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1 Introduction

Starting with the work of the MiniBooNE collaboration [1, 2], Boosted Decision Trees (BDTs)
have been extremely prevalent within the field of High Energy Physics (HEP) [3], used mainly for
regression and classification tasks, both in event reconstruction and subsequent data analysis. In the
high-profile discovery of the Higgs boson, BDTs were used to increase the sensitivity of the CMS
analysis in the decay channel of the Higgs to two photons [4], and have been used significantly in
further analyses of Higgs properties.

At the Large Hadron Collider (LHC) experiments, proton collisions occur at such a frequency
that the full rate of data cannot be stored. With the LHC delivering collisions every 25 ns, the
experiments CMS and ATLAS have to deal with tens of terabytes of data produced each second.
Each experiment operates an online data reduction system, called the trigger, to filter out only a
fraction of events for further analysis. Due to the extreme data rates, this processingmust necessarily
be extremely fast, and since the rejected events can never be recovered, the selection must be highly
robust.

The CMS and ATLAS experiments deploy a two-stage trigger system, starting with the Level-1
Trigger (L1T) performing a first selection, with a second High Level Trigger (HLT) performing a
more refined selection. The L1T must process each LHC event, at the full 40 MHz collision rate,
and return its decision within approximately 10 µs, the latency for which the event data can be
buffered. Due to these constraints, the L1T is implemented using high speed electronics, consisting
of ASICs and FPGAs on custom cards, with high-speed optical interconnects.

Recently, Deep Neural Networks (DNNs) have been investigated as an alternative to BDTs
for HEP applications,1 due to their superior performance and the increasing availability of parallel

1For an extensive discussion of use cases, see ref. [5] and references therein.
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processors capable of high throughput training and inference. Despite the large amount of studies
showing interesting use cases for DNN applications, the number of DNN models deployed in the
central data processing of the LHC experiments during previous LHC running was very limited.
This was mainly due to the lack of optimal deployment solutions that would meet the strong
constraints of central processing systems (e.g., real-time event selection in the trigger systems),
both in terms of latency and computing resource footprint.

Previously, we introduced the hls4ml library to facilitate the deployment of DNN models on
L1T systems [6]. The aim of that work was to establish an automatic workflow to convert a given
DNN model into an electronic circuit, evaluated on an FPGA through a fully-on-chip firmware
implementation. The workflow consists of converting a given NN model into an expertly written
C++ code, which is then converted to an FPGA firmware by a High Level Synthesis (HLS) tool
(e.g., Xilinx Vivado HLS). In ref. [6], we demonstrated how a DNN model for jet identification at
the LHC could be compressed and quantized, to run on an FPGA with 75 ns latency.

In this work, we present an extension of the hls4ml library to also support BDTs.2 As
shall be seen in the following sections 2 and 3, the BDT implementation in FPGAs is capable of
achieving similar performance to a DNN, with a relatively lightweight usage of device resources.
The critical FPGA resource for BDTs is Look Up Tables (LUTs), whereas the availability of DSPs
for multiplication is the limiting factor for DNNs. Given this, the BDT can be seen as a lightweight
solution which is complementary to a DNN.

Another motivation for the introduction of BDTs is the need to support the legacy of the LHC
Run II: as of today, BDTs are still the most commonly used ML algorithm for LHC experiments.
For instance, the LHCb collaboration makes extensive use of BDTs (as well as neural networks) in
their trigger, which runs in software only. To accelerate the computation, a binned BDT method,
Bonsai BDT, is used [7].

BDTs remain a particularly appealing solution for use in the earliest processing stages at LHC
experiments, thanks to their good performance with relatively low computational cost. The first use
case of an ML technique in the L1T of an LHC experiment was a BDT used to perform a regression
of muon pT for the CMS L1T endcap muon trigger [8]. The technique gave a three-times reduction
in rate for the trigger threshold compared to the previous approach, removing unwanted low pT
muons. An external DRAM of 1.2 GB was used as a look-up-table (LUT) to store the pre-computed
BDT output for every variation in the input variables. The LUT was filled offline and queried with
low latency online. The solution proposed in this paper would allow an on-chip implementation
going beyond a full-LUT approach.

