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We explore the complementarity between LHC searches and neutrino experiments in probing neutrino 
non-standard interactions. Our study spans the theoretical frameworks of effective field theory, simplified 
model and an illustrative UV completion, highlighting the synergies and distinctive features in all cases. 
We show that besides constraining the allowed NSI parameter space, the LHC data can break important 
degeneracies present in oscillation experiments such as DUNE, while the latter play an important role in 
probing light and weakly coupled physics undetectable at the LHC.
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1. Introduction

In spite of its vast success, the Standard Model (SM) does not 
shed any light on the origin of neutrino masses. Overwhelming ex-
perimental evidence has shown that neutrinos of different flavors 
oscillate among one another, which cannot occur without small 
neutrino masses. New physics is necessary for generating such 
masses, and thus the study of neutrinos offers a promising win-
dow for physics beyond the Standard Model.

The new physics associated with neutrino masses can lie in a 
vast range of energy scales: from sub-GeV to the TeV region, even 
reaching unification scales of order 1014 GeV. This poses a phe-
nomenological challenge that should be addressed with multiple 
experiments probing different energy scales, and in combination 
with suitable theoretical frameworks. For instance, neutrino Non-
Standard Interactions (NSI) with matter can change the neutrino 
oscillation probabilities [1], where the momentum transfer is neg-
ligible, q2 → 0 (for a summary of current status of NSI see Ref. [2]). 
Therefore, the impact of new physics in oscillation experiments is 
well described by Effective Field Theory (EFT). In contrast, at high 
energy colliders, the momentum transfer can be sizable, q2 ∼ TeV2, 
possibly leading to direct production of new states, where the con-
sistency of EFT may no longer be guaranteed [3–8]. Here, a well 
suited framework should at least include the new degrees of free-
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dom, as in simplified models, or may display an even richer phe-
nomenology, as in a UV complete scenario.

The purpose of this paper is to highlight the complementar-
ity of neutrino experiments such as DUNE and collider searches in 
probing NSIs, across this multitude of frameworks: from the EFT 
to simplified models, and an illustrative UV completion. In Sec. 2
we define EFT and simplified scenarios and use them to evaluate 
the LHC sensitivity to NSIs, in Sec. 3 we discuss the complemen-
tarity between LHC and oscillation physics, in Sec. 4 we present an 
illustrative UV completion, and in Sec. 5 we conclude.

2. From EFTs to simplified models

Neutrino oscillation probabilities are modified in a medium in 
the presence of NSI, which are generally parametrized in the EFT 
framework as:

LNSI = −2
√

2G F ε
f Y
αβ

(
ν̄αγμνβ

)(
f̄ γ μ P X f

)
, (1)

where ε f Y
αβ defines the strength of the ν − f interaction, α, β ∈

{e, μ, τ }, f = {u, d, e}, and X = L(R), i.e., P L (P R) is the left (right) 
chiral projector.

These new physics contributions can arise from higher dimen-
sional operators that are invariant under the SM gauge symmetry. 
The dominant effects are expected to come from dimension six op-
erators such as

1
2

(
LαγμLβ

) (
q̄γ μ P X q

)
, (2)
�
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where L is the lepton doublet. It follows that εαβ=−1/(2
√

2G F �2). 
One would expect prohibitively strong constrains on such opera-
tors from charged lepton flavor violation processes [9]. However, 
flavor diagonal operators can avoid these constraints and lead to 
observable NSI [10].

Dimension 8 operators of the type

1

�4

(
H LαγμH Lβ

) (
q̄γ μ P X q

)
, (3)

where H is the Higgs doublet [4], do not directly suffer from 
charged lepton flavor violation constraints, although there are 
other limits arising from non-unitarity of the PMNS matrix, oblique 
electroweak corrections, etc. [11]. If the mass of the mediator in-
ducing Eq. (1) is below the electroweak scale, charged lepton flavor 
violation constraints may even be absent [12,13].

