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The dynamical generation of right-handed-neutrino (RHN) masses in the early Universe naturally
entails the formation of cosmic strings that give rise to an observable signal in gravitational waves
(GWs). Here, we show that a characteristic break in the GW spectrum would provide evidence for a
new stage in the cosmological expansion history and a suppression of the RHN mass scale compared
to the scale of spontaneous symmetry breaking. The detection of such a spectral feature would thus
represent a novel and unique possibility to probe the physics of RHN mass generation in regions of
parameter space that allow for low-scale leptogenesis in accord with electroweak naturalness.

Introduction. The seesaw mechanism [1–5] resolves two
puzzles of physics beyond the Standard Model (SM) at
the same time: neutrino oscillations [6] and the baryon
asymmetry of the Universe [7]. At its core, it is based on
an extension of the SM by a set of right-handed neutri-
nos (RHNs) Ni that do not carry any SM gauge charge
and that possess (potentially very large) lepton-number-
violating Majorana masses Mi. These sterile neutrinos
induce small Majorana masses for the active SM neutri-
nos, which explains their flavor oscillations, while RHN
decays or oscillations in the early Universe can create a
primordial baryon asymmetry via leptogenesis [8, 9].

The Majorana masses Mi are free input parameters of
the seesaw mechanism, which raises the question of their
origin at high energies. An attractive ultraviolet comple-
tion of the seesaw model consists in promoting the differ-
ence of baryon number B and lepton number L, which is
an accidental global symmetry of the SM, to a new gauge
symmetry, U(1)B−L [10–12], such that the RHNs acquire
their mass in consequence of the spontaneous breaking of
this symmetry. This scenario also sets the stage for em-
bedding the seesaw mechanism in grand unified theories
(GUTs) that feature the product of U(1)B−L and the SM
gauge group GSM = SU(3)C×SU(2)L×U(1)Y as a sub-
group of the GUT gauge group, GGUT ⊃ GSM×U(1)B−L.

Most of the seesaw parameter space is hard to test in
terrestrial experiments because the RHNs are either too
heavy or too weakly coupled [13]. It is therefore remark-
able that a high B−L breaking scale can still be probed by
a different observable — primordial gravitational waves
(GWs) [14, 15]. In recent years, it has been realized that
the spontaneous breaking of U(1)B−L during a cosmolog-
ical phase transition in the early Universe easily results in
a strong GW signal. This was first demonstrated in [16]
(see [17] for an update), which considered a second-order
B−L phase transition after cosmic inflation [18–25], and
more recently revisited in a more general context in [26].
The scenarios described in [16, 17, 26] share the common
property that the spontaneous breaking of U(1)B−L re-
sults in a network of local cosmic strings that emit a large
stochastic GW background [27] (see [28] for a review).
Alternatively, the B−L phase transition itself can result

in an observable GW signal if it is of first order [29–32]
and especially in the classically conformal limit [33–37].
In this case, future GW experiments will be able to probe
the B−L breaking scale up to vB−L ∼ 109 GeV, assuming
a strongly supercooled phase transition [33, 36]. Mean-
while, the complementary range all the way up to the uni-
fication scale, 109 GeV . vB−L . 1016 GeV, is expected
to yield a strong GW signal from cosmic strings [26].

A potential drawback of high-scale B−L breaking is
that it may aggravate the SM hierarchy problem. Indeed,
RHN threshold corrections to the mass of the SM Higgs
boson h spoil electroweak (EW) naturalness for RHN
masses larger than Mi ∼ 107 GeV [38, 39] (see also [40–
43]). In absence of any additional cancellation mecha-
nism, there are two ways out of this problem: (i) Regard-
ing vB−L as an independent input scale, one may simply
assume it to be small enough, so that Mi . 107 GeV for
all RHNs. (ii) Insisting on a large vB−L value, as moti-
vated by grand unification, one may assume a parametric
suppression of the RHN mass scale compared to the scale
of B−L breaking by means of small Yukawa couplings.