Other works have implemented ensembles of Decision Trees (BDTs and Random Forests) for
FPGAs [9–13]. These generally target applications of FPGA accelerated inference in a combined
CPU-FPGA system, where the relevant performance goals are throughput and energy consumption.
Further, the use of external memories and traversal over trees by fetching nodes from memory gives
these approaches flexibility and scalability. The work of [9] and [10], in particular, is designed to
be scalable to very large ensembles in a way that the implementation in this paper is not. In the
context of targeting LHC triggers, however, the main performance goal is of extremely low latency,
and secondly to maintain a modest resource usage.

2The project code can be accessed at: https://github.com/hls-fpga-machine-learning/hls4ml/tree/bdt.
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Figure 1. Left: the solid curves show signal efficiency vs. isidentification rate using a BDT with 100 trees
of depth 4 for the five jet classes: gluon, quark, W boson, Z boson, and top quark. The dashed curves show
the performance of the 3 layer MLP from [6]. Right: confusion matrix for the BDT.

2 Building Boosted Decision Trees with hls4ml

In the previouswork on translation of neural networks to FPGAfirmwarewith hls4ml, we presented
a demonstration data set for discrimination of quarks (q), gluons (g), W and Z bosons, and top
(t) jets [14]. The data consist of a set of 16 physics-motivated high-level features, representing
information of the event jet substructure. With this information at hand, one can distinguish
traditional single-prong q and g jets from two- (W and Z) and three-prong jets

This problem is typical of searches for physics beyond the standard model at ATLAS and
CMS. To our knowledge there is no algorithm currently employed in the L1T systems of these two
experiments that exploits this kind of substructure information to select events with multi-prong
jets. This data set provides a benchmark on which to evaluate the classifier performance and its
realisation in FPGA implementation as an example application for the L1T. We use the same data
set in this work to prepare a classifier, this time a BDT.

We performed the BDT training using the scikit-learn package [15], randomly splitting
the data set into training (80%) and testing (20%) partitions. A BDT with 100 estimators and a
maximum depth of 4 was found to give similar performance to the DNN model trained on the same
data set, providing a useful point of comparison. The cross-entropy loss function was used.

The resulting receiver operating characteristic (ROC) curve is shown in figure 1, displaying the
background misidentification efficiency (false-positive rate) as a function of the signal efficiency
(true-positive rate) for five jet selectors, defined using the five scores returned by the BDT for the
five jet categories. Overall, the trained BDT reaches state-of-the-art discrimination performance,
with a small performance loss with respect to the DNN model of ref. [6].

The operations used in inference of a BDT are very different from those used for a neural
network. While a (fully connected) neural network comprises a series of matrix-vector products and
evaluations of non-linear activation functions, the BDT inference involves evaluating decision paths
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over many decision trees. This tree traversal requires comparisons against thresholds, effectively
partitioning the feature space. In terms of the number of parameters, the trained BDT with 100
estimators of depth 4, and 5 classes, is summarised by 7,500 threshold values, and 8,000 scores.
The fully connected neural network presented in [6], with the same 16 inputs, 5 outputs, and three
hidden layers of 64, 32, and 32 neurons, has 4,389 trainable parameters. A BDT is only able to
make cuts orthogonal to the feature axes, while the activation functions of a neural network add
non-linearity to the classification.

We use this model as a benchmark example to show the use of hls4ml to derive an FPGA
firmware implementation.

3 Implementation and performance

3.1 FPGA implementation

Decision Trees in hls4ml are implemented as an unrolled tree of decisions, as illustrated in figure 2.
Each node in the tree performs a comparison of one of the input features against a constant threshold,
learned in training. These thresholds are statically fixed in the logic of the FPGA firmware, rather
than being fetched from an external memory. Nodes pass the results of the comparison (true or false)
to their children. The decision path is then encoded by the series of Boolean values propagated
along the nodes. By construction, only a single leaf node can be activated, and the index of the active
leaf is use to address a small look-up-table containing the tree scores for each path. These scores
map to the probability that the given input features correspond to a certain class. For multiclass
classification, each ‘estimator’ uses as many decision trees as the number of classes, while only one
tree per estimator would be used for a binary classification problem.