While for oscillation experiments, we can safely take an agnos-
tic approach to the origin the NSI operators and apply Eq. (1), at 
the energy scales and couplings probed at the LHC, the validity 
of the EFT approach is no longer guaranteed. This discussion is 
similar to recent considerations about the interplay between dark 
matter (DM) searches at the LHC and low energy direct detection 
experiments [14–19]. Namely, while bounds from DM direct de-
tection experiments on new physics can be interpreted in the EFT 
regime through operators like 

(
χ̄γμχ

) (
q̄γ μq

)
/�2, the same does 

not hold true at the LHC, where the momentum transfers can go 
beyond the validity of EFT. Simplified models, in which the force 
mediator is dealt with explicitly, have been shown to be more 
appropriate for collider studies. Adopting a simplified model ap-
proach, we parametrize the NSI as

LSimp
NSI =

(
gαβ
ν ν̄αγ μ P Lνβ + gY

qiq̄iγ
μ P X qi

)
Z ′
μ , (4)

where Z ′
μ denotes the new force carrier with arbitrary mass 

M Z ′ [3,5]. Such simplified models have been used in the context 
of dark matter study, and the parameter space of such models has 
been constrained by LHC experiments.

Manifestations of dark matter and non-standard neutrino inter-
actions at colliders would look quite similar, both involving large 
amount of missing transverse energy. A powerful probe of these 
interactions is the study of mono-jet signatures, in which QCD ini-
tial state radiation leads to quark and gluon emission, pp → j + E/T
with j = q, ̄q, g . In this context, it has been shown that constraints 
from LHC 8 TeV data are more stringent for M Z ′ � 100 GeV with 
the sensitivity reaching ε � 10−2 [5,6].

To estimate the current and high-luminosity LHC sensitiv-
ity to NSIs, we will recast the recent jets plus missing energy 
searches from ATLAS [20] into the simplified model of Eq. (4). 
The limit M Z ′ � √

s can be identified as the EFT in Eq. (1). 
For our analysis, we generate the signal sample pp → νν̄ j with
MadGraph5aMC@NLO [21,22], simulating the hadronization and 
underlying event effects with Pythia8 [23]. Detector effects are 
simulated with the Delphes3 package [24].

Following the recent 13 TeV ATLAS mono-jet study [20], we 
define jets with the anti-kt jet algorithm and radius parameter 
R = 0.4, pT j > 30 GeV and |η| < 2.8 via FastJet [25]. Events with 
identified electrons with pT > 20 GeV or muons pT > 10 GeV 
in the final state are vetoed. To suppress the Z +jets and W +jets 
backgrounds, the events are selected with /E T > 250 GeV recoiling 
against a leading jet with pT j1 > 250 GeV, |η j1| < 2.4, and az-
imuthal separation �φ( j1, 	pT ,miss) > 0.4. Events with more than 
four jets are vetoed.

Although flavor diagonal NSIs may interfere with the SM back-
ground Z(νν̄)+jets, we find it to be negligible in the region of 
interest for the LHC sensitivity. Therefore, the diagonal and non-
diagonal NSIs result in equivalent bounds at LHC. Note also that, in 
2

Fig. 1. Constraints on neutrino non-standard interactions from LHC data and neu-
trino experiments [27] as a function of the mediator mass M Z ′ , assuming εαβ ≡
εu
αβ = εd

αβ . Note that LHC constraints are independent of neutrino flavor. We as-
sumed Z ′ /M Z ′ = 0.1 here.

fixing the total width, the number of signal events is proportional 
to ε2 ≡ (

∑
α,β |εαβ |2) for both on-shell and off-shell production, 

and thus we use ε to quantify the LHC sensitivity to NSIs. This 
eases the comparison to neutrino experiments without any further 
assumptions about the gν vs. gq ratio.