In this paper, we will follow the second approach and
scrutinize the resulting cosmic-string-induced GW sig-
nal. In particular, we will argue that the detection of a
characteristic break in the GW spectrum would point to
a new stage in the cosmological expansion history and
hence provide evidence for high-scale B−L breaking,
vB−L & 109 GeV, together with light RHN masses in ac-
cord with EW naturalness, Mi . 107 GeV. An important
outcome of our analysis is that the GW spectral index is
expected to change from ngw ' 0 to ngw ' −1/3, which
deviates from earlier results in the literature and which
holds for a broad class of modified early-Universe scenar-
ios, including nonstandard matter domination. In addi-
tion, we study a concrete and minimal particle physics
model, the minimal gauged B−L model, which already
contains all the necessary ingredients. For this model,
we show that the break in the GW spectrum encodes in-
formation — not only on the B−L breaking scale — but
also on the RHN mass scale. Future GW experiments will
thus be able to probe RHN masses relevant for leptogene-
sis at intermediate and low energies (see, e.g., [9, 44–55]).
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Break in the gravitational-wave spectrum. We be-
gin with a model-independent argument based on two as-
sumptions: (i) The symmetry-breaking phase transition
is of second order and (ii) the symmetry-breaking scalar
field φ has a long lifetime tφ. In this case, φ will coher-
ently oscillate for a long time after the phase transition
around the true, symmetry-breaking vacuum, and the en-
ergy density stored in these oscillations, ρφ, will redshift
like pressureless dust. ρφ will in particular be diluted less
fast than the energy density of the radiation background,
ρrad, such that it may become the dominant form of en-
ergy in the Universe at some time t < tφ. As we will
show below, such a nonstandard era of matter domina-
tion, or scalar era, results in a characteristic break in the
cosmic-string-induced GW spectrum. The observation of
this break would thus allow one to reconstruct the expan-
sion history of the Universe and infer the presence of a
long-lived, i.e., weakly coupled scalar field (see [56–63]
for related work on using GWs for cosmic archaeology).
This in turn would point toward a parametric separation
between the scale of symmetry breaking (which must be
large, otherwise we would not observe any signal) and the
mass scale of the particles that become massive during
the phase transition (which must be small, otherwise φ
would be too short-lived). In the context of the seesaw
model, the break in the GW spectrum would therefore be
a sufficient indication allowing one to claim a low RHN
mass scale in agreement with EW naturalness and low-
scale leptogenesis. Meanwhile, it does not constitute a
necessary requirement. If no break should be detected,
the RHN mass scale may or may not be suppressed. In
this case, one would simply have to assume that the field
φ possesses at least one fast decay channel.

Let us now study the GW signal in more detail. We will
follow [28, 56, 57] and compute the GW energy density
spectrum Ωgw based on the analytic velocity-dependent
one-scale model for cosmic strings [64–67] (see also [68]),

Ωgw (f) =
∞∑
k=1

Ω(k)
gw (f) =

8π

3H2
0

(Gµ)
2
f
∞∑
k=1

CkPk . (1)

Here, H0 ' 67 km/s/Mpc [7] is the current Hubble rate;
G is Newton’s constant; µ is the cosmic-string tension;
k counts the harmonic excitations of cosmic-string loops;
and Pk = Γ/kq/ζ (q) is the corresponding averaged power
spectrum for GWs emitted by cusps propagating along
cosmic-string loops (q = 4/3). The normalization of Pk
is fixed by the total emitted power Γ =

∑
k Pk, which

follows from numerical simulations, Γ ' 50 [69, 70]. The
function Ck represents an integral from the onset of the
cosmic-string scaling regime, tscl, to the present time t0,

Ck (f) =
2k

f2

∫ t0

tscl

dt θ (tk − tscl)

(
a (t)

a (t0)

)5

n (`k, t) , (2)

where a denotes the cosmic scale factor; tk is the time
when the loops that contribute to the present-day GW

TABLE I: Benchmark scenarios highlighted in Figs. 1 and 2.
vB−L, mN , mφ, and Γφ are stated in units of GeV.

gB−L vB−L mN mφ Γφ Gµ

BP1 10−4 4× 1013 2 2× 106 3× 10−22 3× 10−12

BP2 10−3 5× 1012 5 2× 107 1× 10−18 6× 10−14

BP3 10−2 3× 1013 200 2× 1010 2× 10−13 6× 10−12

frequency f via their kth harmonic mode were formed,

tk =
`k/t+ ΓGµ

α+ ΓGµ
t , `k =

2k

f

a (t)

a (t0)
; (3)

and n is the number of loops per volume and unit length,

n (`k, t) =
F

t4k

(
a (tk)

a (t)

)3
Ceff (tk)

α (α+ ΓGµ)
. (4)

F = 0.1 is an efficiency factor [69, 71]; α = `k/tk char-
acterizes the loop size at the time of formation (be-
low, we will use the characteristic value α = 0.1); and
Ceff distinguishes between loops formed during radiation
(Ceff ' 5.4) and matter (Ceff ' 0.39) domination. Be-
low, we will simply switch between these discrete values
for Ceff whenever the dominant form of energy changes.