The score of the BDT ensemble is the sum of scores of all of the decision trees. Since each
decision tree is independent, a high degree of parallelisation is possible in the FPGA. The sum is
performed with a balanced adder tree, reducing the scores to their sum in a pair-wise tree structure.
The implementation of BDTs in hls4ml targets low latency applications, such as LHC hardware
triggers, by executing all trees, and all decisions within each tree, in parallel.

We developed two code implementations, both targeting the architecture described. The first
uses Xilinx’s Vivado HLS, written in C++, and the second is developed at the Register-Transfer
Level (RTL), using VHDL.3 Generally, an RTL implementation does not benefit from some of the
features of Vivado HLS, such as automatic pipelining depending on the target clock frequency, and
easy loop rolling/un-rolling. However, the RTL implementation synthesises to more reliable results
for ‘large’ BDTs, as will be seen in the section 3.3. Both implementations are fully pipelined,
capable of an ‘initiation interval’ of 1 clock cycle.

A trained BDT, with specific features, thresholds and scores for each tree, can be evaluated
with the FPGA implementation described above using hls4ml. Models trained and exported from
the scikit-learn, xgboost [17], and TMVA [18] packages are supported. From the FPGA code
produced, which is either using Vivado HLS or VHDL, the user is then able to run the usual FPGA
vendor workflow to integrate the BDT into a specific project and compile to a bitfile.

3For an introduction to FPGA concepts and terminology, see ref. [16].
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Figure 2. Schematic of the implementation of decision trees in hls4ml, showing a single tree with depth of
2. The x are the node features, and t the thresholds. The ‘¬’ is the unary ‘not’ operator, and ‘&’ the binary
‘and’. The Boolean leaf activations are concatenated and used to address a look-up-table of output scores.
The labels ‘a’, ‘b’, ‘c’, and ‘d’ on the schematic correspond to the respective labelled leaf nodes of the tree
represented at the bottom left.

3.2 Varying the precision

The generic, programmable-logic cells in FPGAs support completely customised data representa-
tions. Floating point types are supported, but generally require more resources, latency, and achieve
lower clock frequencies than integer types. The fixed point representation uses integer operations,
but with a radix point in the number to represent fractional values. In the FPGA, any bitwidth and
radix position may be used. A narrower bitwidth will enable smaller resource usage.
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Figure 3. The ratio of Area Under the Curve (AUC) obtained from the fixed point implementation to the
AUC expected from the floating point software, as a function of the fixed point bitwidth used, for each of the
five tag categories. The ratio saturates at around 15 bits.

The trade-off for using narrower bitwidths is a loss of precision. The loss of discriminating
power is investigated by measuring the ratio of the AUC obtained testing with fixed point represen-
tation to the area under the ROC curve (AUC) from the original floating point, and shown in figure 3
as a function of the bitwidth, for the benchmark jet-classification BDT introduced in section 2. The
number of integer bits was kept at 4 for all bitwidths, as required by the range of the features and
scores in the data to avoid overflow. A significant reduction in AUC is seen for bitwidths of 10
and below. The AUC with fixed point variables reaches 99% of the AUC with floating point for
all taggers with 11 bits. Below 10 bits the behaviour becomes unstable, as numerical rounding
effects cause unpredictable misclassification. The consequences of the bitwidth on resource usage
are discussed in the next section.

3.3 Performance and cost

We studied the FPGA resource utilisation and inference latency using BDTs trained on the jet
classification task described in section 2. These metrics are expected to vary with the number
of trees and their depth. Other hyperparameters, while having an impact on the classification
performance, do not affect these FPGA performance metrics. All HLS evaluations of BDTs were
built for a Xilinx vu9p-flgb2104-2L-e FPGA at 200 MHz target clock frequency. FPGAs of this
size or similar could be used in future LHC upgrades, and would generally be used to execute several
algorithms (including feature pre-processing) as well as any ML inference. All features, thresholds,
and scores were encoded with 18 bits, which is sufficient to achieve identical classification results
to the scikit-learn original, as was shown in section 3.2.

The resource utilisation of LUTs, FFs, DSPs, and BRAMs for the benchmark BDT with 100
estimators and a depth of 4 is shown in table 1. This utilisation is reported after running the
logic synthesis step with the VHDL implementation. The inference latency for this ensemble is 12
clock cycles, corresponding to 60 ns execution time at the chosen target clock frequency. This is
compatible with the requirements for use in the L1T system.