For concreteness, we will assume that neutrino NSIs arise in the 
simplified model (4) as

εu
αβ = εd

αβ ≡ εαβ = (gν)αβ gV
u,d

2
√

2G F M2
Z ′

, (5)

where gV
u,d = gL

u,d + g R
u,d is the quark vector current. We shall 

assume that axial-vector coupling g A
qi = 0 and generation indepen-

dent Z ′ interactions with quarks (gV
q := gV

qi, ∀ i) for our numerical 
results, except in the context of an explicit model where these re-
lations are not realized.

A major limitation of such searches is associated with the 
overwhelming SM backgrounds, pp → Z(νν) j and pp → W (�ν) j, 
which suffer from large theoretical uncertainties, including higher-
order QCD and electroweak corrections. Nevertheless, recently ef-
forts have been made to improve the signal sensitivity in both 
experimental and theoretical fronts [26]. These include further ex-
ploration of background control regions and state-of-the-art Monte 
Carlo simulations, resulting in suppressed background uncertain-
ties and augmented sensitivity to new physics. These advance-
ments lead to suppressed systematic uncertainties that pave the 
way to stronger NSI constraints at the high-luminosity LHC.

In Fig. 1, we present the LHC sensitivity to NSIs at 95% CL, 
estimated for two LHC integrated luminosity scenarios: 36.1 fb−1

and 3 ab−1. For the lower luminosity case, ATLAS [20] provides a 
limit on the signal events for ten signal regions. They differ by in-
creasing /E T thresholds. We define the NSI constraint by the most 
sensitive signal region (black line). For the high-luminosity sce-
nario, we obtain the backgrounds from ATLAS in the same ten /E T
thresholds. The NSI sensitivity is obtained from the signal region 
that maximizes the significance S = Ns/

√
Nb + (δσb.Nb)

2, where 
Ns and Nb are the signal and background events, respectively, and 
δσb is the background uncertainty. To evaluate the impact of sys-
tematic uncertainties at the high-luminosity LHC, the sensitivities 
are evaluated in two scenarios: δσb =1% and 3% [26]. The future 
high-luminosity LHC sensitivity is shown as a blue region, in which 
the impact of such uncertainties is conveyed as a band. The re-
sulting LHC constraint is maximal for mediators masses of order 
M Z ′ ∼ 2 TeV, reaching ε � 2 × 10−3. Flavor dependent bounds on 
NSI from neutrino experiments [27] are shown as dashed lines and 
will be discussed in the following section.
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In addition to the jets plus missing energy searches, there are 
other relevant LHC constraints to this simplified model arising 
from di-jet resonance searches. We use a combination of these 
limits from ATLAS and CMS [28–35]. To set the most conservative 
bound from these data sets, we assume that the coupling of the 
resonance to neutrinos, gν , saturates the chosen width Z ′/mZ ′ =
0.1. For this choice, the value of gν turns out to be always below 
3. These searches are complementary to mono-jets displaying sig-
nificant sensitivities at large resonance masses, mZ ′ � 2 TeV, see 
Fig. 1.

We can identify the EFT regime for the LHC when the mass of 
the mediator is much above the scale of the process involved. This 
can clearly be seen in Fig. 1, as the bound on ε does not change 
for mediator masses above ∼ 5 TeV. In addition, a robust argument 
can be made to estimate the validity of this EFT at the LHC. For any 
fixed ratio Z ′/M Z ′ , we can write the following inequality

|ε| ≤
√

3π√
NG F M2

Z ′

Z ′

M Z ′
. (6)

This constraint originates from the fact that the total width of the 
Z ′ should be larger than the partial widths to qiq̄i and νν̄: Z ′ ≥
M Z ′/(24π)(g2

ν + 3N{(gV
u )2 + (gV

d )2}), where we assumed decay to 
a single neutrino flavor. N here is the number of quark flavors be-
low the threshold for Z ′ → f f decay, with each flavor multiplied 
by a respective phase space factor. The expression for the partial 
decay width of Z ′ → f f is given in the Appendix, from which 
we see that the phase space factor for quark flavor f is P f =(

