample is generated using powheg interfaced with herwig++ v2.7.1 [37, 38] with the UE-EE-5C
underlying event tune [39] to assess systematic uncertainties related to the modeling of the parton
showering and hadronization. Additional QCD multijet samples are generated at LO accuracy
using MadGraph5_amc@nlo, interfaced with pythia to test the modeling of the hard scattering
in background events, or generated solely with herwig++ with the CUETHppS1 underlying event
tune [30] to provide an alternative model of the background jets.

The most precise cross section calculations available are used to normalize the SM simulated
samples. In most cases, this is next-to-NLO accuracy in the inclusive cross section. Finally, the
pT spectrum of top quarks in tt events is reweighted (referred to as “top quark pT reweighting”)
to account for effects due to missing higher-order corrections in MC simulation, according to the
results presented in ref. [40]. The simulation of the QCD multijet and γ+jets processes is based
on LO calculations. To account for missing higher-order corrections, the simulated QCD multijet
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events and the γ+jets events are reweighted such that the pT distribution of the leading jet in
simulation matches that in data. Before extracting the weights, contributions from other processes
are subtracted from data using the predicted cross sections in both cases.

A full Geant4-based model [41] is used to simulate the response of the CMS detector to SM
background samples. Event reconstruction is performed in the same manner for MC simulation
as for collision data. A nominal distribution of multiple pp collisions in the same or neighboring
bunch crossings (referred to as “pileup”) is used to overlay the simulated events. The events are
then weighted to match the pileup profile observed in the data. For the data used in this paper, there
were an average of 23 interactions per bunch crossing.

4 Event reconstruction and physics objects

Events are reconstructed using the CMS particle-flow (PF) algorithm [42], which aims to reconstruct
and identify each individual particle in the event with an optimized combination of information
from the various elements of the detector. Particles are identified as charged or neutral hadrons,
photons, electrons, or muons, and cannot be classified into multiple categories. The PF candidates
are then used to build higher-level objects, such as jets. Events are required to have at least one
reconstructed vertex. The physics objects are those returned by a jet-finding algorithm [43, 44]
applied to the tracks associated with the vertex, and the associated missing transverse momentum
®pmiss

T , taken as the negative vector sum of the pT of those jets. In the case of multiple overlapping
events with multiple reconstructed vertices, the vertex with the largest value of summed physics
object p2

T is defined to be the primary pp interaction vertex (PV).
Photons are reconstructed from energy depositions in the ECAL using identification algorithms

that use a collection of variables related to the spatial distribution of shower energy in the supercluster
(a group of 5×5 ECAL crystals), the photon isolation, and the fraction of the energy deposited in
the HCAL behind the supercluster relative to the energy observed in the supercluster [21, 45].
The requirements imposed on these variables ensure an efficiency of 80% in selecting prompt
photons. Photon candidates are required to be reconstructed with pT > 200GeV and |η | < 2.5.
Simulation-to-data correction factors are used to correct photon identification performance in MC.

Electrons are reconstructed by combining information from the inner tracker with energy
depositions in the ECAL [45]. Muons are reconstructed by combining tracks in the inner tracker
and in the muon system [22]. Tracks associated with electrons or muons are required to originate
from the PV, and a set of quality criteria is imposed to assure efficient identification [22, 45]. To
suppress misidentification of charged hadrons as leptons, we require electrons and muons to be
isolated from jet activity within a pT-dependent cone in the η-φ plane, ∆R =

√
(∆η)2 + (∆φ)2,

where φ is the azimuthal angle in radians. The relative isolation, Irel, is defined as the pT sum of
the PF candidates within the cone divided by the lepton pT. Neither charged PF candidates not
originating from the PV, nor those identified as electrons or muons, are included in the sum.

The isolation sum Irel is corrected for contributions of neutral particles originating from
pileup interactions using an area-based estimate [46] of pileup energy deposition in the cone.
The requirements imposed on the electron and muon candidates lead to an average identification
efficiency of 70 and 95%, respectively. In addition, the electron and muon candidates are required
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to have pT > 40GeV and be within the tracker acceptance of |η | < 2.5. The electron and muon
identification performance in simulation is corrected to match the performance in data.

The primary jet collection in this paper, referred to as “AK8 jets”, is produced by clustering PF
candidates using the anti-kT algorithm [43] with a distance parameter of R = 0.8 with the FastJet
3.1 software package [43, 44].

A collection of jets produced using the Cambridge-Aachen (CA) [47, 48] clustering algorithm
with R = 1.5, referred to as “CA15 jets”, is also used in this paper. In both jet collections, the
“PileUp Per Particle Identification (PUPPI)” [49] method is used to mitigate the effect of pileup
on jet observables. This method makes use of local shape information around each particle in the
event, the event pileup properties, and tracking information. This PUPPI algorithm operates at
the PF candidate level, before any jet clustering is performed. A local variable α is computed for
each PF candidate, which contrasts the collinear structure of QCD with the low-pT diffuse radiation
arising from pileup interactions. This α variable is used to calculate a weight correlated with
the probability that an individual PF candidate originates from a pileup collision. These per PF
candidate weights are used to rescale the four-momenta of each PF candidate to correct for pileup.
The resulting PF candidate list is used as an input to the clustering algorithm. A detailed description
of the PUPPI implementation in CMS can be found in ref. [50]. No additional pileup corrections
are applied to jets clustered from these weighted inputs. Corrections are applied to the jet energy
scale to compensate for nonuniform detector response [51]. Jets are required to have pT > 200GeV
and |η | < 2.4.

A collection of jets, reconstructed with the anti-kT algorithm and a smaller distance parameter
R = 0.4, referred to as “AK4 jets”, are used to define the event samples for the validation of the
algorithms. To reduce the effect of pileup collisions, charged PF candidates identified as originating
from pileup vertices are removed before the jet clustering, based on the method known as “charged-
hadron subtraction” [51]. An event-by-event correction based on jet area [51] is applied to the jet
four-momenta to remove the remaining neutral energy from pileup vertices. As with the AK8 and
CA15 jets described above, additional corrections to the jet energy scale are applied to compensate
for nonuniform detector response. The AK4 jets are required to have pT > 30GeV and be contained
within the tracker volume of |η | < 2.4.

Jets originating from the hadronization of bottom (b) quarks are identified, or “tagged”, using
the combined secondary vertex (CSVv2) b tagging algorithm [20]. The working point, i.e., a
selection on the algorithm’s discriminant providing a well defined signal (e.g., b quarks) and
background (e.g., light quarks) efficiency, used provides an efficiency for the b tagging of jets
originating from b quarks that varies from60 to 75%, depending on pT, whereas themisidentification
rate for light quarks or gluons is ∼1%, and ∼15% for charm quarks.

For the studies presented in this paper, the simulated signal jets (AK8orCA15 jets) are identified
as W/Z/H/t-tagged jets when the∆R between the reconstructed jet and the closest generated particle
(W/Z/H boson or t quark) before the decay, denoted as ∆R(jet,generated particle), is less than
0.6. This definition allows for a consistent comparison of the performance of the algorithms using
collections of jets clustered with different R. The choice of the 0.6 value approximately corresponds
to the minima of the ∆R distribution between jets and the closest generated particle based on studies
reported in ref. [17]. The fraction of AK8 jets with ∆R(AK8,generated particle) < 0.6 as a function
of the pT of the generated particle for jets initiated from the decay of a W boson (left) or t quark
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Figure 1. Matching efficiency as a function of the pT of the generated particle, for hadronically decaying
W bosons (left) and t quarks (right). This efficiency is defined as the fraction of the generated particles (t
quarks or W bosons) that are within ∆R < 0.6 with an AK8 or CA15 jet with pT > 200GeV and |η | < 2.4.
Superimposed is the merging efficiency as a function of the generated particle pT when all decay products
are within ∆R(AK8,qi) < 0.6 (∆R(CA15,qi) < 1.2) with an AK8 (CA15) jet.

(right) is shown in figure 1. This “matching” efficiency of W bosons (t quarks) reaches a plateau
of nearly 100% for pT & 200 (400)GeV. The corresponding efficiency curve for CA15 jets is
superimposed on the plots, and shows consistent efficiency with AK8 jets. A similar efficiency is
obtained when a relaxed selection of ∆R(CA15,generated particle) < 1.2 is applied. This justifies
the use of the same ∆R(jet,generated particle) reconstruction criteria for both jet collections.

Additional criteria are applied to simulated jets for the evaluation of the performance in data
and for the calibration of the algorithms. The partonic decay products (b, q1, q2 for t quarks, or
q1, q2 for W, Z or H bosons) are required to be fully contained in the AK8 (CA15) jet, satisfying
∆R(AK8,qi) < 0.6 (∆R(CA15,qi) < 1.2). These requirements were derived from the studies
in ref. [17]. The “merging” probability as a function of the pT of the generated particle (i.e.,
the efficiency for the decay products of the t quark or W boson to be fully contained in a single
jet based on the above requirements) is also shown in figure 1. For W bosons (t quarks) with
pT & 200 (650)GeV, at least 50% of the AK8 jets fully contain the W (t) decay products. In the
case of CA15 jets, similar efficiency is achieved for W bosons (t quarks) with pT & 150 (350)GeV.

In the case of background jets, partons (u, d, s, c, b, and gluon) from the hard scattering are
required to be contained in the jet cone for the jet to be classified as such.

Finally, the ®pmiss
T is defined as the negative of the vectorial sum of the ®pT of all PF candidates

in the event [52]. Its magnitude is denoted as pmiss
T . The jet energy scale corrections applied to the

jets are propagated to ®pmiss
T .

5 Event selection

Several samples are used to validate the performance of the tagging algorithms in data. A single-
µ signal sample is used to calibrate the t quark and W boson identification performance in a sample
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enriched in hadronically decaying t quarks, as explained below. A dijet sample, dominated by
light-flavor quarks and gluons, enables the study of the identification probability of background jets
(misidentification rate) in a wide range of pT. The misidentification rate depends on the flavor of the
parton that initiated the jet. Thus, in addition to the dijet sample, the single-γ background sample
is further used. The dijet and single-γ samples differ in the light-flavor quark and gluon fractions.
The former has a larger fraction of gluon jets than the latter.

Systematic effects are quantified using these samples to determine uncertainties in measure-
ments corrected for the detector effects.

5.1 The single-µ signal sample

The single-µ signal sample was recorded using a single-muon trigger that selects events online
based on the muon pT. Candidate events are required to have exactly one muon with pT > 55GeV,
satisfying the identification criteria defined in section 4, except for the requirement related to the
isolation of leptons Irel. In high-pT leptonic decays of the t quarks, the lepton from the W boson
decay often overlaps with the b jet from the t quark decay, leading to large values of Irel, causing
the event to be rejected. Therefore, a custom isolation criterion is applied by requiring a minimal
distance between the muon and the nearest AK4 jet, ∆R(µ,AK4) > 0.4, or the perpendicular
component of the muon pT with respect to the nearest AK4 jet, pT,rel > 25GeV. This has been
extensively used in measurements [5] and searches [53–56] involving high momentum t quarks in
the single-µ sample.

The AK4 jets used in this selection are clustered from PF candidates after removing muons
with pT > 55GeV. The custom isolation requirement results in an up to 40% increase in the
statistical power of the sample. To suppress the contribution from QCD multijet processes we
require pmiss

T > 50GeV. To enhance the sample purity in tt events, we require the presence of
two or more AK4 jets, at least one of which is reconstructed as a b jet. In addition, to probe
high momentum topologies, we require the ®pT of the leptonically decaying W bosons, defined as
®pT(W) = ®pT(µ) + ®p

miss
T , and the scalar pT sum of the AK4 jets, denoted as HT, to be greater than

250GeV. The t/W candidate is the highest pT AK8 or CA15 jet in the event with pT > 200GeV,
satisfying the criteria discussed in section 4. To further improve the purity, we require the azimuthal
angle ∆φ between the AK8 or CA15 jet and the muon to be greater than 2 radians. The purity of
the sample in semileptonic tt events is ∼70%; other contributions arise from QCD multijet (∼15%)
and W+jets (∼10%) processes.