Next, let us analyze the shape of the GW spectrum.
The spectrum emitted by the fundamental mode of each
cosmic-string loop, k = 1, in the presence of a nonstan-
dard scalar era was investigated in [28, 56, 57, 62, 63],

Ω(1)
gw (f) ∼ Ωplt

gw

(
f

fbrk

)ngw

, (5)

with ngw ' 0 for f . fbrk and ngw ' −1 for f & fbrk.
The spectrum hence features a more or less flat plateau,

Ωplt
gw ∼

10−3

ζ (q)

(
α

0.1

)1/2(
Gµ

Γ

)1/2

, (6)

up to a characteristic break in the spectrum located at

fbrk '
(

8 zeq teq

αΓGµ tend

)1/2
1

t0
, (7)

where teq and zeq denote the redshift and time at stan-
dard matter–radiation equality, and where tend marks the
end of the scalar era. In our case, we have tend ' tφ '
1/Γφ, with Γφ being the decay rate of the scalar field φ.

Eq. (5), and in particular the GW spectral index ngw,
are nontrivially modified by the GW emission from the
higher cosmic-string modes. First of all, we note that

Ω(k)
gw (f) =

1

kq
Ω(1)

gw

(
f

k

)
. (8)

Then, if we only sum up the approximately flat parts of
the individual spectra, neglecting the 1/f tails, we find

Ωgw (f) ∼ Ωplt
gw

∞∑
k=m

1

kq
= Ωplt

gw ζ (q,m) , (9)
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FIG. 1: Scalar era after the B−L phase transition. Left: Evolution of the scalar-field and radiation energy densities. Middle:
GW spectra and experimental sensitivities. Right : Bounds and projected sensitivities in the Γφ–Gµ plane. See text and Tab. I.

where m is the first integer that is larger than f/fbrk,
and where ζ (q,m) denotes the Hurwitz zeta function.
At large frequencies, f � fbrk, we therefore obtain

Ωgw (f) ∼ 3 Ωplt
gw

(
f

fbrk

)−1/3 [
1 +O

(
fbrk

f

)]
. (10)

This is our first main result. Including the contributions
to the GW spectrum from all harmonic modes, one finds
that ngw changes in fact from ngw ' 0 to ngw ' −1/3
around fbrk. We also argue that our result can be gener-
alized to any k = 1 GW spectrum that falls off faster than
f−1/3 at high frequencies. In this case, the sum of the
individual flat contributions will always represent an irre-
ducible background with a spectral index of ngw ' −1/3
(see also the discussion on GWs diluted during inflation
in [72, 73]). This is also illustrated in Fig. 1, where
we compare the GW spectra for three benchmark points
(BPs) in the minimal gauged B−L model (see Tab. I and
below) based on the full expression in Eq. (1) with the
power-law-integrated sensitivity curves of three future
GW experiments [74]: Cosmic Explorer (CE) [75, 76], the
Deci-Hertz Interferometer Gravitational-Wave Observa-
tory (DECIGO) [77, 78], and the Laser Interferometer
Space Antenna (LISA) [79, 80] (see [81] for details).

In the right panel of Fig. 1, we indicate where in the
Γφ–Gµ plane we expect CE, DECIGO, and LISA to re-
spectively observe a break in the flat part of the GW
spectrum. An analysis of nonstandard features in the
nonflat part, where the GW spectrum is affected by the
standard radiation–matter transition in the early Uni-
verse, is left for future work. We also include upper
bounds on Gµ from observations of the cosmic microwave
background (CMB), Gµ . 10−7 [82–84], as well as from
pulsar timing array (PTA) data, Gµ . 2×10−11 [85, 86].
These bounds only apply when the cosmic strings are
topologically stable, which may no longer be the case
when GSM×U(1)B−L is embedded in a semisimple GUT
group at high energies [87, 88] (see [17, 26] for details).

Minimal gauged B−L model. The scenario described
in the previous section is already realized in a minimal
SM extension. To see this, we extend GSM by a U(1)B−L
factor and supplement the SM particle content by: the
B−L vector boson Z ′ with gauge coupling gB−L, a com-
plex symmetry-breaking scalar field Φ = φ/

√
2 eiθ with

B−L charge qφ = −2 and vanishing SM charges, and
three sterile RHNs Ni (i = 1, 2, 3) with universal B−L
charge qN = −1. The new interaction Lagrangian reads

∆L =−
[
yD
iαN

R
i H̃

†Lα +
1

2
yM
i ΦNR

i

(
NR
i

)C
+ H.c.

