
ar
X

iv
:h

ep
-t

h/
94

10
23

9v
1 

 3
1 

O
ct

 1
99

4

CERN-TH.7470/94
hep-th/9410239

AUXILIARY FIELDS FOR SUPER YANG-MILLS

FROM DIVISION ALGEBRAS

Jonathan M. Evans*

Theoretical Physics Division

CERN

CH-1211 Genève 23
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1. Introduction

The simplest supersymmetric Yang-Mills theories are those in which the physical degrees
of freedom are described by a vector gauge field Aµ (µ = 0, . . . , d−1) and a spinor field
ψ, both defined on d-dimensional Minkowski space and taking values in the Lie algebra of
some gauge group. A necessary condition for supersymmetry is that the number of phys-
ical bosons and fermions should be equal, which leads to the possibilities d = 3, 4, 6, 10
with the spinor being Majorana, Majorana or Weyl, Weyl, Majorana and Weyl respec-
tively. To show that this equality of bosons and fermions is sufficient for supersymme-
try as well as necessary, one can take the detailed expressions for the supersymmetry
transformations—which are fixed up to irrelevant constants by gauge-invariance and di-
mensional considerations—and check that they obey the standard algebra up to terms
involving field equations (this is in fact equivalent to requiring invariance of the natural
action in which the spinor is minimally coupled to the gauge field). The condition for the
supersymmetry algebra to close on-shell in this way is a certain gamma-matrix identity
which is indeed satisfied precisely for the values of d and the types of spinor listed above
[1].

It is always desirable in a supersymmetric theory to try to promote the on-shell sym-
metry algebra to one which holds off-shell , that is, without the use of field equations.
For d = 3 super Yang-Mills the superalgebra closes automatically; for d = 4, 6 one can
introduce auxiliary fields to close the superalgebra in a Lorentz-covariant way [2,3]; but for
d = 10 the best which can be done with a finite set of auxiliary fields is to partially close
the superalgebra, breaking the manifest d = 10 Lorentz symmetry to some subgroup in the
process. An interesting new perspective on these matters was provided recently in [4] with
the introduction of more general fermionic transformations which include the conventional
supersymmetry transformations of d = 10 super Yang-Mills as special cases. It was then
shown in [5] that all previously known sets of auxiliary fields for the d = 10 theory could
be recovered within this framework.

Our aim here is to show how the possible auxiliary fields for each of the allowed
super Yang-Mills theories can be understood using the language of division algebras [6-8].
Connections between super Yang-Mills and the division algebras have been established in
the past by interpreting the gamma-matrix identity necessary for on-shell supersymmetry
from a number of closely related points of view using division algebra-valued spinors [9,10],
Jordan algebras [10,11] and trialities [12]. The role of division algebras in understanding off-
shell supersymmetry was emphasized first in [7] and then in [4] where octonions were used
to find a new set of auxiliary fields in d = 10. We shall indicate here how the solutions given
in [4,5] for d = 10, together with analogous solutions for the lower-dimensional theories,
can all be understood using this language; we shall also explain from this point of view
the residual symmetries of these various sets of auxiliary fields.

2. Division Algebra Notation

We denote by Kn with n = 1, 2, 4, 8 the division algebras R, C, H, O of real numbers,
complex numbers, quaternions and octonions respectively; for background see papers such

2



as [6-12]. We denote by ea (a = 1, . . . , n) an orthonormal basis for Kn with en = 1 and all
other basis elements pure-imaginary. Bars will denote conjugation and daggers will denote
hermitian conjugation.

The basic idea is to define the action of certain spin representations of SO(n+1, 1)
on two-component objects with entries in Kn [7,8]. The cases n = 1, 2, 4, 8 obviously
correspond to d = 3, 4, 6, 10 and the spinor appearing in each of the allowed super Yang-
Mills theories in these dimensions can then be written as an object ψα (α = 1, 2) or as
its conjugate ψ̄α̇ (α̇ = 1, 2). There are also dual spinor representations acting on objects
which we denote by χα and χ̄α̇. When spinor indices are suppressed we will regard ψ,
ψ̄ as row vectors and χ, χ̄ as column vectors. Spinor indices are never raised or lowered
and the usual Lorentz-invariant inner-product is given by the real expression ψχ + χ†ψ†

= ψαχα + χ̄α̇ψ̄
α̇.

The gamma-matrices needed to construct the spin representations are invariant tensors
(Γµ)αα̇ and (Γµ)α̇α. We define these in a particular basis in which their components are
equal and are given by the hermitian matrices:

(

1 0
0 1

)

for µ = 0;

(

1 0
0 −1

)

for µ = n+1;

(

0 ea

ēa 0

)

for µ = a = 1, . . . , n.

The order of indices on gamma-matrices indicates whether they should multiply spinors
from the left or from the right with the convention that only adjacent upper and lower
indices of the same type can be contracted. For example, the matrices (Γµ)αα̇ act by
right-multiplication on ψα and left-multiplication on ψ̄α̇.