1 − 2m2
f

M2
Z ′

)√
1 − 4m2

f

M2
Z ′

(with axial vector coupling set to zero). Con-

sidering non-zero axial couplings would make the constraint more 
stringent. Thus, above tt threshold, N = 5 + Pt . Assuming gV

u = gV
d

leads to the “inconsistent region” (gray shaded) in Fig. 1. Consid-
ering narrower Z ′ makes the constraint stronger, while broader 
Z ′ implies non-perturbativity (Z ′ greater than roughly half M Z ′ ). 
Therefore, traditional EFT analyses at the LHC using four-fermion 
operators like Eq. (1) will typically not be valid, at least having 
simple/minimal UV completions in mind.

3. Complementarity between LHC and neutrino experiments

Differently from the LHC, the effects of NSIs in neutrino oscil-
lations strongly depend on the flavor structure of the NSI and the 
oscillation channel being studied.

In Fig. 1, we show the limits on |εαβ | for each flavor com-
bination, derived from the global fit [27] using neutrino oscil-
lation and COHERENT data (see also Ref. [36]), where all other 
NSI parameters were marginalized over. We have combined the 
limits on εu

αβ and εd
αβ at 95% CL in [27] in quadrature, σαβ =

[(σ u
αβ)−2 +(σ d

αβ)−2]−1/2. These constraints on NSI parameters span 
two orders of magnitude, showing the strong dependency on the 
flavor structure of the NSI.

The flavor dependence of NSIs on neutrino oscillations goes 
beyond different sensitivities. The effects of different NSIs and/or 
variations of the standard oscillation parameters can, in some 
cases, compensate each other and lead to well known degenera-
cies. Disentangling those is a difficult task at neutrino facilities. In 
contrast, the mono-jet signal at the LHC, pp → ν̄ανβ j, does not 
distinguish between different choices of (α, β); i.e., they all lead to 
the same observables. Besides constraining the currently allowed 
NSI parameter space, this feature can be further exploited to break 
relevant degeneracies.

To make this point manifest, we present two examples of de-
generacy breaking in the following. In Fig. 2, we show the 95% CL 
bounds on |εee| vs. |εeτ | from Ref. [37], obtained by combining cur-
rent oscillation and scattering data with future DUNE sensitivity. In 
3

Fig. 2. Constraints on neutrino non-standard interactions from LHC data, for differ-
ent mediator masses as labeled, with Z ′/M Z ′ = 0.1, assuming εαβ ≡ εu

αβ = εd
αβ . A 

fit to simulated data for DUNE from Ref. [37] is also included (pink shaded region).

Fig. 3. An example of degeneracy in the (εeτ , δ) plane, where δ is the standard C P
violating phase and εeτ ≡ εu

eτ = εd
eτ , from future DUNE data taken from Ref. [38]

(pink shaded regions are allowed, assuming εeτ = δ = 0 as null hypothesis). We 
overlay the LHC sensitivity to this NSI parameter for several mediator masses, as 
labeled, assuming Z ′ /M Z ′ = 0.1.

Fig. 3, we show the 95% CL bounds on εeτ vs. the usual C P violat-
ing phase δ for the future DUNE experiment from Ref. [38]. Here, 
νμ → νe and ν̄μ → ν̄e oscillation channels, driven by the smallest 
mixing parameter, sin2 2θ13, are crucial to constrain these parame-
ters. These oscillations are significantly affected by matter effects, 
and channels like νμ → ντ , νe → νμ are much harder to study 
due to experimental limitations. The allowed regions from neu-
trino experiments are shown in pink shaded, while the LHC bound 
depends on the mediator mass and is depicted as colored lines, as 
indicated in the figures. It should be noted that, even with the fu-
ture DUNE experiment, several degeneracies will remain unsolved 
by oscillation measurements, but could in principle be unravelled 
by LHC data.