5.2 The dijet background sample

The dijet background sample was recorded with a trigger that uses HT. Events with HT > 1000GeV
are selected to ensure 100% trigger efficiency. Events are required to have at least one AK8 or
CA15 jet meeting the requirements presented in section 4, and the absence of electrons or muons,
leading to a sample dominated by jets from the QCD multijet process, which are backgrounds to
the algorithms presented here.

5.3 The single-γ background sample

The single-γ background sample was collected using an isolated-single-photon trigger. Events with
a photon with pT > 200GeV are selected to ensure 100% trigger efficiency. The photon is further

– 7 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

required to satisfy the criteria presented in section 4. In addition to the photon, the single-γ sample
is required to have at least one AK8 or CA15 jet and no electrons or muons. The sample consists
of ∼80% γ+jets events, but only ∼15% QCD multijet events.

6 Overview of the algorithms

This section presents recently developed ML-based CMS heavy-object tagging methods. However,
to understand the historical developments and their limitations, we first present tagging algorithms
that do not rely on selections involving ML-based methods, but instead rely on selections based
on a set of jet substructure observables (“cutoff-based” approaches). To better explore the com-
plementarity between the jet substructure variables, alternative tagging algorithms were developed
using multivariate methods. Lastly, to exploit the full potential of the CMS detector and event
reconstruction, methods based on Deep Neural Networks (DNNs) are explored using either high
level inputs (e.g., jet substructure observables), or lower level inputs, such as PF candidates and
secondary vertices. Finally, dedicated versions of the algorithms are developed that are only loosely
correlated with the jet mass. A detailed discussion of each algorithm is presented in this section
and a summary of all t quark, W, Z or H boson identification algorithms is given in table 1.

Table 1. Summary of the CMS algorithms for the identification of hadronically decaying t quarks and W,
Z and H bosons. See text for explanation of the algorithm names. The column “Subsection” indicates the
subsection where the algorithm is described, and the column “jet pT [GeV]” indicates the jet pT threshold to
be used in each algorithm. The ∗ in DeepAK8 and DeepAK8-MD algorithms indicates the ability of these
algorithm to also identify the decay modes of each particle.

Algorithm Subsection jet pT [GeV] t quark W boson Z boson H boson
mSD + τ32 6.1 400 X

mSD + τ32 + b 6.1 400 X

mSD + τ21 6.1 200 X X

HOTVR 6.2 200 X

N3-BDT (CA15) 6.3 200 X

mSD + N2 6.3 200 X X X

BEST 6.5 500 X X X X

ImageTop 6.6 600 X

DeepAK8(∗) 6.7 200 X X X X

Jet mass decorrelated algorithms
mSD + NDDT

2 6.3 200 X X X

double-b 6.4 300 X X

ImageTop-MD 6.6 600 X

DeepAK8-MD(∗) 6.7 200 X X X X
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6.1 Substructure variable based algorithms

Historically, the high momentum t quark and W/Z/H boson tagging methods used by the CMS
Collaboration are based on a combination of selection criteria on the jet mass and the energy
distribution inside the jet [16–20].

The jet mass is one of the most powerful observables to discriminate t quark and W/Z/H
boson jets from background jets (i.e., jets stemming from the hadronization of light-flavor quarks
or gluons). The QCD radiation will cause a radiative shower of quarks and gluons, which will be
collimated within a jet. The probability for a gluon to be radiated from a propagating quark or
gluon is inversely proportional to the angle and energy of the radiated gluon. Hence, the radiated
gluon will tend to appear close to the direction of the original quark or gluon. These radiated gluons
tend to be soft, resulting in a characteristic “Sudakov peak” structure. This is explained in detail in
ref. [8]. Contributions from initial-state radiation, the underlying event, and pileup also contribute
strongly to the jet mass, especially at larger values of R. As such, jet mass from QCD radiation
scales as the product of the jet pT and R.

Several methods have been developed to remove soft or uncorrelated radiation from jets, a
procedure generally called “grooming”. These methods strongly reduce the Sudakov peak structure
in the jet mass distribution. The removal of the soft and uncorrelated radiation results in a much
weaker dependence of the jet mass on its pT.

The t quark and W/Z/H bosons have an intrinsic mass, and the jet substructure tends to be
dominated by electroweak splittings [57] at larger angles than QCD. This can be exploited to
separate such jets from jets arising from heavy SM particles.

The grooming method used most often in CMS is the “modified mass drop tagger” algorithm
(mMDT) [58], which is a special case of the “soft drop” (SD) method [59]. This algorithm system-
atically removes the soft and collinear radiation from the jet in a manner that can be theoretically
calculated [60, 61] (comparisons to data are found in ref. [8]).

The first step in the SD algorithm is the reclustering of the jet constituents with the CA
algorithm, and then the identification of two “subjets” within the main jet by reversing the CA
clustering history. The jet is considered as the final jet if the two subjets meet the SD condition:

min(pT1, pT2)

pT1 + pT2
> zcut

(
∆R12

R0

)β
, (6.1)

where R0 is the distance parameter used in jet clustering algorithm, pT1 (pT2) is the pT of the leading
(subleading) subjet and ∆R12 is their angular separation. The parameters zcut and β define what
the algorithm considers “soft” and “collinear,” respectively. The values used in CMS are zcut = 0.1
and β = 0 (making this identical to the mMDT algorithm, although for notation we still denote this
as SD). If the SD condition is not met, the subleading subjet is removed and the same procedure is
followed until eq. (6.1) is satisfied or no further declustering can be performed.

The two subjets returned by the SD algorithm are used to calculate the jet mass. Figure 2
shows the distribution of the AK8 jet mass after applying the SD algorithm (mSD) in simulated
signal and background jets. The jet mass has been measured in data in previous papers by CMS for
t-tagged [6] and QCD jets [7, 8].

The mSD in background jets peaks close to zero because of the suppression of the Sudakov
peak [58], whereas the mSD for signal jets peaks around the mass of the heavy SM particle (t quark,
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or W/Z/H bosons). In figure 2 (right), the peak around 80GeV is from jets that contain just the
two quarks from the W decay and not all three quarks from the t decay. Similar conclusions also
hold for CA15 jets. Based on these observations, we define three regions in mSD. The “W/Z mass
region” with 65 < mSD < 105GeV, the “H mass region” with 90 < mSD < 140GeV, and the “t
mass region” with 105 < mSD < 210GeV. These definitions will be used throughout this paper
unless stated otherwise.
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Figure 2. Comparison of the mSD shape in signal and background AK8 jets in simulation. The fiducial
selection on the jets is displayed on the plots. Signal jets are defined as jets arising from hadronic decays of
W/Z/H bosons (left) or t quarks (right), whereas background jets are obtained from the QCDmultijet sample.

An additional handle to separate signal from background events is to exploit the energy
distribution inside the jet. Jets resulting from the hadronic decays of a heavy particle to N separate
quarks or gluons are expected to have N subjets. For two-body decays like W/Z/H, there are two
subjets, while for t quarks, there are three. In contrast, jets arising from the hadronization of light
quarks or gluons are expected to only have one or two (in the case of gluon splitting) subjets. The
N-subjettiness variables [62, 63],

τN =
1
d0

∑
i

pT,i min
[
∆R1,i,∆R2,i, . . . ,∆RN ,i

]
, (6.2)

provide a measure of the number of subjets that can be found inside the jet. The index i refers to the
jet constituents, while the ∆R terms represent the spatial distance between a given jet constituent
and the subjets. The quantity d0 is a normalization constant. The centers of hard radiation are
found by applying the exclusive kT algorithm [64, 65] on the jet constituents before the use of any
grooming techniques. The values of the τN variables are typically small if the jet is compatible with
having N or more subjets. However, a more discriminating observable is the ratio of different τN
variables. For this purpose, the ratio τ3/τ2 ≡τ32 is used for t quark identification, whereas the ratio
τ21 is used for W/Z/H boson identification. The distribution τ21 and τ32 for signal and background
AK8 jets is shown in figure 3. Measured values of these distributions at CMS can also be found for
light-flavor jets in ref. [9]. Typical operating regions for τ21 (τ32) are 0.35–0.65 (0.44–0.89), which
correspond to a misidentification rate after the mSD selection of 0.1–10% for both.
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Figure 3. Comparison of the τ21 (left) and τ32 (right) shape in signal and background AK8 jets. The
fiducial selection on the jets is displayed in the plots. As signal jets we consider jets stemming from hadronic
decays of W, Z, or H bosons (left), or t quarks (right), whereas background jets are obtained from the QCD
multijet sample.

The baseline W and Z boson (collectively referred to as V boson) tagging algorithm, based
on selections on mSD and τ21, will be labelled as “mSD + τ21” in this paper. The V tagging with
this method is used frequently in current analyses (e.g., in refs. [66–69]) starting at approximately
200GeV in pT.

For t quark tagging we studied a tagger based on mSD and τ32, which will be referred to as
“mSD+τ32”. An additional improvement in the performance of the t quark identification is achieved
by applying the CSVv2 b tagging algorithm discussed in section 4 on the subjets returned by the SD
algorithm. In the studies presented in this paper we require at least one of the two subjets to pass
the loose working point of the CSVv2 algorithm, corresponding to the b quark jet identification
efficiency ∼85%, with a misidentification rate for light-flavor quarks and gluon jets of ∼10%, and
∼60% for the c quark jets. This version of the baseline t quark tagging algorithm is referred to as
“mSD+τ32 + b”. Top-quark tagging with this method is used extensively in physics analyses (e.g., in
refs. [56, 70–72]) tagging high-pT t quarks, which start to merge into the AK8 cone at pT ∼ 350GeV
and are 50% efficient at around 600GeV. For applications below this mass range, analyses can
profit from the larger (or variable) R clustering algorithms discussed in the following sections.

6.2 Heavy object tagger with variable R

The heavy object tagger with variable R (HOTVR) [73] is a new cutoff-based algorithm for the
identification of jets originating from hadronic decays of boosted heavy objects. It introduces a new
jet clustering technique with a variable R and removal of soft contributions during the clustering.
The clustering is similar to other standard sequential clustering algorithms such as the CA algorithm,
where particles are sequentially added. However, instead of a fixed R, HOTVR uses a pT-dependent
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R (RHOTVR), defined as:

RHOTVR =


Rmin, for ρ/pT < Rmin

Rmax, for ρ/pT > Rmax

ρ/pT, elsewhere

. (6.3)

The value of ρ is chosen to correspond to a typical energy scale of the event (O(100)GeV). In the
case of ρ→ 0, the algorithm is identical to the CA algorithm for R = Rmin, whereas for ρ→∞ it is
identical to the CA algorithm for R = Rmax. Higher values of ρ result in larger jet sizes. The param-
eters Rmin and Rmax are introduced for robustness of the algorithm with respect to detector effects.

Inspired by ref. [73], at each clustering step, the invariant mass mi j between two subjets i and
j is calculated. If mi j is greater than a threshold, µ, the following condition is verified:

θmi j > max(mi,mj), (6.4)

where mi and mj are the masses of the two subjets, and θ is a parameter that determines the strength
of the condition and ranges from 0 to 1. If the condition in eq. (6.4) is not fulfilled, the subjet with
the lower mass is discarded; otherwise depending on the relative pT difference of the subjets they
are either combined into a single subjet or the softer one is discarded. The algorithm continues
until no other subjet is found. The detailed description of the HOTVR algorithm is presented in
ref. [73]. Table 2 lists the values of HOTVR parameters used in CMS. In the CMS implementation,
HOTVR jets are clustered using PUPPI corrected PF candidates.