– 6 –
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Figure 4. Dependence of LUT usage (top row), inference latency (bottom left), and synthesis time (bottom
right) on the number of estimators of the BDT, with depth fixed at 3. The top right plot is a view of the
same data as the top left, with reduced range. Different stages of synthesis are shown: C-Synthesis estimate
of HLS (HLS CS), utilisation report after Logic Synthesis step of RTL produced by HLS (HLS LS), and
utilisation report after Logic Synthesis of the VHDL implementation (VHDL LS).

Table 1. Resource usage of the BDT with 100 estimators of depth 4.

Resource LUTs FFs DSPs BRAMs
Number Used 96148 42802 0 0
Percentage of VU9P 8.1 1.8 0 0

Figure 4 shows the variation in resource usage with the number of estimators, ne, of the
BDT, with the depth fixed at 3. Each estimator uses as many trees as the number of classes, in
this case of the jet classification dataset, five. Only one tree per estimator would be used for a
binary classification problem, reducing the resource cost by a factor five in such cases. For the
VHDL implementation, the utilisation is reported after logic synthesis with Vivado. For the HLS
implementation, the Vivado HLS resource estimate after C-synthesis is reported, as well as the
result after executing logic synthesis on the produced RTL with Vivado. The HLS estimate of LUT
and FF usage tend to be larger than the eventual usage after the full synthesis and implementation
workflow. Pipelining of the HLS implementation is determined by the Vivado HLS compiler during
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the C-synthesis step, placing registers optimally to achieve timing closure. The latency of the HLS
implementation is set during this step, and not affected by later execution of logic synthesis.

Up to ne = 150, the LUT utilisation for both implementations increases linearly, with the HLS
implementation using slightly fewer than the VHDL version (referring to the utilisation reported
after Vivado synthesis). With ne > 150, the LUT usage of the HLS implementation increases
dramatically, and the Vivado synthesis of the produced RTL also yields poor results. In this regime,
the LUT usage of the VHDL implementation continues to increase linearly with ne.

The inference latency of the VHDL implementation increases logarithmically with ne, as the
depth of the balanced adder tree used to sum tree score increases. TheHLS implementation inference
latency is more constant, as HLS packs the adder tree into a single cycle for most ensemble sizes.
For ne > 150 the latency of the HLS result increases significantly. The VHDL implementation
latency is typically longer than the latency achieved by the HLS. The VHDL is pipelined to achieve
timing closure at higher clock frequencies than the 200 MHz target used for the HLS.

The time taken to synthesise the BDT increases linearly with ne for the VHDL implementation,
taking 40 minutes for the 1000 estimators ensemble. The HLS C synthesis time increases expo-
nentially with the number of estimators, with synthesis for 200 estimators taking 21 hours. Vivado
synthesis times for the HLS RTL output are significantly faster than the HLS C Synthesis which
must run before, and increase linearly with the number of estimators.

Figure 5 shows the dependence of the same FPGA performance metrics on the maximum depth
of the BDT, with ne fixed at 10. The LUT usage increases exponentially with depth, with each
additional layer in the trees adding as many nodes as there are above it. As before, the HLS estimate
of the LUTs is high compared with the report after synthesising the produced RTL with Vivado.
The LUT usage of the VHDL and Vivado-synthesized HLS are very similar, until at maximum
depth of 6, the HLS implementation resource usage suddenly increases. At the same point, the
latency and synthesis time drastically increase. The latency of the VHDL implementation increases
linearly, with one extra clock cycle per depth. Synthesis time increases exponentially with depth,
with the synthesis for a depth of 10 taking 27 hours.

3.4 Resource model

Given the expected scaling of LUTswith model hyperparameters— linear with ne and exponentially
(base two) with depth — we analytically describe the resource usage using the following relation:

r = k0 · ne + k1 · ne · 2d,

where r is the resource usage (LUTs), ne the number of estimators, d the tree depth, and k0, k1 are
unknown constants. The term linear in ne represents the resource of the adder-tree which grows
with the number of trees. The term linear in ne and exponential with d represents the logic used
for the trees, of which there are ne, while the number of decision nodes doubles at each layer in
depth. Other hyperparameters — such as the loss function, learning rate, and number of features
—may impact the classification performance of the model, but would not affect the resource usage.
A fit to the measurements of trained and synthesised BDTs using the VHDL implementation was
performed, yielding:

r = 22 · ne + 53 · ne · 2d .