Therefore, several important complementary aspects between 
LHC and neutrino experiments can already be identified. The LHC 
sensitivity displays a strong dependence on the mediator mass, but 
it is free of parameter degeneracies. Neutrino oscillation measure-
ments, on the other hand, exhibit the opposite behavior: significant 
degeneracies and no mediator mass dependence.

On top of that, there is another complementary aspect that can-
not be seen from the figures presented so far. The matter potential 
induced when neutrinos travel through a medium is not affected 
by a diagonal, universal contribution (as this just induces an over-
all phase shift on the neutrino state). On the other hand, LHC data 
is sensitive to each and all NSI parameters independently. Note also 
that neutrino oscillations are not sensitive to axial interactions, 
while LHC data is sensitive to both vector and axial new physics 
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Fig. 4. Sensitivities to a specific UV complete model realization of non-standard in-
teractions where the B − L number of the third family is gauged [12]. This includes 
current low energy observables (black), electroweak T parameter (green solid and 
dotted, see text), future high-luminosity LHC searches for bbττ final states (red, 
adapted from Ref. [40]), and LHC mono-jet searches (blue).

contributions. All these features show the synergies between oscil-
lation measurements and collider data on probing new physics in 
the neutrino sector.

4. Towards a UV complete scenario

Any UV complete model of neutrino NSI is expected to provide 
a more extensive phenomenology, especially since neutrinos are 
in the same SU (2)L doublet as charged leptons. This further en-
hances the synergies between LHC and oscillation experiment, as 
we shall demonstrate in an illustrative UV completion. We show 
in Fig. 4 the constraints on the UV complete model of Ref. [12]
(see Ref. [39] for other constructions with leptonic signals). In 
this UV completion the B − L number is gauged, but only for the 
third family. This leads to a new gauge boson that couples more 
strongly with the third family fermions and results in nonzero εττ . 
In Ref. [12] the entire model was specified, and an extensive list 
of constraints were derived from low energy observables such as 
neutrino oscillation, D − D̄ mixing, ϒ and B decays, atomic parity 
violation, and others. In the Appendix, we provide a description 
of the model, a few relevant equations, and updated constraints 
which are valid even for M Z ′ > M Z .

Assuming tan β = 0.5 (see Ref. [12]), we compare these con-
straints (black line) with a dedicated bbττ search [40] (red line), 
electroweak precision T parameter [41] (green solid and dotted 
line) and the high-luminosity LHC jets plus missing energy con-
straint of Sec. 2 (blue line). The latter displays a distinctive profile 
due to enhanced light flavors initial state contributions for M Z ′ ∼
M Z and b-initiated at M Z ′ � M Z . If M Z < M Z ′ , the contribution 
to the T parameter can in principle be compensated by those 
stemming from the scalar sector, making this constraint model de-
pendent (indicated by the dotted green line). Finally, we also show 
the region in which the theory becomes non-perturbative, corre-
sponding to the new gauge coupling being larger than 2.

Low energy constraints, dedicated LHC searches, and missing 
energy signatures provide strong constraints for different masses of 
the mediator. For masses below about 10 GeV, low energy observ-
ables tend to dominate. In the intermediate regime 10 − 100 GeV, 
dedicated searches for visible signatures at the LHC become more 
relevant. Finally, from 0.1 − 1 TeV LHC mono-jet searches, low 
energy observables and electroweak precision observables (up to 
the T parameter model dependence) play the leading role. This 
makes manifest the complementarities among collider data, oscil-
lation measurements, and other low energy observables.
4

5. Conclusion

We have explored the complementarity between neutrino ex-
periments and LHC searches in probing neutrino non-standard in-
teractions. Our analysis covers the full span of theory frameworks: 
effective field theories, simplified models, and an illustrative UV 
completion. We have shown that the present and high-luminosity 
LHC sensitivities to NSIs display relevant synergies to oscillation 
results. Namely, i) the breakdown of degeneracies among NSI and 
oscillation parameters, and ii) sensitivity to new phenomenologi-
cal signatures at the LHC. As a by-product of our analysis, we have 
shown that the use of EFT at the LHC in estimating sensitivity to 
NSIs is not generally theoretically consistent.
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Appendix A