Table 2. Summary of the HOTVR parameters used in CMS. The pTsub is the minimum pT threshold of each
subjet.

Rmin Rmax ρ [GeV] µ [GeV] pTsub [GeV] θ

0.1 1.5 600 30 30 0.7

The HOTVR clustering algorithm is currently being explored in CMS for t quark identification.
The jets returned by HOTVR (i.e., “HOTVR jets”) are required to have mass consistent with mt ,
namely 140 < mHOTVR < 220GeV, and at least three subjets, Nsub, HOTVR ≥ 3, the minimum
pairwise mass of which should be mdisub, min > 50GeV. In addition, the pT of the hardest subjet
must be less than 80% of the HOTVR jet pT. Lastly, to further improve the discrimination,
τ32 < 0.56 is required. The shape comparison of the main variables of the HOTVR algorithm for
signal and background, for different parton pT ranges, is shown in figure 4.

6.3 Energy correlation functions

A new set of N-prong identification algorithms, the generalized energy correlation functions
(ECFs) [74], are now used by the CMS Collaboration. The ECFs explore the energy distribu-
tion inside a jet by aiming to quantify the number of centers of hard radiation using an axis-free
approach, differing from the axis-dependent definition used by N-subjettiness, which reduces the de-
pendence of the observable on the jet pT. This allows the exploration of complementary information
between the two techniques.
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Figure 4. Shape comparison of the main variables of the HOTVR algorithm for signal and background jets,
in two different regions of the jet pT as displayed in the plots.

For a jet containing NC particles, an ECF is defined as:

qeβN =
∑

1≤i1<i2< · · ·<iN ≤NC

[ ∏
1≤k≤N

pikT
pJT

]
q∏

m=1

(m)

min
i j<ik ∈{i1,i2, · · · ,iN }

{
∆Rβi j ,ik

}
, (6.5)

where 1 ≤ i1 < i2 < · · · < iN ≤ NC range over the jet constituents. The symbols pikT and pJT
are the pT of the constituent ik and the pT of the jet, respectively. The notation min(m) refers to
the mth smallest element, and ∆Ri j ,ik

is the angular distance between constituents ij and ik . The
parameters N and q must be positive integers, and the exponent β must be positive as well. For
a concrete example, we calculate the ECF corresponding to q = 2,N = 3, β = 1. This ECF tests
the compatibility of a jet with three centers of hard radiation, but only considering the two smallest
angles (q = 2):

2e1
3 =

∑
1≤a<b<c≤M

pa
TpbTpcT
(pJT)

3 min{∆Rab∆Rac,∆Rab∆Rbc,∆Rbc∆Rac}. (6.6)

Moreover, there is the possibility to select subsets of the jet that contain large energy fractions and
pairwise opening angles only if the size of the subset is less than or equal to the number of the
centers of radiation in the jet. In general, a jet with N centers of radiation has eN � eM , for M > N .
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6.3.1 The ECFs for 3-prong decay identification

The ratios of type (N = 4)/(N = 3) can identify the hadronic 3-body decays, such as those of t
quarks. Reference [74] proposes to use the specific ratio N3 for this purpose:

N (β)3 =
2eβ4
(1eβ3 )

2 . (6.7)

Since a jet contains NC ∼ O(pT/GeV) constituents, and the sum has
(NC
N

)
terms, it is prohibitively

expensive to compute e(N = 4) on high-pT jets. For example, about 10–15% of CA15 jets with
pT ∼ 500GeV have more than 100 particles. However, we find that these functions are dominated
by the hardest particles, and therefore limiting to the 100 hardest particles makes the calculation
tractable without significant performance degradation.

In our reconstruction, the ECF ratios are calculated for jets after the SD grooming is applied,
which improves the stability of ECF as a function of jet mass and pT. An example of the ECF
ratios is shown in the left plot of figure 5 for simulated t quark and QCD jets. The ECF ratios are
measured in data in ref. [9] showing reasonable agreement with the expectation from simulation.
While N3 is designed to have comparable performance with τ32, its dependence on pT is reduced.
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Figure 5. Comparison of the distribution of N (2)3 (left) and the N3-BDT (CA15) discriminant (right) in t
quarks jets (signal) and jets from QCD multijet processes (background).

Therefore, a set of ECFs is chosen based on the improvement in the performance of the t tagging
algorithm, while in parallel maintaining small dependence on jet pT. Despite the fact that the terms
of the ECFs are dimensionless, the angular component of ECF function is modified according to the
boost of the parent particle. Hence, scale invariant ECF ratios are constructed by only considering
those ratios that satisfy:

aeαN
(beβM )

x
, where M ≤ N and x =

aα
bβ
. (6.8)

Only ratios that are not highly correlated among themselves are considered for the t quark tagging
algorithm, and ECF ratios that are not well described by simulation are discarded. The following
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11 ECF ratios are finally selected:

1e(2)2(
1e(1)2

)2 ,
1e(4)3

2e(2)3

,
3e(1)3(

1e(4)3

)3/4 ,
3e(1)3(

2e(2)3

)3/4 ,
3e(2)3(

3e(4)3

)1/2 ,

1e(4)4(
1e(2)3

)2 ,
1e(2)4(

1e(1)3

)2 ,
2e(1/2)4(

1e(1/2)3

)2 ,
2e(1)4(

1e(1)3

)2 ,
2e(1)4(

2e(1/2)3

)2 ,
2e(2)4(

1e(2)3

)2 .

(6.9)

In addition to the ECFs, two jet substructure observables are employed to further distinguish t
quark jets from light quarks or gluons. The first observable is τ32 calculated for CA15 jets, after
applying the SD grooming, defined as τSD

32 and the second is the frec variable of the HEPTopTagger
algorithm [75–77], which quantifies the difference between the reconstructed W boson and t quark
masses and their expected values, and is defined as:

frec = min
i, j

����mi j/m123

mW/mt
− 1

���� , (6.10)

where i, j range over the three chosen subjets, mi j is the mass of subjets i and j, and m123 is the
mass of all three subjets.

The ECF-based t quark tagger, referred to as “N3-BDT (CA15)”, is based on a boosted decision
tree (BDT) [78] with the 11 ECF ratios, the τSD

32 , and the frec as inputs. The N3-BDT (CA15)
algorithm was trained using jets with 110 < mSD < 210GeV. To avoid possible bias in the
identification performance due to differences in the pT spectrum of the signal (t quarks) and
background (light quarks or gluons) jets, their contributions are reweighted such that they have a
flat distribution in jet pT.

Figure 5 (right) shows a comparison of the N3-BDT (CA15) discriminant distribution between
signal and background jets. The final N3-BDT (CA15) algorithm also requires at least one of the
two subjets returned by the SD method to be identified as a b jet by the CSVv2 algorithm using the
loose working point. The ECF BDT tagger is used for t quark jet identification in the context of
dark matter production in association with a single t quark in the pT > 250GeV range [79].

6.3.2 The ECFs for 2-prong decay identification

The use of ECFs is also explored for the identification of 2-prong decays, such as hadronic decays
of W/Z/H bosons. In this case, the signal jets have a stronger 2-point correlation than a 3-point
correlation and the discriminant variable N1

2 can be used to separate jets originating from W/Z/H
bosons. The N2 variable is constructed via the ratio

N1
2 ≡ N1

2 =
2e1

3

(1e1
2)

2 , (6.11)

and shows similar performance to N-subjettiness ratio τ21, with the advantage that it is more stable
as a function of the jet mass and pT. This method is referred to as “mSD + N2”.

A decorrelation procedure is further applied to avoid distorting the jet mass distribution when a
selection based on N2 is made. We design a transformation from N2 to NDDT

2 , where DDT stands for
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“designed decorrelated tagger” described in ref. [15]. The transformation is defined as a function
of the dimensionless scaling variable ρ = ln(m2

SD/p
2
T) and the jet pT:

NDDT
2 (ρ, pT) = N2(ρ, pT) − N (X%)

2 (ρ, pT), (6.12)

where N (X%)
2 is the X percentile of the N2 distribution in simulated QCD events. This ensures that

the selection NDDT
2 < 0 yields a constant QCD background efficiency of X% across the mass and

pT range considered with no loss in performance. The value X = 5 is used throughout this paper,
following the choice in [80]. The distributions of N2 and NDDT

2 in signal and background jets are
shown in figure 6. Signal jets have smaller values and background jets have larger values. The NDDT

2
is used for V tagging with pT in excess of 500GeV in the search for light dijet resonances [80].
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Figure 6. Distributions of the mSD + N2 (left) and mSD + NDDT
2 (right) in signal and background jets.

The mSD + NDDT
2 observable was used and validated in several analyses, including the ones

described in refs. [80, 81].

6.4 The double-b tagger

The standard b tagging tools, such as the CSVv2 discussed in section 4, can be applied to the subjets
returned by the SD algorithm applied to AK8 jets. Characteristic examples are the mSD + τ32 + b
and N3-BDT (CA15) algorithms. However, these tools have limitations in certain topologies, for
example when the two subjets become very collimated. The “double-b” tagger was developed to
specifically target Higgs decays to pairs of b quarks in the boosted regime [20]. While it utilizes
many of the variables used in the standard CSVv2 b tagging algorithm, it also employs variables
related to the track properties, such as the track impact parameter and its significance, the positions
of secondary vertices, and information from the two-secondary-vertex system, among others listed
in ref. [20]. An important feature of the double-b algorithm is that it uses the N-subjettiness axes,
defined in eq. (6.2), for N = 2, to group the tracks to the direction of the partons giving rise to the
two subjets. The double-b variables are then used as inputs to a BDT. A key feature of the double-b
algorithm is that it is designed to minimize the dependence of the BDT discriminant on the jet mass
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and pT, thus making it suitable for other topologies such as decays of boosted Z bosons to bottom
quarks [81].

The performance of the double-b tagger in simulation is detailed in ref. [20] using H boson
jets as signal, and single-b, double-b jets from gluon splitting to a pair of b quarks, and light-flavor
quark or gluon jets. The H → bb identification efficiency is ∼25% (∼70%) for ∼1% (∼10%)
misidentification rate [20].

The double-b tagger performance in data is studied in [20] using data in a recent inclusive
search for the Higgs boson in the bb decay mode [81]. In that analysis, the Z boson was observed
for the first time in the single-jet topology and bb decay mode, with a rate consistent within
uncertainties with the SM expectation, validating the double-b tagging algorithm for the Higgs
boson measurements and future searches.

The double-b tagger will serve as a reference for the performance of the new methods explored
in CMS.

6.5 Boosted event shape tagger

The boosted event shape tagger (BEST) [82] is a multi-classification algorithm designed to discrim-
inate hadronic decays of high-pT t quarks and W/Z/H bosons from jets arising from b quarks, light
flavor quarks, and gluons. The original algorithm was demonstrated using generator-level particles
and efficiently separated jets originating from W/Z/H bosons, t quarks, and b jets. The algorithm
has been extended and deployed for use in the CMS experiment, adding an additional category to
discriminate jets from light-flavor quarks and gluons.

The BEST algorithm obtains discrimination on a jet-by-jet basis by transforming the entire set
of jet constituents four times, each with a different boost vector. The boost vectors are obtained by
assuming the jet originating from one of the heavy objects under consideration (W/Z/H/t). The
jet momentum is held constant while the mass of the jet is adjusted to the theoretical value of
the corresponding particle. This results in four distributions of constituents that can be used to
discriminate between particle origins. If a jet did originate from one of the hypothesized heavy
objects, its jet constituents will, in general, be more isotropic in the rest frame of that particle. By
examining the differences between heavy object hypotheses, discrimination is obtained between the
categories of interest (W/Z/H/t/b/other).