– 8 –
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Figure 5. Dependence of LUT usage (top row), inference latency (bottom left), and synthesis time (bottom
right) on the maximum depth of the BDT, with 10 estimators. The top right plot is a view of the same data
as the top left, with reduced range. Different stages of synthesis are shown: C-Synthesis estimate of HLS
(HLS CS), utilisation report after Logic Synthesis step of RTL produced by HLS (HLS LS), and utilisation
report after Logic Synthesis of the VHDL implementation (VHDL LS).

All features, thresholds and scores were encoded with 18 bits. Figure 6 shows this scaling model
over the measured BDT results used for the single-parameter scans in figures 4 and 5, showing good
agreement.

3.5 Varying clock frequency and precision

Vivado HLS automatically pipelines FPGA designs, according to the target clock period specified
by the developer. When using the HLS workflow, the hls4ml library allows the user to choose a
target clock period for the BDT model. Generally, a faster target clock frequency requires more
pipeline stages, so more clock cycles will be needed to perform the inference. The left plot of
figure 7 shows the pipeline depth increasing with target clock frequency from 6 clock cycles at
100 MHz to 29 cycles at 500 MHz. The single inference latency in nanoseconds (the product of the
latency in clock cycles and the clock period) is relatively constant with the target clock frequency.
The lowest single inference latency is 52 ns at 250 MHz while the highest is 62.2 ns at 450 MHz.
Using a higher clock frequency will achieve overall faster inference when classifying several input
feature vectors, since the initiation interval is 1 in all cases.
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Figure 7. Left: latency — in clock cycles and nanoseconds — of the benchmark BDT model with 100
estimators of depth 4, as a function of the target clock frequency. Right: resource usage as a function of the
bitwidth used for all features, thresholds and scores.

The variation of resource usage with the bitwidth is shown in the right plot of figure 7 for LUTs,
the dominant resource used for BDTs. Four integer bits were used in all cases, as in figure 3. The
increase in resource usage with bitwidth is approximately linear, but with a significant step change
transitioning from 14 to 15 bits.

The benchmark model, as well as scans over the number of estimators and maximum depth,
were evaluated using 18 bits. From figure 3 this can be seen to be comfortably sufficient to give
numerically equivalent results to the CPU evaluation of the model. Using 14 bits, the ratio between
Area Under the ROC Curve (AUC) achieved with the FPGA versus CPU inference is above 99.9%
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for all classes. For many applications, this performance will be adequate, and the resource saving
seen in figure 7 from using 14 bits or below can be taken advantage of. In other cases, for example
selecting rare signals with a large background, the extra precision from using more bits may be
desirable to maintain reliable, stable performance not susceptible to numeric effects.

4 Summary and outlook

We presented the implementation of BDT conversion to FPGA firmware in the hls4ml library.
Taking as an example amulticlass classification problem fromhigh energy physics (the identification
of boosted jets based on substructure information), we show how a state-of-the-art algorithm could
be deployed on an FPGA with a typical inference time of 12 clock cycles (i.e., 60 ns at a clock
frequency of 200 MHz). We discussed the dependence of the FPGA resource usage and inference
latency upon the model hyperparemeters, presenting a model which predicts the resource usage
well. We compared an HLS-based implementation to a VHDL one, as a function of the model size.
Both the workflows are supported in hls4ml. The presented workflow provides a resource effective
alternative to Neural Network deployment, which we discussed in a previous publication [6].
Compared to a Neural Network applied to the same problem, a BDT is able to achieve very
similar performance, with a comparable inference latency. The implementation of BDTs in the
FPGA utilises LUTs most heavily, while the Neural Network predominantly uses DSPs. This
functionality of the hls4ml library could support an efficient deployment of algorithms analogous
to that described in ref. [8], which took data at the CMS experiment during the LHC Run II.
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