A.1. Decay width for Z ′

If the Z ′ couplings to fermions are

LZ ′ f f = gL f Lγ
μ f L Z ′

μ + gR f Rγ μ f R Z ′
μ , (7)

then the partial decay width of Z ′ into fermion pairs is given by

(Z ′ → f f ) = Nc M Z ′

24π

[
(g2

L + g2
R)

(
1 − m2

f

M2
Z ′

)

+ 6gL gR

m2
f

M2
Z ′

]√√√√1 − 4m2
f

M2
Z ′

, (8)

where Nc stands for color degrees of freedom. For our case, with 
purely vector couplings to quarks, we have in Eq. (8) gq

L = gq
R = gq

V , 
and gν

L = gν for neutrino along with gν
R = 0.

A.2. UV complete model: expressions and corrected constraints

The UV complete model from Ref. [12], used in Section 4 to 
exemplify the complementarity between LHC data and other ex-
periments, can be summarized as follows. The B − L number of 
third family fermions is promoted to a U (1)

(3)
B−L gauge symmetry. 

To generate CKM mixing and to avoid a Goldstone boson, two dou-
blets charged under the new U (1)

(3)
B−L have to be added to the 

particle spectrum: a singlet and a doublet of SU (2)L . The ratio be-
tween vacuum expectation values of the new doublet to the Higgs 
is defined as tan β ≡ v2/v1.

After symmetry breaking, a θW rotation in the (W 3, B) plane 
leads to a massless photon and Z0. The latter mixes with the 
X0 boson [42] and the rotation that diagonalizes the gauge boson 
mass matrix is given by



K.S. Babu, D. Gonçalves, S. Jana et al. Physics Letters B 815 (2021) 136131

Fig. 5. Corrected constraints from Ref. [12] in the plane M X versus gX (gauge coupling) for various values of tanβ , as indicated. The constraints come from the following 
experiments or observations: B → K+invisible (dark/light green); decay width of D+ meson (dark cyan) and top quark (dotted line); Higgs invisible decays (dot-dashed line); 
atomic parity violation (APV, yellow); Möller scattering (dashed line); ϒ → γ +invisible (hatched region); BES (blue region); Z → bb+invisible (orange thick line); neutrino 
oscillations (red region) and scattering (green region); D+ → π+e+e− (cyan); D − D̄ oscillation (magenta); electroweak T parameter (gray region); LEP data (brown region); 
K + → π++invisible (light blue region); and ϒ → τ+τ− decays (salmon line). The region above the white line labelled “unphysical” is forbidden for a given choice of tanβ . 
The differences with respect to Ref. [12] show up in the high M X region.
sin(2θZ X ) = 2

3
g X

M Z v cos2 β

M2
Z − M2

X

. (9)

Note that this is the exact expression for the mixing [43]. The ex-
pression in Ref. [12] is approximated and only valid for M X � M Z . 
Some of the constraints derived in Ref. [12] are thus valid only 
on that regime (others are unchanged). In Fig. 5 we provide cor-
rected low energy constraints on this UV complete scenario, and 
we slightly extend the M X range.

Finally, the shift in the electroweak T parameter in this model 
is given by

�T ≡ 1

α

�M2
Z

M2
Z

= 1

α

εττ

3

M2
X

M2
Z

cos2 β. (10)

Note that for M X < M Z , εττ is positive and therefore �T is also 
positive. Contributions from the scalar sector will also be posi-
tive and thus the constraint from T is robust for M X < M Z . When 
M X > M Z , εττ changes sign due to the change of sign in the mix-
ing angle. Thus, the contributions from the gauge sector can be 
compensated by those from the scalar sector, and the T parameter 
constraint becomes more model dependent.
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