In total, 59 quantities are used to train a neural network (NN) and classify the AK8 jets.
The variables are listed in table 3. For each boost transformation, we calculate the following
observables: Fox-Wolfram moments [83]; aplanarity, sphericity, and isotropy quantities based on
the eigenvalues of sphericity tensor, as defined in ref. [84]; and jet thrust [85]. Additionally, in each
boost hypothesis, AK4 subjets are clustered from the constituents and used to compute pairwise
subjet masses for the leading three subjets, as well as the combined mass of the leading four subjets
m1234. These AK4 subjets are also used to compute the longitudinal asymmetry AL , defined as the
ratio of the sum of longitudinal components of the AK4 subjet momenta to the sum of the total AK4
subjet momenta. In addition to these quantities evaluated for each set of jet constituents, the mSD,
rapidity, charge, τ32, τ21, and the CSVv2 discriminant for each subjet provide additional inputs for
each set of boosted jet constituents.

The NN is trained with the scikit-learn package [86] using the MLPClassifier module. The
network architecture is fully connected and consists of 3 hidden layers with 40 nodes in each layer
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Table 3. List of input quantities used for the training and evaluation of the BEST algorithm on AK8 jets.

BEST training quantities
Jet charge Fox-Wolfram moment H1/H0 (t,W,Z,H) m12 (t,W,Z,H)

Jet η Fox-Wolfram moment H2/H0 (t,W,Z,H) m23 (t,W,Z,H)
Jet τ21 Fox-Wolfram moment H3/H0 (t,W,Z,H) m13 (t,W,Z,H)
Jet τ32 Fox-Wolfram moment H4/H0 (t,W,Z,H) m1234 (t,W,Z,H)

Jet soft-drop mass Sphericity (t,W,Z,H) AL (t,W,Z,H)
Subjet 1 CSV value Aplanarity (t,W,Z,H)
Subjet 2 CSV value Isotropy (t,W,Z,H)

Maximum subjet CSV value Thrust (t,W,Z,H)

using a rectified linear unit (ReLU) [87] activation function. The six output nodes correspond to
the 6 particle species of interest. We use 500 000 jets to train the network, split evenly between the
6 training samples. The training is performed using the Adam [88] optimizer to minimize the cross
entropy loss with a constant learning rate of 0.001. Cross entropy is a measure of the difference
(entropy) between two probability distributions and it is used for optimizing a classification model.
The BEST W/Z/H/t/b/other multi classification is currently used for tagging high-pT jets in the
search for vector-like quark pair production [69].

6.6 Identification using particle-flow candidates: ImageTop

Recent studies, e.g., in ref. [89], have shown that jet identification algorithms deployingMLmethods
directly on the jet constituents yield significantly improved performance compared to traditional
algorithms.

To this end, the “ImageTop” t quark identification algorithm was developed. The ImageTop
algorithm closely follows the network framework described in ref. [89], which is an optimization
based on the DeepTop framework described in ref. [90]. This tagging approach uses standard
image recognition techniques based on two-dimensional convolutional neural networks (CNNs) to
discriminate t quark jets from QCD jets. This is performed by pixelizing the jet energy deposits and
define different channels based on relevant detector information. Before pixelization, the centroid of
the jet is shifted to the origin and then a rotation is performed to make the major principal axis verti-
cal. The image is then flipped along both the horizontal and vertical axes as appropriate such that the
maximum intensity is in the lower-left quadrant. After this, the image intensity is normalized and the
image is pixelized using 37×37 pixels with a total ∆η = ∆φ = 3.2, with channels split into neutral
pT, track pT, number ofmuons, and of tracks as an analogue to colors used in image recognition. The
network architecture uses a layer of 128 feature maps with a 4×4 kernel followed by a second convo-
lutional layer of 64 feature maps each. Then amax-pooling layer with a 2×2 reduction factor is used,
followed by two more consecutive convolutional layers with 64 features maps followed by another
max-pooling layer. A zero-padding in each convolutional layer is used to correct for image-border
effects. In the last pooling layer, the 64 maps are flattened into a single one that is passed into a set of
three fully connected dense layers, one of 64 neurons, and two more with 256 neurons. The training
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is performed using the Tensorflow [91] software package using the AdaDelta optimizer [92] with
a learning rate of 0.3, a minibatch size of 128, and the binary cross entropy loss function.

The tagger is modified to use the PF candidates contained in the AK8 jets as inputs, with the
colors being the pT of the PF candidates for the full greyscale image, and a separate color for each PF
candidate flavor, namely charged and neutral hadrons, photons, electrons, and muons. The pixelized
greyscale images used in the ImageTop network for QCD and t quark jets are shown in figure 7.
The characteristic flavor of the t quark decay is included by applying the DeepFlavor [93] b tagging
algorithm to the SD subjets of the AK8 jet. The subjet b tagging outputs include the probability
of the jet to originate from the following six sources: b quark, bb pair, leptonic b decays, c quark,
light-flavor quark, or gluon. These output probabilities calculated for both subjets along with mSD,
are used as inputs (13 in total) into a 64-neuron dense layer and merged with the previous flattened
CNN layer and finally input into three fully connected layers of 256 neurons each. The factorization
of the b flavor discrimination is important for the versatility of the network, allowing for the flavor
identification to be easily removed or validated in parallel, which can be necessary for the validation
of objectswith no SManalog. The diagramof theCMSapplication of thisNNcan be seen in figure 8.
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Figure 7. The pixelized images used in the ImageTop network with PF candidate colors summed together
(“greyscale”) for QCD (left) and t quark (right) jets. The x and y axes are the pixel number, and roughly scale
with ∆R. The Z axis is the intensity of the greyscale image in the given pixel, related to the PF candidate
pT, and has been normalized to unity. This figure shows an ensemble of overlaid images after the image post
processing; we can see clear differences between the QCD jet energy and t quark deposition patterns.

The training is performed for jets in the pT > 600GeV region. To sustain the ImageTop
performance over a wide range of pT(jet), the image is adaptively zoomed based on pT(jet) to
account for the increased collimation of the t quark decay products at high Lorentz boosts and
maintain a static pixel size. The functional form of the zoom is extracted from the average ∆R of
the three generator-level hadronic t quark decay products, and the jet energy deposits are corrected
to make this constant on average, as evaluated from a fit using the inverse jet pT functional form
f (pT) = 0.066 + 264/pT.

– 19 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

top
QCD

Inputs
6x37x37

PFIDColors 128x37x37 64x36x36
64x18x18 64x17x17 64x17x17 64x8x8 64

64

256 256 256

Conv 4x4 Conv 4x4
MaxPool 2x2 Conv 4x4 Conv 4x4 MaxPool 2x2 Dense

Dense

Dense

AK8 
PUPPI jet

Merge
Inputs

13

b,bb,blep,c,uds,g
SJ1

b,bb,blep,c,uds,g
SJ2

m"#

Figure 8. The ImageTop network architecture. The neural network inputs are the 37x37 pixelized PF
candidate pT map, which is split into colors based on the PF candidate flavor, and the DeepFlavor subjet b
tags applied to both subjets. The pixelized images are sent through a two-dimensional CNN, and the subjet b
tags are inputs to a dense layer. After flattening the CNN, the two networks are taken as input to three dense
layers and finally to the two-node output, which is used as the top tagging discriminator.

A jet pT bias is further reduced by ensuring that the input pT distributions for signal and
background jets are similarly shaped by probabilistically removing QCD events based on the ratio
of t quark and QCD jet pT distributions when training the nominal ImageTop tagger. The mass
correlation of the tagger is reduced by additionally constraining mSD in a similar manner to define
a new discriminator, which will be referred to as “ImageTop-MD”. Since the inputs are relatively
simple and do not exhibit secondary mass correlation, this passive approach for decorrelating the
ImageTop network is sufficient to remove themass bias in the fiducial training region (pT > 600GeV
and |η | < 2.4). This method of mass decorrelation also leads to a factorized sensitivity where the
sensitivity of the full ImageTop network in the t quark mass region is closely approximated by the
sensitivity of the mass-decorrelated version after including a mass selection.

6.7 Identification using particle-flow candidates: DeepAK8

An alternative approach to exploit particle-level information directly with customized ML methods
is the “DeepAK8” algorithm, a multiclass classifier for the identification of hadronically decaying
particles with five main categories, W/Z/H/t/other. To increase the versatility of the algorithm, the
main classes are further subdivided into the minor categories corresponding to the decay modes of
each particle (e.g., Z → bb , Z → cc and Z → qq).

In the DeepAK8 algorithm, two lists of inputs are defined for each jet. The first list (the
“particle” list) consists of up to 100 jet constituent particles, sorted by decreasing pT. Typically
less than 5% of the jets have more than 100 reconstructed particles, therefore restricting to the 100
hardest particles results in a negligible loss of performance. Measured properties of each particle,
such as the pT, the energy deposit, the charge, the angular separation between the particle and
the jet axis or the subjet axes, etc., are included to help the algorithm extract features related to
the substructure of the jet. For charged particles, additional information measured by the tracking
detector is also included, such as the displacement and quality of the tracks, etc. These inputs are
particularly useful to enable the algorithm to extract features related to the presence of heavy-flavor
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(b or c) quarks. In total, 42 variables are included for each particle in the “particle” list. A
secondary vertex (SV) list consists of up to 7 SVs, each with 15 features, such as the SV kinematics,
the displacement, and quality criteria. The SV list helps the network to extract features related to the
heavy-flavor content of the jet. The elements of the SV list as sorted based on the two-dimensional
impact parameter significance (SIP2D).

………
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Figure 9. The network architecture of DeepAK8.

A significant challenge posed by the direct use of particle-level information is a substantial
increase in the number of inputs. Additionally, the correlations between these inputs are of vital
importance. Therefore, an algorithm that can both process the inputs efficiently and exploit the
correlations effectively is required. A customized DNN architecture is thus developed in DeepAK8
to fulfill this requirement. As illustrated in figure 9, the architecture consists of two steps. In the
first step, two one-dimensional CNNs are applied to the particle list and the SV list in parallel to
transform the inputs and extract useful features. In the second step, the outputs of these CNNs are
combined and processed by a simple fully connected network to perform the jet classification. The
CNN structure in the first step is based on the ResNet model [94], but adapted from two-dimensional
images to one-dimensional particle lists. The CNN for the particle list has 14 layers, and the one
for the SV list has 10 layers. A convolution window of length 3 is used, and the number of output
channels in each convolutional layer ranges between 32 to 128. The ResNet architecture allows for
an efficient training of deep CNNs, thus leading to a better exploitation of the correlations between
the large inputs and improving the performance. The CNNs in the first step already contain strong
discriminatory ability, so the fully connected network in the second step consists of only one layer
with 512 units, followed by a ReLU activation function and a Dropout [95] layer of 20% drop rate.
The NN is implemented using the MXNet package [96] and trained with the Adam optimizer to
minimize the cross-entropy loss. A minibatch size of 1024 is used, and the initial learning rate is
set to 0.001 and then reduced by a factor of 10 at the 10th and 20th epochs to improve convergence.
The training completes after 35 epochs. A sample of 50 million jets is used, of which 80% are
used for training and 20% for validation. Jets from different signal and background samples are
reweighted to yield flat distributions in pT to avoid any potential bias in the training process. The
DeepAK8 algorithm is designed for jets with pT > 200GeV and typical operating regions for which
the misidentification rate is greater than 0.1%.
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6.7.1 A mass-decorrelated version of DeepAK8

As will be discussed in section 7, background jets selected by the DeepAK8 algorithm exhibit
a modified mass distribution similar to that of the signal. The mass of a jet is one of the most
discriminating variables and, although it is not directly used as an input to the algorithm, the
CNNs are able to extract features that are correlated to the mass to improve the discrimination
power. However, such modification of the mass distribution may be undesirable (as described in
ref. [15]) if the mass variable itself is used for separating signal and background processes. Thus, an
alternative DeepAK8 algorithm, “DeepAK8-MD”, is developed to be largely decorrelated with the
mass of a jet, while preserving the discrimination power as much as possible using an adversarial
training approach [97]. Jets from different signal and background samples are also weighted to
yield flat distributions in both pT and mSD to aid the training.