]
−
[
λφ

(
|Φ|2 − 1

2
v2
B−L

)2

+ λφh |Φ|2 |H|2
]
. (11)

Below, we will assume yM
i ' yN for all i, which translates

to Mi = yM
i /
√

2 vB−L ' mN after B−L breaking. This
will simplify our analysis and is consistent with the notion
of resonant leptogenesis at low energies [44, 45].

The Lagrangian in Eq. (11) can also be regarded as a
particular, extended version of the Abelian Higgs model.
Upon spontaneous symmetry breaking, it thus results in
the formation of local cosmic strings with tension [89, 90]

Gµ =
πv2

B−L
8πM2

Pl

B (β) , β =
λφ

2 g2
B−L

, (12)

where MPl = (8πG)−1/2 ' 2.44 × 1018 GeV denotes the
reduced Planck mass, and where B ∼ 0.1 [91]. Our anal-
ysis is based on the assumption that the dynamics of
cosmic strings is well described by the Nambu–Goto ac-
tion, which increases the strength of the predicted GW
signal (see the discussion in [28] and references therein).

In order to study the B−L phase transition, we now
compute the effective potential Veff (φ, T ) (see [92] for a
review), including the Coleman-Weinberg potential [93],
finite-temperature corrections at one-loop order [94], and
higher-order terms via a resummation of ring terms [95].
We assume that the Universe is reheated to a large tem-
perature Trh after inflation, such that U(1)B−L is initially
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FIG. 2: Regions in the mN– vB−L plane where the break in the GW spectrum can be observed by CE, DECIGO, and LISA;
for λφ = 4πg4B−L and gB−L = 10−4 (left), 10−3 (middle), 10−2 (right). Whenever φ → NiNi remains the dominant decay
channel, arbitrary λφ values, g4B−L/

(
16π2

)
� λφ � g2B−L, lead to the same results as long as the horizontal axis is rescaled as

mN → (4πg4B−L/λφ)1/4mN . This introduces an uncertainty in mN of a factor of 50, 20, 5 for gB−L = 10−4,−3,−2, respectively.

unbroken and the expansion driven by radiation. At early
times, the scalar field is hence stabilized at the origin by
its thermal mass, m2

φ,eff (T ) = ∂2
φ Veff (φ, T ) > 0. In the

scenario that we are interested in, the B−L phase tran-
sition is of second order. The field φ therefore begins to
evolve when its thermal mass flips sign, m2

φ,eff (Tc) = 0, at
some critical temperature Tc. At this moment, it begins
to roll down the effective potential and oscillate around
the true vacuum. After a few oscillations, the scalar-field
energy density ρφ behaves like the energy density of or-
dinary matter, which allows us to model the subsequent
evolution by the following set of Boltzmann equations,

ρ̇φ (t) + 3H (t) ρφ (t) =− Γφ ρφ (t) , (13)

ρ̇rad (t) + 4H (t) ρrad (t) = + Γφ ρrad (t) , (14)

where the Hubble rate H satisfies the Friedmann equa-
tion, 3M2

PlH
2 = ρφ+ρrad. The initial energy densities at

Tc are ρφ (Tc) = Veff (0, Tc) and ρrad (Tc) = π2/30 g∗T
4
c ,

where g∗ = 116 in the minimal gauged B−L model.
The solution of Eqs. (13) and (14) for BP1 is shown in

Fig. 1, which illustrates several features of our scenario:
(i) In the parameter region of interest, Veff (0, T ) is always
subdominant compared to the radiation energy density
at T ≥ Tc. We therefore never encounter a second period
of inflation. (ii) The onset of the scalar era always only
occurs after a large number of oscillations. There is hence
no need to time-resolve the dynamics of the phase tran-
sition in more detail. (iii) The scalar field always safely
decays before big-bang nucleosynthesis (BBN) [96].