It will be important for us to understand how certain subgroups of SO(n+1, 1) appear
in this formalism. With the basis introduced above, the two Kn-valued components of any
spinor clearly carry irreducible representations of the light-cone subgroup SO(1,1)×SO(n).
In fact these two copies of Kn carry the inequivalent spin representations of SO(n) for
n = 2, 4, 8. If we restrict further to the subgroup SO(n−1) which fixes the direction µ = n

then these spin representations become equivalent. The resulting representation is realized
on Kn in two particularly simple ways: the relevant gamma-matrices or invariant tensors
are just the imaginary basis elements ei (i = 1, . . . , n−1) and these multiply components
of type ψα from the right and components of type χα from the left.

Notice that the elements of unit modulus in C and H form groups U(1) and SU(2)
respectively. They act naturally by multiplication on complex and quaternionic spinors so
as to commute with Lorentz transformations; we shall therefore refer to these operations
on spinors as internal transformations. The generators of such transformations are unit
imaginary elements ei multiplying components of type ψα from the left and components
of type χα from the right (compare with the last paragraph). The internal groups U(1)
and SU(2) appear as symmetries of the super Yang-Mills theories in d = 4 and d = 6; no
such symmetries arise in d = 3 or d = 10.

Finally, it can be shown that the algebras H and O have non-trivial continuous au-
tomorphism groups SO(3) and G2 respectively [6,8]. The action of these automorphisms
on spinor components can always be reproduced by combinations of Lorentz and inter-
nal transformations. The special feature of the octonionic case is that the automorphism
group is contained entirely within the Lorentz group—in fact within the SO(7) subgroup
mentioned above.
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3. Generalized and Conventional Supersymmetry

The generalized supersymmetry transformations proposed in [4] involve real bosonic aux-
iliary fields Gi (i = 1, . . . , d−3) which balance the off-shell bosonic and fermionic degrees
of freedom. They can be written

δAµ = ǫ(Γµψ
†) + (ψΓµ)ǫ† ,

δψ = 1

2
(ǫΓν)ΓµF

µν +Givi ,

δGi = −vi(Γ
µDµψ

†) − (DµψΓµ)v†i ,

(1)

where Dµ = ∂µ + Aµ is the usual covariant derivative and Fµν = [Dµ, Dν ] is the field
strength. (We have defined δ so as to remove some factors of i compared to [4,5] and we
have normalized spinors so as to remove some factors of 1

2
.) The parameters of the trans-

formations are commuting spinors ǫα and vα
i which must satisfy the additional relations

ǫ(Γµv
†
i ) + (viΓµ)ǫ† = 0 ,

vi(Γµv
†
j ) + (vjΓµ)v†i = δij( ǫ(Γµǫ

†) + (ǫΓµ)ǫ† ) .
(2)

These ensure that the standard supersymmetry algebra still holds up to field equations
despite the introduction of extra parameters.

To recover conventional supersymmetry transformations from those written in (1)
above one must solve the equations (2) with vi depending linearly on ǫ and with the value
of ǫ restricted to some subspace if necessary. The subset of conventional supersymmetry
transformations obtained in this way will automatically obey a closed algebra. However,
such a solution will, in general, break the full Lorentz invariance of equations (1) and (2)
down to a subgroup determined both by the subspace to which ǫ is confined and by the
precise definitions of the quantities vi. These points are explained in more detail in [5].

4. Solutions and their Symmetries

Solutions to (2) can be written very simply in division algebra notation. We consider first
the possibility

vi = eiǫ (3)

with the spinor ǫ confined to some subspace. The transformations (1) can now be re-
expressed in a more compact way by combining the n−1 auxiliary fields into the pure-
imaginary object G = Giei with the result

δAµ = ǫ(Γµψ
†) + (ψΓµ)ǫ† ,

δψ = 1

2
(ǫΓν)ΓµF

µν +Gǫ ,

δG = ǫ(ΓµDµψ
†) − (DµψΓµ)ǫ† .

(4)

Before discussing the individual solutions it will be best to make some general remarks
concerning the possible symmetries of these equations.
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In the associative cases the equations (4) are invariant under any Lorentz transforma-
tion if the auxiliary fields behave as scalars (and provided that the transformation respects
whatever restriction is placed on ǫ of course). This can be checked by calculating explicitly
the transformation of the expression given for δG and by noting also that if G is inert
then the term Gǫ transforms in the same way that ǫ does; all other terms are covariant by
construction. In the octonionic case, however, this statement must be qualified: we find
that a Lorentz transformation is a symmetry of (4) with G inert only if it is constructed
from gamma-matrices whose entries have vanishing associators with the components of ǫ.
Aside from such Lorentz transformations, the equations (4) are also invariant under the
internal transformations which arise in the complex and quaternionic cases in the manner
discussed earlier. Lastly, the equations (4) are invariant under any automorphism of Kn

(provided once again that it respects the restriction on ǫ) and then the auxiliary fields
will transform in some non-trivial way. From the remarks made previously we know that
automorphisms give genuinely new symmetries only in the octonionic case. We are now in
a position to explain the symmetries which appear in each of our solutions.