Feature extractor Classifier

1D CNN Fully connected
Classification

output

back propagation

Fully connected

Mass predictor

Mass 
prediction

Joint loss 
L = LC − λLMP

back propagation

Loss 
LMP

Figure 10. The network architecture of DeepAK8-MD.

The architecture of DeepAK8-MD is shown in figure 10. Compared to the nominal version of
DeepAK8, a mass prediction network is added with the goal of predicting the mass of a background
jet from the features extracted by the CNNs. The mass prediction network consists of 3 fully-
connected layers, each with 256 units and a SELU activation function [98]. It is trained to predict
the mSD of background jets to the closest 10GeV value between 30 and 250GeV by minimizing the
cross-entropy loss. When properly trained, the mass prediction network becomes a good indicator
of how strongly the features extracted by the CNNs are correlated with the mass of a jet, because
the stronger the correlation is, the more accurate the mass prediction will be. With the introduction
of the mass prediction network, the training target of the algorithm can be modified to include the
accuracy of the mass prediction for the background jets as a penalty, therefore preventing the CNNs
from extracting features that are correlated with the mass. In this way, the final prediction of the
algorithm also becomes largely independent of the mass. As the features extracted by the CNNs
evolve during the training process, the mass prediction network itself needs to be updated regularly
to adapt to the changes of its inputs and remain as an effective indicator of mass correlation.
Therefore, for each training step of the DeepAK8 network (the Particle and SV CNNs and the
1-layer fully-connected network), the mass prediction network is trained for 10 steps. Each training
step corresponds to a minibatch of 6000 jets. A large minibatch size is used to reduce statistical
fluctuation on the mass correlation penalty evaluated by the mass prediction network, since only
background jets are used in the evaluation. Both the DeepAK8 network and the mass prediction
network are trained with the Adam optimizer. A constant learning rate of 0.001 (0.0001) is used
for the training of the DeepAK8 (mass prediction) network.
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Forcing the algorithm to be decorrelated with the jet mass, inevitably leads to a loss of
discrimination power, and the resulting algorithm is a balance between performance and mass
independence. Because the training of DeepAK8-MD is carried out only on jets with 30 < mSD <

250GeV, jets with mSD outside this range should be removed when using DeepAK8-MD.

7 Performance in simulation

As presented in section 6, a variety of algorithms have been developed by the CMS Collaboration
to identify the hadronic decays of W/Z/H/ bosons and t quarks. To gain an initial understanding of
the tagging performance and the complementarity between the different approaches, the algorithms
were studied in simulated events. The performance of the algorithms is evaluated using the signal
and background efficiencies, εS and εB, respectively, as a figure of merit. The efficiencies εS and
εB are defined as:

εS =
N tagged
S

N total
S

and εB =
N tagged
B

N total
B

, (7.1)

where N tagged
S

(N tagged
B ) is the number of signal (background) jets satisfying the identification criteria

of each algorithm, and N total
S (N total

B ) is the total number of generated particles considered to be
signal (background). Hadronically decaying W/Z/H bosons or t quarks are signal, whereas quarks
(excluding t quarks) and gluons from the QCD multijet process are background.

First, for each algorithm, the εB as a function of εS is evaluated in terms of a receiver operating
characteristic (ROC) curve. Figures 11–14 summarize the ROC curves of all algorithms for the
identification of t quarks, and W, Z, and H bosons, respectively. The comparisons are performed
at low and high values of the generated particle pT. The fiducial selection criteria applied to
the generator-level particles are displayed in the plots. For the cutoff-based algorithms, namely
mSD + τ32, mSD + τ32 + b, mSD + τ21, mSD + N2, and mSD + NDDT

2 , all selections except the selection
on τ32, τ21, or N2, are applied, as described in sections 6.1 and 6.3.2.

In t tagging, the addition of the subjet b tagging in the mSD + τ32 algorithm reduces the
misidentification probability for t quarks by up to ∼50% depending on the pT. The performance
of the HOTVR algorithm lies between mSD + τ32 and mSD + τ32 + b, and the N3-BDT (CA15)
algorithm shows improved performance compared to these algorithms, particularly in the low-pT
range. The improved performance stems from the usage of the ECFs, which provide complementary
information to τ32. Particularly in the low-pT region, the gain is mainly due to the use of larger-cone
jets (i.e., jets clustered with R = 1.5). The BEST algorithm targets the high-pT regime and shows
similar performance to the ECF algorithm in this regime. The best discrimination is achieved
with algorithms based on lower-level information, namely the ImageTop and DeepAK8 algorithms.
ImageTop and DeepAK8-MD yield comparable performance in the low and high pT regions. The
best performance in terms of ROC curves is achieved with the nominal version of DeepAK8 over
the entire pT region.

Various arguments contribute to the significantly improved performance of ImageTop and
DeepAK8 with respect to the other algorithms. First, the usage of lower-level variables as inputs to
the network exploits the high granularity of the CMS detector. Second, the architectures of these
algorithms provide quark-gluon discrimination information. Moreover, information about the jet
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Figure 11. Comparison of the identification algorithms for hadronically decaying t quark in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500GeV, and Right:
1000 < pT < 1500GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.
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Figure 12. Comparison of the identification algorithms for hadronically decaying W boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500GeV, and Right:
1000 < pT < 1500GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.

flavor content is extracted, which is particularly important for t quark and Z/H boson identification.
The flavor identification in jets from boosted object decay is very challenging because the decay
products overlap and traditional b tagging algorithms perform significantly less well. The usage of
the type of the PF candidates, and the secondary vertices in the case of DeepAK8, provides a more
precise description of the flavor content inside the jet.

Similar conclusions hold for the identification of hadronically decaying W and Z bosons. The
BEST, DeepAK8, and DeepAK8-MD algorithms show enhanced performance compared with the
simpler mSD + τ21 algorithm. The gain in terms of misidentification rate can be as large as an
order of magnitude in the case of DeepAK8. The smaller relative gain of DeepAK8 over BEST
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Figure 13. Comparison of the identification algorithms for hadronically decaying Z boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500GeV, and Right:
1000 < pT < 1500GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.
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Figure 14. Comparison of the identification algorithms for hadronically decaying H boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500GeV, and Right:
1000 < pT < 1500GeV. The H boson decays to a pair of b quarks. Additional fiducial selection criteria
applied to the jets are listed on the plots.

for discriminating between W or Z bosons, and t quarks occurs because flavor information for the
W and Z bosons is not as critical as for t quarks. The mSD + N2 and mSD + NDDT

2 show weaker
performance compared with the mSD + τ21 algorithm.

The double-b, BEST, DeepAK8, and DeepAK8-MD algorithms are used to identify hadronic
decays of the H boson. In figure 14, the H boson decays to a pair of b quarks. The performance of
the BEST algorithm lies between the double-b algorithm and DeepAK8. The gain with DeepAK8
is expected just as in t quark identification for similar arguments.
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Figure 15. Alternative versions of DeepAK8 trained using a subset of the input features. The details about
each version are discussed in the text. The performances of the three versions of DeepAK8 are compared
for t quark (upper) and Z boson (lower) identification. For the latter, the left plot corresponds to Z bosons
decaying to a pair of b quarks, and the right plot to a pair of light-flavor quarks.

To gain a deeper understanding of the DeepAK8 performance, two alternative versions of
DeepAK8 were trained using a subset of the input features. Three sets of input features were
studied and compared. The “Particle (kinematics)” set consists of only the kinematic information
on the PF candidates, e.g., the four-momenta and the distances to the jet and subjet axes. This set
serves as a baseline to evaluate the performance using only substructure of the jets. The “Particle
(w/o Flavor)” set includes additional experimental information for each PF candidate, such as the
electric charge, particle identification, and track quality information. Compared with the nominal
DeepAK8 algorithm, input features that contribute to the identification of heavy-flavor quarks, such
as the displacement of the tracks, the association of tracks to the reconstructed vertices, and the SV
features, are not included in the “Particle (w/o Flavor)” set. The performances of the three versions
of DeepAK8 are compared in figure 15 for t quark and Z boson identification. In both cases,
the addition of experimental information brings sizable improvement in performance. Although
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the additional features contributing to heavy-flavor identification lead to no improvement for the
identification of Z bosons decaying to a pair of light-flavor quarks, a significant improvement
is observed for Z bosons decaying to a pair of b quarks, as well as t quark decays, showing the
strong complementarity between heavy-flavor identification and jet substructure for heavy-resonance
identification where heavy-flavor quarks are involved in the decay.

7.1 Robustness of tagging algorithms

In addition to the performance of the algorithms in pure discrimination, an important ingredient is
their robustness to changes in jet kinematics and data-taking conditions. To quantify this, we study
the εS and εB of the algorithms as a function of the pT of the generated particle and the number of
reconstructed vertices (NPV) in the event. For these studies, a common working point is defined,
corresponding to εS = 30 (50)% for t quark (W/Z/H boson) with 500 < pT(generated particle) <
600GeV. Working points used in CMS analyses vary from analysis to analysis, since they are
optimized to achieve the best sensitivity for the targeted signal processes. For example, CMS
employs a t quark tagging working point at approximately 40% signal efficiency in the search for
BSM tt production [56], a W tagging working point at approximately 20% signal efficiency in the
search for BSM diboson production [66], and an H tagging working point at approximately 30%
signal efficiency in the search for H boson pair production [99].

The distributions of the εS and εB as a function of pT of the generated particle for the different
particle identification scenarios are displayed in figures 16 and 17, respectively. In the low-pT range
for the t tagging case, the εS for the algorithms using AK8 jets increases rapidly until pT & 600GeV,
where a large fraction of jets contain all the t decay products. As expected, the N3-BDT (CA15)
and HOTVR algorithms have a stable εS as a function of the generator-level particle pT. Similar
behavior is observed for the t quark misidentification rate.

In the case of the W and Z boson tagging, the εS for the mSD + τ21 algorithm decreases as a
function of pT(generated particle), whereas the BEST, DeepAK8, and DeepAK8-MD algorithms
exhibit improvements in εS as a function of pT(generated particle). The drop in εS for mSD + τ21 is a
result of the correlation betweenmSD+τ21 and the jet pT, leading to a shift in the jet mass distribution
to higher values. ThemSD+N2 algorithm shows similar behavior to BEST andDeepAK8 algorithms,
whereas the εS in the case of mSD+NDDT

2 is stable as a function of pT(generated particle). In contrast
to N-subjettiness, the ECF observable uses an axis-free approach, which is more efficient in the
case of highly collimated decay products.

The misidentification rate has a nontrivial behavior for most algorithms. In the case of
DeepAK8 and DeepAK8-MD the εB value decreases with pT(generated particle), which is mainly
a result of the use of low-level features as inputs to the algorithm. For mSD + N2, the εB increases
with pT(generated particle), whereas for mSD + NDDT

2 , it is, by design, significantly more stable. In
the case of mSD + τ21, the decrease of εB as a function of pT(generated particle) is mainly caused by
the strong shift of the mSD shape of the background jets to larger values as a result of the selection
on τ21. This will be discussed in more detail in section 7.2. Finally, for the BEST, the εB decreases
up to pT(generated particle) ∼ 1000GeV, and then increases again. This is a feature of the training
of the BEST algorithm, stemming from an imbalance in the relative fraction of jets between the
low- and high-pT regimes.
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Figure 16. The efficiency εS as a function of the generated particle pT for a working point corresponding to
εS = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower
left: Z boson, lower right: H boson. The error bars represent the statistical uncertainty in each specific bin,
due to the limited number of simulated events. Additional fiducial selection criteria applied to the jets are
listed in the plots.