Our scenario builds upon the assumption that the
scalar decay rate is much smaller than the scalar mass,
Γφ � mφ. To ensure that this condition is fulfilled,
we perform a careful study of all possible φ decay chan-
nels, including higher-order radiative corrections. We are
thus able to identify the following viable parameter space:
(i) In order to suppress φ→ Z ′Z ′ decays (on or off shell),

we require λφ � g2
B−L, which makes φ parametrically

lighter than the Z ′ boson [97]. For definiteness, we set
λφ = 4πg4

B−L, which ensures that λφ is stable against
radiative corrections, which are of order g4

B−L/(16π2).
(ii) In order to suppress φ → NiNi decays, we require
small RHN Yukawa couplings, yN . 10−7. In fact, this
is also necessary to minimize the radiative corrections
to the portal coupling λφh, which would otherwise in-
duce fast φ → hh decays. (iii) For the same reason,
we need to choose a small portal coupling at tree level.
This choice, however, is well motivated by EW natural-
ness. For simplicity, we therefore assume the Φ and H
sectors to be sequestered at tree level, such that the por-
tal coupling between them is only generated at one loop,
λφh ∼ (yM

i )2(yD
iα)2/(16π2), which is small enough to keep

the radiative corrections to the Higgs mass under control.
The parameter space defined by these three conditions

is radiatively stable and technically natural. The remain-
ing free parameters are gB−L, vB−L, and mN . In Fig. 2,
we present a scan over these parameters indicating the
regions for which we expect the break in the GW spec-
trum at frequency fbrk and amplitude Ωgw (fbrk) to be
within the sensitivity reach of CE, DECIGO, and LISA,
respectively. Here, we go beyond Eq. (7) and compute
fbrk based on the numerical solutions of Eqs. (13) and
(14) as the frequency that satisfies t1 (f) = tend [57]. We
also check that the phase transition is always of second
order. In particular, we confirm that any thermal barrier
in the scalar potential that could in principle lead to a
first-order phase transition is always very short-lived.

An important result of our parameter scan is that Γφ
is mostly dominated by the φ→ NiNi partial width,

Γ (φ→ NiNi) '
3 y2

N

32π
mφ . (15)

In Fig. 2, this is everywhere the case where the Γφ con-
tours vary with the RHN mass scale mN . Only for large
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gauge coupling and small RHN masses, we find a differ-
ent dominant decay channel — the radiative three-body
decay into a SM fermion pair ff̄ and a SM gauge boson
V = {γ, Z,W, g} via a Z ′Z ′f one-loop triangle diagram,

Γ
(
φ→ ff̄ V

)
∼ 10−8 λφ g

4
B−Lmφ . (16)

We use the software tool Package-X [98] to confirm that
this channel dominates over the corresponding φ → ff̄
two-body decay, which is suppressed by a factor m2

f/m
2
Z′

due to a chirality flip (see also [99] for a similar effect).

Conclusions. Leptogenesis at low and intermediate en-
ergy scales provides an attractive baryogenesis scenario
that relates the origin of the matter–antimatter asymme-
try to new physics in the neutrino sector and that is at
the same time in accord with the concept of EW natu-
ralness. In this paper, we presented a unique possibility
to test this scenario via observations of the stochastic
GW background that originates from a network of cos-
mic strings after the cosmological breaking of a U(1)B−L
gauge symmetry. We argued that detecting a character-
istically shaped break in the GW spectrum would repre-
sent a smoking gun for a scalar era after the B−L phase
transition driven by a weakly coupled symmetry-breaking
scalar field. Such a detection would provide a handle on
two fundamental energy scales: the energy scale of spon-
taneous B−L breaking and the mass scale of the RHNs
that become massive during the B−L phase transition.

The physical picture sketched in this paper is straight-
forwardly realized in the minimal gauged B−L model, for
which we found that a large fraction of the viable param-
eter space will be probed in future GW experiments (see
Fig. 2). Our general guiding principles, however — high-
scale B−L breaking as motivated by grand unification
and low-scale leptogenesis as motivated by EW natural-
ness — extend beyond this concrete model and call for
further investigations of the expected GW spectrum.

Note added. After the completion of this work, the
NANOGrav pulsar timing experiment reported on strong
evidence for a new stochastic common-spectrum process
in their 12.5-year data set [100]. This signal is consis-
tent with an interpretation in terms of nanohertz gravi-
tational waves from a network of cosmic B−L strings with
a tension of around Gµ ∼ 10−10, if α = 0.1 [101, 102].
For smaller values of α, or assuming metastable cosmic
strings, even larger values of Gµ are possible [102, 103]. If
confirmed in the future, the NANOGrav signal indicates
that LISA, DECIGO, and CE will have excellent chances
to chart the cosmic-string-induced GW spectrum, includ-
ing the characteristic features discussed in this paper.
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