It is easy to show that in the associative cases (3) provides a solution of (2) for any
spinor ǫ and the formulas (4) then reproduce the standard, Lorentz-covariant, off-shell
supersymmetry transformations for d = 4 [2] and d = 6 [3,7] super Yang-Mills with scalar
auxiliary fields. In d = 4 the off-shell supersymmetries are also invariant under the U(1)
internal group with the auxiliary field being inert. In d = 6 they are invariant under the
SU(2) internal group with the auxiliary fields transforming as a triplet.

The lack of associativity of the octonions means that in d = 10 the formula (3) is no
longer a solution of (2) for all ǫ. However, there are at least two interesting ways of restrict-
ing ǫ in (3) so as to obtain closed subalgebras of supersymmetry transformations of type
(4). Both solutions require for their verification several lines of octonionic manipulations
which we shall omit.

The first case in which (3) provides a solution of (2) is where one of the components of
ǫ is restricted to be real, giving a closed algebra of nine supersymmetries [4]. To preserve
the form of ǫ under a Lorentz transformation we must confine attention to a subgroup
SO(1,1)×SO(7). The generator of SO(1,1) is real and so never gives rise to an associator.
But the additional transformations are symmetries of (4) only if they lie in the subgroup
of automorphisms G2 within SO(7), with the auxiliary fields transforming in its seven-
dimensional representation. In this way we find exactly the residual invariance SO(1,1)×G2

and the pattern of representations given in section 3 of [5].

The second case in which (3) provides a solution of (2) is where both components of
ǫ lie in some copy of the complex numbers C within O, yielding a closed algebra of four
supersymmetries. This solution is clearly invariant under a subgroup SO(3,1) generated
by combining gamma-matrices with entries in this same copy of C, since all the relevant
associators then vanish. The other pairs of gamma-matrices which lead to vanishing asso-
ciators give d = 10 Lorentz generators which coincide when acting on ǫ and which, when
exponentiated, correspond simply to multiplication by an arbitrary phase within our cho-
sen copy of C. Lastly, the solution is invariant under the subgroup of G2 which sends our
particular copy of C to itself, and it is well-known that the subgroup of automorphisms
which fix a given imaginary element is SU(3) [6]. The residual invariance is therefore
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SO(3,1)×U(1)×SU(3) and closer examination of the details of the representations gives
complete agreement with those found in section 4 of [5].

So far we have discussed solutions of (2) of type (3); it is natural to ask whether there
exist similar solutions of the form

vi = ǫei (5)

with ǫ restricted to some subspace. The transformations (1) can once again be re-written,
after a little work, in terms of G = Giei and the result is

δAµ = ǫ(Γµψ
†) + (ψΓµ)ǫ† ,

δψ = 1

2
(ǫΓν)ΓµF

µν + ǫG ,

δG = (DµψΓµ)ǭ† − ǭ(ΓµDµψ†) .

(6)

In d = 4 the formulas (5) and (6) coincide with (3) and (4) because the complex numbers
are commutative; but for d = 6 and d = 10 we obtain new possibilities.

In the non-commutative cases (5) fails to satisfy (2) for general ǫ, but it does provide
a solution if we restrict ǫ to having only one non-zero component. This restriction clearly
breaks the Lorentz group at least to the light-cone subgroup SO(1,1)×SO(n) and in fact
the compact part of the surviving symmetry is SO(n−1). This can be seen from the
way in which the pure-imaginary elements ei appear in (6) through G, because these
quantities act as invariant tensors for the subgroup SO(n−1) when multiplying ǫ from
the right, as we have already mentioned. Thus in d = 6 we obtain a closed algebra of
four supersymmetries of type (6) with residual Lorentz invariance SO(1,1)×SO(3) and
auxiliary fields transforming as a three-dimensional vector. There is also an SU(2) internal
symmetry under which the auxiliary fields are inert. In d = 10 we find a closed algebra of
eight supersymmetries of type (6) with residual invariance SO(1,1)×SO(7) and auxiliary
fields transforming as a seven-dimensional vector. This is just the solution presented in
section 2 of [5].

5. Comments

We have seen that division algebras provide an elegant language in which to understand
the occurrence and symmetries of bosonic auxiliary fields for super Yang-Mills, with the
lack of a covariant set in d = 10 being traced directly to the non-associativity of the
octonions [4]. It is natural to wonder to what extent the solutions we have discussed here
are exhaustive. It would also be interesting to investigate whether division algebras could
be used to understand fermionic auxiliary fields (see the papers cited in [5]) in a similar
fashion.
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