In the case of H tagging, the BEST and DeepAK8 algorithms have stable εS for
pT(generated particle) & 600GeV, whereas for the double-b algorithm the εS starts to decrease
around this pT regime. There are two main reasons for this behavior. First, the double-b al-
gorithm exploits axis-dependent observables, similar to τ21, which are less efficient at high pT
where the decay products become highly collimated. Second, the selection on the tracks used to
construct the variables used for the training of the double-b algorithm, discussed in section 6.4,
is suboptimal in the very high-pT regime. The efficiency εB for both double-b and DeepAK8
decreases as a function of pT(generated particle), whereas for BEST it shows a modest increase for
pT(generated particle) & 1000GeV, for the same reasons as in the W and Z boson tagging case.

The dependence of the algorithms on NPV is also examined using simulated events. Figure 18
shows the distribution of εS, and figure 19 that of εB, as a function of NPV for generated particles
with 500 < pT < 1000GeV, operating at a working point with εS = 30 (50)% for t quark (W/Z/H
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Figure 17. The distribution of εB as a function of the generated particle pT for a working point corresponding
to εS = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower
left: Z boson, lower right: H boson. The error bars represent the statistical uncertainty in each specific bin,
due to the limited number of simulated events. Additional fiducial selection criteria applied to the jets are
listed in the plots.

boson) identification as defined above. The algorithms make use of jets that employ PUPPI for
pileup mitigation, which results in a roughly constant εS and εB for all different pileup scenarios.

7.2 Correlation with jet mass

A set of studies was performed to understand the correlation of the algorithms with the jet mass.
This understanding benefits from the theoretical progress made in jet substructure studies [3], which
can result in reduced systematic uncertainties [15]. The jet mass is one of the most discriminating
variables, and many analyses require a smoothly falling background jet mass spectrum under a
signal peak (e.g., in ref. [100]). Figure 20 displays the normalized mSD distribution for jets obtained
from the QCD multijet sample, inclusively and after applying a selection with each algorithm.
The working point chosen corresponds to εS = 30 (50)% for t quark (W/Z/H boson). The results
are shown for one region of the generated particle pT distribution, but similar behavior is seen
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Figure 18. The efficiency εS as a function of the number of primary vertices (NPV) for generated particles
with 500 < pT < 1000GeV at a working point corresponding to εS = 30 (50)% for t quark (W/Z/H boson)
identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The
error bars represent the statistical uncertainty in each specific bin, due to a limited number of simulated
events. Additional fiducial selection criteria applied to the jets are listed in the plots.

for other pT regions as well. By design, the BEST and the nominal version of the DeepAK8
algorithms lead to significant sculpting of the background jet mass shape, but this does not affect
analyses unless the jet mass distribution is explicitly used in signal extraction, e.g., ref. [101]. An
alternative way of presenting the sculpting of the background jet mass introduced by each tagging
algorithm is displayed in figure 21. The figure shows the normalized ratio of the background jet
mass distributions for the passing and failing jets for each algorithm, after selecting a working point
corresponding to εS = 30 (50)% for t quark (W/Z/H boson). For the mass decorrelated versions of
the algorithms, the ratio typically shows very little dependence on mSD.

To quantify the level of mass sculpting we use the Jensen-Shannon divergence (JSD) [102],
which is a symmetrized version of the Kullback-Leibler divergence (KLD) [103], and provides a
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Figure 19. The efficiency εB as a function of the number of primary vertices (NPV) for generated particles
with 500 < pT < 1000GeV at a working point corresponding to εS = 30 (50)% for t quark (W/Z/H boson)
identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The
error bars represent the statistical uncertainty in each specific bin, due to the limited number of simulated
events. Additional fiducial selection criteria applied to the jets are listed in the plots.

metric for the similarity of the shape between distributions. The KLD is defined as:

KLD(P | |Q) =
∑
i

P(i)log10
P(i)
Q(i)

, (7.2)

where P(i) and Q(i) are the normalized mass distributions of the background jets that fail and pass
a selection with a given algorithm, respectively, and the symbol | | represents the divergence of P
from Q. The index i runs over the bins of the distributions.

The JSD metric is defined as:

JSD(P | |Q) =
1
2
(KLD(P | |M)) + KLD(Q | |M)), where M =

P +Q
2

. (7.3)

Lower values of JSD indicate larger similarity between the mass distributions of jets passing and
failing a selection on a given algorithm.
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Figure 20. The normalized mSD distribution for background QCD jets with 600 < pT < 1000GeV,
inclusively and after selection by each algorithm. The working point chosen corresponds to εS = 30
(εS = 50)% for t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower left:
Z boson, lower right: H boson. The error bars represent the statistical uncertainty in each specific bin, which
is related to the limited number of simulated events. Additional fiducial selection criteria applied to the jets
are listed on the plots.

In our studies, the jet mass distributions lay between 30 and 300GeV with a bin size of 10GeV.
The JSD values for successively tighter selections (expressed in terms of decreasing εB) for the
various t quark and W boson tagging algorithms are shown in figure 22. The best decorrelation
for the t tagging cases is achieved with the DeepAK8-MD algorithm, which exploits an adversarial
network to reduce the correlation of the tagging score with the jet mass. ForW tagging, mSD+NDDT

2
and DeepAK8-MD achieve similar levels of mass decorrelation. As expected, tighter selection on
the tagging score results in an increase of the mass sculpting. A similar behavior is observed for all
algorithms.

The robustness of the mass decorrelation techniques is further studied as a function of jet pT
and NPV. These studies are performed for a working point corresponding to εS = 30 (50)% for t
(W) tagging. Figure 23 shows the JSD values as a function of the jet pT for jets from QCD multijet
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Figure 21. Normalized ratio of the QCD background jet mass distribution for the passing and failing jets with
600 < pT < 1000GeV, by each algorithm. The working point chosen corresponds to εS = 30 (εS = 50)% for
t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower
right: H boson. The error bars represent the statistical uncertainty in each specific bin, which is related to
the limited number of simulated events. Additional fiducial selection criteria applied to the jets are listed on
the plots.

events. Most algorithms show modest dependence on jet pT, except for ImageTop-MD, where the
mass dependence increases rapidly when pT . 600GeV as the training was only performed for jets
with pT > 600GeV. The DeepAK8-MD and mSD + NDDT

2 algorithms for W tagging also show
modestly increased mass dependence in the pT range of 1200 and 1600GeV, respectively. The
dependence of the mass mitigation techniques on NPV was also studied and was small.

8 Performance in data and systematic uncertainties

In this section, the validation of the algorithms using data is presented. The validation is performed
in two steps. In the first step, we focus on studying the overall modeling of key variables in simulation
and their agreement with data, as well as the dependence on the simulation details. The second step
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QCD multijet events passing and failing the selection on the tagging algorithm. Additional fiducial selection
criteria applied to the jets are listed in the plots.
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Figure 23. The JSD, as a function of the jet pT for the various t (left) andW (right) tagging algorithms. Lower
values of JSD indicate larger similarity of the mSD in QCD multijet events passing and failing the selection
on the tagging algorithm. Additional fiducial selection criteria applied to the jets are listed in the plots.

is to use these results to extract corrections to the simulation so that the algorithms perform similarly
in simulation and data. Differences in the performance between data and simulation are corrected
by scale factors (SF) extracted by comparing the efficiencies in data and simulation. To account for
effects not captured in the SF, multiple sources of systematic uncertainties are considered. The data
and simulated samples used for these studies are described in section 5.

In this paper, we focus on the calibration of the t quark and W/Z boson tagging algorithms.
The calibration of tagging algorithms where Z and H bosons decay to a pair of bottom or charm
quarks requires alternative methods that go beyond the scope of this paper. Since it is challenging
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to obtain a pure Z or H boson sample, the calibration of such taggers relies on the use of a proxy jet,
i.e., a jet obtained in the dijet sample with characteristics similar to signal jets. Data-to-simulation
correction factors are extracted based on these proxy jets, which are then applied to signal jets.
Therefore, the proxy jets should be selected to have similar characteristics to the signal jets. To this
end, jets arising from gluon splitting to bb or cc are used as proxy jets from a sample dominated
by QCD multijet events. Such approaches have been followed in refs. [20, 81, 104].

8.1 Systematic uncertainties

A number of sources of systematic effects can affect the modeling of the performance of the algo-
rithms in data by the simulation. These include systematic uncertainties in the parton showering
model, renormalization and factorization scales, PDFs, jet energy scale and resolution, pmiss

T un-
clustered energy, trigger and lepton identification, pileup modeling, and integrated luminosity, as
well as statistical uncertainties of simulated samples.

Parton shower uncertainties for signal jets are evaluated using samples with the same event
generators but a different choice for the modeling of the parton showering. For background jets, a
sample produced using an alternative generator for both the hard scattering and the parton shower
is used. The details of the samples are discussed in section 3. Changes in renormalization (µR)
and factorization (µF ) scales are estimated by varying the scales separately by a factor of two up
and down, relative to the choices of the scale values used in the sample generation. The uncertainty
related to the choice of the PDFs is obtained from the standard deviation in 100 replicas of the
NNPDF3.0 PDF set [31]. The jet energy scale and resolution are changed within their pT- and η-
dependent uncertainties, based on the studies presented in ref. [51]. Their effects are also propagated
to pmiss

T . The effect of the uncertainty in themeasurement of the unclustered energy (i.e., contribution
of PF candidates not associated to any of the physics objects) is evaluated based on the momentum
resolution of each PF candidate, which depends on the type of the candidate [52]. Uncertainties in
the measurement of the trigger efficiency and in the energy/momentum scale and resolution of the
leptons are propagated in the SF extraction. The uncertainty in the pileup weighting procedure is
determined by varying the minimum bias cross section used to produce the pileup profile by ±5%
from the measured central value of 69.2 mb [105, 106]. The limited size of the simulated samples
and the size of the data control samples are also considered.

The uncertainties described above contribute in different ways to the modeling of jet kinematics
and the extraction of SF. Because many of the algorithms detailed in this paper use jet substructure
and jet constituent information, either directly or as input tomultivariate techniques, the uncertainties
in the choice of parton shower are significant. Different parton showers directly affect the number,
momentum, and distribution of jet constituents, influencing the observables used as inputs to
the multivariate techniques, and eventually propagating to the outputs of those algorithms. The
magnitude of this source of systematic uncertainty is from 10–30%. The uncertainty in the value of
µR and µF chosen for event generation also has a sizable impact (5–15%), because this changes the
amount of radiation that can enter into a reconstructed jet. These dominant components contribute
a total combined uncertainty of 10–50%, depending on the specific jet kinematics of interest.

Additional sources of systematic uncertainties, with smaller impact, are also considered. For
example, the trigger and lepton identification uncertainties are a few percent, and do not include
uncertainties in the kinematic distributions. The identification of leptons, especially muons, is
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nearly fully efficient, and the trigger is selected to ensure full efficiency in the regime of interest.
The jet energy scale and resolution uncertainties are similar, including shape components, and are
between 1 and 5% for the high-pT jets studied here. Uncertainties related to pileup modeling and
the integrated luminosity measurement have an effect smaller than 3%.

These uncertainties partially cancel in the SF measurement, as will be discussed in section 8.4.

8.2 The t quark and W boson identification performance in data

The single-µ event selection discussed in section 5.1 provides a sample dominated by semileptonic
tt events. One of the t quarks decays to a W b̃oson that decays leptonically (to pass the selection),
and the other provides a hadronic decay to be used in validating the algorithms.

To study possible dependence of the tagging efficiency on the parton showering scheme,
we consider two alternative simulated tt samples. As discussed in section 3, both samples are
generated with the same generator (i.e., powheg), but one uses pythia for the modeling of the
parton showering, whereas the other uses herwig++. The total SM expectation from simulation
using the latter tt sample will be referred to as “SM (Herwig)”. As we will see, the choice of the
parton showering generator has only a small impact on the overall agreement between data and
simulation in signal jets.

To account for the differences in the design of the algorithms, the large-R jets discussed in
section 5.1 are either AK8, CA15, or HOTVR jets. For brevity we focus mainly on results using
AK8 jets, unless otherwise stated, but similar conclusions can be drawn from all three jet collections.

The data-to-simulation comparisons of basic jet kinematic and substructure variables: pT(jet),
mSD, the N-subjettiness ratios τ32 and τ21, and the N2 and NDDT

2 , are shown in figure 24. Figure 25
displays the main observables of the HOTVR algorithm, mHOTVR, mmin,HOTVR and Nsub,HOTVR,
in data and simulation. The next set of comparisons includes tagging algorithms that are based
on high-level jet substructure observables and explore ML techniques to improve performance,
namely the BEST and the N3-BDT (CA15) algorithms. Figure 26 shows the t quark and W boson
identification probabilities of BEST and the t tagging discriminant for the N3-BDT (CA15), in
data and simulation. The last set of comparisons is related to the ImageTop and the DeepAK8
algorithms, which both explore lower-level observables. Figure 27 displays the distributions of the
t quark identification probability for the two versions of ImageTop, and the t quark and W boson
identification probabilities for DeepAK8 algorithms.

Because the selection applied to events shown in figures 24–27 results in a sample with low
purity of fully merged t quark decay products, we also study the same distributions after applying a
tighter requirement on the jet momenta: pT > 500GeV. This selection results in a sample consisting
of a higher fraction of fully merged t quark jets, relative to the jet component from the decay of a
boosted W boson jet. Figures 28–31 show the same distributions for this high-pT selection.

The total background yield is normalized to the observed number of data events. The systematic
uncertainties discussed in section 8.1 are also considered and are shown via the shaded dark-grey
band in the figures. Overall, the shapes in data are compatible with the expectation from simulation
within uncertainties for all the algorithms.
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Figure 24. Distribution of the jet pT (upper left), jet mass, mSD (upper right), the N-subjettiness ratios τ32
(middle left) and τ21 (middle right), and the N2 (lower left) and NDDT

2 (lower right) in data and simulation
in the single-µ signal sample. The pink line corresponds to the simulation distribution obtained using the
alternative tt sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the
total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation
ratio using the alternative tt sample, and the vertical black lines correspond to the statistical uncertainty of
the data. The vertical pink lines correspond to the statistical uncertainty of the alternative tt sample. The
distributions are weighted according to the top quark pT weighting procedure described in the text.
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Figure 25. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left), and Nsub,HOTVR (lower right) in data and simulation in the
single-µ signal sample. The pink line corresponds to the simulation distribution obtained using the alternative
tt sample. The background event yield is normalized to the total observed data yield. The lower panel shows
the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty
(statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio using the
alternative tt sample, and the vertical black lines correspond to the statistical uncertainty of the data. The
vertical pink lines correspond to the statistical uncertainty of the alternative tt sample. The distributions are
weighted according to the top quark pT weighting procedure described in the text.
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Figure 26. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-µ signal
sample. The pink line corresponds to the simulation distribution obtained using the alternative tt sample.
The background event yield is normalized to the total observed data yield. The lower panel shows the data to
simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical
uncertainty of the simulated samples), the pink line to the data to simulation ratio using the alternative tt
sample, and the vertical black lines correspond to the statistical uncertainty of the data. The vertical pink
lines correspond to the statistical uncertainty of the alternative tt sample. The distributions are weighted
according to the top quark pT weighting procedure described in the text.
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Figure 27. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-µ sample. The plots in the middle row show the t quark (left) andW boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding plots for
DeepAK8-MD are displayed in the lower row. The pink line corresponds to the simulation distribution
obtained using the alternative tt sample. The background event yield is normalized to the total observed data
yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band cor-
responds to the total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to
simulation ratio using the alternative tt sample, and the vertical black lines correspond to the statistical uncer-
tainty of the data. The vertical pink lines correspond to the statistical uncertainty of the alternative tt sample.
The distributions are weighted according to the top quark pT weighting procedure described in the text.

– 40 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

 [GeV]
T

jet p
1

10

210

310

410

510

610

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

500 600 700 800 900 1000 1100 1200
 [GeV]

T
jet p

0.5

1

1.5

ex
p

 / 
N

ob
s

N

 [GeV]sdm
1

10

210

310

410

510

610

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 50 100 150 200 250
 [GeV]sdm

0.5

1

1.5

ex
p

 / 
N

ob
s

N

32τ
1

10

210

310

410

510

610

710

810

910

1010

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

32τ

0.5

1

1.5

ex
p

 / 
N

ob
s

N

21τ
1

10

210

310

410

510

610

710

810

910

1010

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

21τ

0.5

1

1.5

ex
p

 / 
N

ob
s

N

2N
1

10

210

310

410

510

610

710

810

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

2N

0.5

1

1.5

ex
p

 / 
N

ob
s

N

DDT
2N

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ b
in  sampleµSingle-

AK8 jets

 > 500 GeV  jet

T
p

| < 2.4 jetη|

SM (Herwig)

Data
tt

Single t
QCD multijet
W+jets

Vtt
VV
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0.2− 0.1− 0 0.1 0.2 0.3
DDT
2N

0.5

1

1.5ex
p

 / 
N

ob
s

N

Figure 28. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios τ32
(middle left) and τ21 (middle right), and the N2 (lower left) and NDDT

2 (lower right) in data and simulation in
the single-µ signal sample after applying a jet momentum cut pT > 500GeV. The pink line corresponds to the
simulation distribution obtained using the alternative tt sample. The background event yield is normalized to
the total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 29. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
single-µ signal sample, after applying a jet momentum cut pT > 500GeV. The pink line corresponds to the
simulation distribution obtained using the alternative tt sample. The background event yield is normalized to
the total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 30. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-µ signal
sample, after applying a jet momentum cut pT > 500GeV. The pink line corresponds to the simulation
distribution obtained using the alternative tt sample. The background event yield is normalized to the total
observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 31. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-µ sample. The plots in the middle row show the t quark (left) andW boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm after applying a jet momentum
cut pT > 500GeV. The corresponding plots for DeepAK8-MD are displayed in the lower row. The pink line
corresponds to the simulation distribution obtained using the alternative tt sample. The background event
yield is normalized to the total observed data yield. The lower panel shows the data to simulation ratio.
The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of
the simulated samples), the pink line to the data to simulation ratio using the alternative tt sample, and the
vertical black lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond
to the statistical uncertainty of the alternative tt sample. The distributions are weighted according to the top
quark pT weighting procedure described in the text.
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8.3 Misidentification probability in data

The misidentification probability of the algorithms is studied in the dijet and single-γ data samples.
The two samples differ in the relative fraction of light-flavor quarks and gluons in the final state.
To study the dependence of the misidentification probability on the choice of the event generator
and the parton showering scheme, we consider two different simulated samples to model the QCD
multijet background. The nominal sample uses MadGraph for the event generation and pythia
(P8) for the parton showering and hadronization, whereas the alternative sample uses herwig++ for
event generation and the modeling of the parton showering. More information on the generation of
these samples is discussed in section 3. The total SM contribution estimated using the herwig++
QCD multijet sample is referred to as “SM (Herwig)”. As in section 8.2, we will focus on results
using jets with R = 0.8, unless otherwise stated. To account for possible differences in the pT
distribution of the QCD multijet and γ+jet simulated events, the total background yield is weighted
to match the pT distribution in data, following the procedure discussed in section 3.

The distributions of mSD, jet pT, the N-subjettiness ratios τ32 and τ21, and the N2 and NDDT
2 , in

the dijet sample are displayed in figure 32. For this event selection, the shapes of the mSD and the
N-subjettiness ratios are described well by simulation, whereas there is disagreement between data
and simulation for high values of N2 and NDDT

2 . A better description of the data, particularly for
NDDT

2 , is achieved with the herwig++ QCD multijet sample, which hints that the disagreement is
related to the description of the parton shower. For the other observables we observe similar level
of agreement between the two generators.

The same set of variables is presented in figure 33 for the single-γ sample. From previous
measurements [8], the mSD agrees very well with simulation except at low masses. The modeling
of the N-subjettiness and N2 ratios is poorer in the single-γ sample.

Figures 34 and 35 show the distribution of the main observables of the HOTVR algorithm,
namely mHOTVR, mmin,HOTVR, and Nsub,HOTVR, in data and simulation, in the dijet and single-γ
samples, respectively. In both samples, mHOTVR and mmin,HOTVR show good agreement between
data and simulation. The Nsub,HOTVR distribution in data is softer than in simulation. Similar
conclusions hold using herwig++ to simulate the QCD multijet events. The difference is more
pronounced in the single-γ sample. The Nsub,HOTVR is particularly sensitive to the precise modeling
of the parton showering.

The distribution of the t quark and W boson identification probabilities for BEST and the t
quark tagging discriminant for the N3-BDT (CA15) algorithm in the dijet sample are presented in
figure 36, and the equivalent plots for the single-γ selection are shown in figure 37. In both samples
the agreement between data and simulation is reasonable. Some disagreement is observed in the
very high values (&0.95) for the t quark identification probability of the BEST algorithm in the
single-γ sample. The disagreement is observed in the region of the t quark probability greater than
0.95, which is significantly higher than the recommended operating points. Some disagreement is
observed between the nominal QCD multijet simulated sample and the alternative sample for large
values of the W boson probability of the BEST algorithm, with the nominal sample showing better
agreement with the data.

The distributions of the ImageTop and DeepAK8 discriminants are shown in figures 38 and 39
for jets in the dijet and single-γ samples, respectively. The overall agreement between data and
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simulation in the single-γ is better than in the dijet sample. Moreover, the discrepancy in the shape
is mainly observed at the very low values of the discriminant and is more enhanced in the t tagging
case. The dijet sample is dominated by jets initiated by gluons, especially at low values of the
discriminant. In addition, ImageTop and DeepAK8 are very sensitive to mismodeling of quarks or
gluons in the simulation, and so exhibit more sample dependence. QCD multijet events simulated
using herwig++ generally show better agreement with the data.

8.4 Corrections to simulation

The measurement of the t quark and W boson tagging efficiencies in data are performed in the
single-µ sample using a “tag-and-probe” method [107]. The muon, in combination with the b-
tagged jet, is used as the “tag”. In the opposite hemisphere of the event, the jet is considered as the
“probe jet”.

The total SM sample is decomposed into three categories based on the spatial separation of the
partons from the t quark decay with respect to the AK8 jet, following the discussion in section 4.
The “Merged t quark” category includes cases where the three partons and the jet have ∆R < 0.6.
The “Merged W boson” category includes cases where only the two partons from the W boson
decay are within ∆R < 0.6 of the jet and the b quark from the top quark decay is outside the jet
cone. Any other topology falls in the “Nonmerged” category. In the cases of the HOTVR and
N3-BDT (CA15) algorithms, the matching requirement is adjusted from 0.6 to 1.2.

The jet mass distributions in simulation of each one of the three categories are used to derive
templates to fit the jet mass distribution in data. For a given working point, the fit is done for all
three categories simultaneously for both the “passing” and “failing” events. The fit is performed in
the range from 50 to 250GeV with a bin width of 10GeV. The sources of systematic uncertainties
discussed in section 8.1 are considered and are treated as nuisance parameters in the fit. After
calculating the efficiencies in data (εData) and simulation (εSimulation), the SF is determined as the
ratio of εData over εSimulation.

The SFs are extracted differentially in jet pT for the t quark and W boson tagging working
points discussed in section 7.1. For the case of t quark identification the following exclusive jet pT
regions are considered: 300–400, 400–480, 480–600, and 600–1200GeV. To increase the purity of
“MergedW boson” candidates, we consider regions with lower jet pT: 200–300, 300–400, 400–550,
and 550–800GeV. The effects of the systematic sources discussed in section 8.1 are propagated to
uncertainties in the SF. The mSD distributions after performing the maximum likelihood fit for data
and simulation in the passing and failing categories for DeepAK8-MD for 400 < pT < 480GeV
are displayed in figure 40.

The SFsmeasured for each of the t quark andW boson identification algorithms are summarized
in figure 41. The SFs are typically consistent with unity, within the uncertainties. The largest SF
is measured for the identification of t quarks using DeepAK8-MD. The statistical and parton
shower uncertainties dominate the SF measurement. The algorithms designed to avoid strong
dependence on the mass, such as the DeepAK8-MD, have typically smaller uncertainties than the
other algorithms. The effect of systematic uncertainties is more pronounced in algorithms that
utilize a larger set of observables to increase discrimination power. These algorithms (i.e., BEST,
ImageTop, and DeepAK8) are more sensitive to the simulation details. The features are more
evident in the W boson case, due to the larger sample size of the “Merged W boson” category
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Figure 32. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios
τ32 (middle left) and τ21 (middle right), and the N2 (lower left) and NDDT

2 (lower right) in data and simulation
in the dijet sample. The pink line corresponds to the simulation distribution obtained using the alternative
QCD multijet sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the
total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio
using the alternative QCDmultijet sample, and the vertical black lines correspond to the statistical uncertainty
of the data. The vertical pink lines correspond to the statistical uncertainty of the alternative QCD multijet
sample. The distributions are weighted so that the jet pT distribution of the simulation matches the data.
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Figure 33. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios
τ32 (middle left) and τ21 (middle right), and the N2 (lower left) and NDDT

2 (lower right) in data and simulation
in the single-γ sample. The background event yield is normalized to the total observed data yield. The
lower panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds
to the total uncertainty (statistical uncertainty of the simulated samples), and the vertical lines correspond
to the statistical uncertainty of the data. The distributions are weighted so that the jet pT distribution of the
simulation matches the data.
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Figure 34. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
dijet sample. The pink line corresponds to the simulation distribution obtained using the alternative QCD
multijet sample. The background event yield is normalized to the total observed data yield. The lower panel
shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total
uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio using
the alternative QCD multijet sample, and the vertical black lines correspond to the statistical uncertainty of
the data. The vertical pink lines correspond to the statistical uncertainty of the alternative QCD multijet
sample. The distributions are weighted so that the jet pT distribution of the simulation matches the data.
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Figure 35. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
single-γ sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to
the total uncertainty (statistical uncertainty of the simulated samples), and the vertical lines correspond to
the statistical uncertainty of the data. The distributions are weighted so that the jet pT distribution of the
simulation matches the data.

compared to the “Merged t quark” category, which allows for more precise comparisons due to
increased number of events.

The misidentification rate as a function of the jet pT, is displayed in figures 42 and 43 for the
t and W tagging algorithms. To study the dependence of the misidentification probability on the
matrix element generator, and on the parton showering, we use an additional simulation sample for
the QCD multijet background, which uses herwig++ for both the hard scattering generation and
parton showering. In some cases, the misidentification probabilities show a significant dependence
(up to∼25%) on the simulation details, particularly for the ImageTop andDeepAK8 algorithms. The
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Figure 36. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the dijet sample.
The background event yield is normalized to the total observed data yield. The pink line corresponds to
the simulation distribution obtained using the alternative QCD multijet sample. The background event yield
is normalized to the total observed data yield. The lower panel shows the data to simulation ratio. The
solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of the
simulated samples), the pink line to the data to simulation ratio using the alternative QCDmultijet sample, and
the vertical black lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond
to the statistical uncertainty of the alternative QCD multijet sample. The distributions are weighted so that
the jet pT distribution of the simulation matches the data.
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Figure 37. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities for
the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-γ sample.
The background event yield is normalized to the total observed data yield. The background event yield is
normalized to the total observed data yield. The lower panel shows the data to simulation ratio. The solid
dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated
samples), and the vertical lines correspond to the statistical uncertainty of the data. The distributions are
weighted so that the jet pT distribution of the simulation matches the data.

main source of this dependence is the description of gluon content; these are the only algorithms that
have access to quark-gluon separation to improve the performance. Differences in the quark/gluon
content can have large effects on the uncertainties.

Themisidentification probability is also studied in the single-γ sample. Overall the performance
in data and simulation agrees better in this sample than in the dijet sample. This can be attributed
to the fact that the single-γ sample has a larger fraction of light-flavor quarks, which are better
modeled in simulation [18].
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Figure 38. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the dijet sample. The plots in the middle row show the t quark (left) and W boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding plots for
DeepAK8-MD are displayed in the lower row. The pink line corresponds to the simulation distribution
obtained using the alternative QCD multijet sample. The background event yield is normalized to the total
observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative QCD multijet sample, and the vertical black
lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical
uncertainty of the alternative QCD multijet sample. The distributions are weighted so that the jet pT
distribution of the simulation matches the data.

– 53 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

ImageTop (t vs. QCD)
1

10

210

310

410

510

610

710

810

910

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ImageTop (t vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

ImageTop-MD (t vs. QCD)
1

10

210

310

410

510

610

710

810

910

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ImageTop-MD (t vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

DeepAK8 (t vs. QCD)
1

10

210

310

410

510

610

710

810

910

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DeepAK8 (t vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

DeepAK8 (W vs. QCD)
1

10

210

310

410

510

610

710

810

910

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DeepAK8 (W vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

DeepAK8-MD (t vs. QCD)
1

10

210

310

410

510

610

710

810

910

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

DeepAK8-MD (t vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

DeepAK8-MD (W vs. QCD)
1

10

210

310

410

510

610

710

810

910

1010

1110

E
ve

nt
s 

/ b
in  sampleγSingle-

AK8 jets

 > 200 GeV  jet

T
p

| < 2.4 jetη|

Data
+jetsγ

QCD multijet
γV

γ)tt(t
Bkg unc (stat)
Bkg unc (stat+syst)

CMS

 (13 TeV)-135.9 fb

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
DeepAK8-MD (W vs. QCD)

0.5

1

1.5

ex
p

 / 
N

ob
s

N

Figure 39. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-γ sample. The plots in the middle row show the t quark (left) and W boson
(right) identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding
plots for DeepAK8-MD are displayed in the lower row. The background event yield is normalized to the
total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), and
the vertical lines correspond to the statistical uncertainty of the data. The distributions are weighted so that
the jet pT distribution of the simulation matches the data.
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Figure 40. The mSD distribution in data and simulation in the passing (left) and failing (right) categories for
DeepAK8-MD for the jet pT in the 400–800GeV range. The solid lines correspond to the contribution of
each category after performing the maximum likelihood fit as described in the text. The dashed lines are the
expectation from simulation before the fit. The lower panel shows the data to simulation ratio. The vertical
black lines correspond to the total uncertainty, including the statistical uncertainty of the data, after the fit.
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identification algorithms. The markers correspond to the SF value, the error bars to the statistical uncertainty
on the SF measurement, and the band is the total uncertainty, including the systematic component.

– 56 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

300-400 400-480 480-600 600-1200
 [GeV]

T
jet p

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
F

32
τ+SDm +b

32
τ+

SD
m

HOTVR -BDT (CA15)3N

BEST ImageTop

ImageTop-MD DeepAK8

DeepAK8-MD

CMS

 (13 TeV)-135.9 fb

Dijet sample

QCD multijet: MG+P8
Top quark tagging

300-400 400-480 480-600 600-1200
 [GeV]

T
jet p

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
F

32
τ+SDm +b

32
τ+

SD
m

HOTVR -BDT (CA15)3N

BEST ImageTop

ImageTop-MD DeepAK8

DeepAK8-MD

CMS

 (13 TeV)-135.9 fb

Dijet sample

QCD multijet: Herwig
Top quark tagging

300-400 400-480 480-600 600-1200
 [GeV]

T
jet p

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
F

32
τ+SDm +b

32
τ+

SD
m

HOTVR -BDT (CA15)3N

BEST ImageTop

ImageTop-MD DeepAK8

DeepAK8-MD

CMS

 (13 TeV)-135.9 fb

 sampleγSingle-
Top quark tagging

Figure 42. The ratio of the misidentification rate of t quarks in data and simulation in the dijet (upper and
middle rows) and the single-γ (lower row) samples. The QCDmultijet process is simulated usingMadGraph
for the hard process and pythia for parton showering (upper) and herwig++ for both (middle). The vertical
lines correspond to the statistical uncertainty of the data and the simulated samples.
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Figure 43. The ratio of the misidentification rate of W bosons in data and simulation in the dijet (upper and
middle rows) and the single-γ (lower row) samples. The QCDmultijet process is simulated usingMadGraph
for the hard process and pythia for parton showering (upper) and herwig++ for both (middle). The vertical
lines correspond to the statistical uncertainty of the data and the simulated samples.
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9 Summary

A review of the heavy-object tagging methods recently developed in CMS has been presented.
The variety of tagging strategies is diverse, including algorithms based on more traditional theory-
inspired high-level per-jet observables with and without multivariate techniques, as well as methods
based on lower-level information from individual particles. New tagging approaches, such as the
Energy Correlation Functions (ECF) tagger and the Boosted Event Shape Tagger (BEST), utilize
multivariate methods (i.e., boosted decision trees and deep neural networks) on physically motivated
high-level observables and attain enhanced performance. Two novel tagging algorithms, ImageTop
and DeepAK8, are developed based on candidate-level information, allowing the exploitation of
more information, where lower-level information is processed using advanced machine-learning
methods. Moreover, the BEST and DeepAK8 algorithms are developed to provide multi-class
tagging capabilities. Finally, dedicated versions of the algorithms that are only weakly correlated
with the jet mass are developed. Such tools are particularly important for analyses that rely on the
jet mass sidebands to estimate the background contribution under the heavy resonance mass. The
mass-decorrelated algorithms (mSD + NDDT

2 , ImageTop-MD, and DeepAK8-MD) typically show
weaker discriminating power than their counterparts. However, they can yield better sensitivity in
some physics analyses because of smaller uncertainties in background estimations.

The performances of the various tagging algorithms are directly compared using simulation in
a jet pT range from 200 to 2000GeV. Overall, the application of machine-learning techniques for
jet tagging shows strong improvement compared to cutoff-based methods. The approaches based
on low-level information yield the best performance, with as much as an order of magnitude gain
in background rejection for the same signal efficiency. Another important aspect essential for the
application of the new techniques in physics analysis is the systematic uncertainties associated to
each algorithm. Those based on low-level features and advanced machine-learning techniques are
typically prone to larger systematic uncertainties. However, these uncertainties are usually small
enough to preserve the significant improvements observed. The techniques have also been validated
in collision data, with scale factors extracted, including systematic uncertainties. The performances
of these tagging algorithms are in good agreement between data and simulation.
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