Published for SISSA by 🖄 Springer

RECEIVED: June 18, 2020 ACCEPTED: June 21, 2020 PUBLISHED: July 10, 2020

Erratum: Singlet night in Feynman-ville: one-loop matching of a real scalar

Ulrich Haisch,^{*a*} Maximilian Ruhdorfer,^{*b*} Ennio Salvioni,^{*c*} Elena Venturini^{*b*} and Andreas Weiler^{*b*}

^a Max Planck Institute for Physics, Föhringer Ring 6, 80805 München, Germany

^bPhysik-Department, Technische Universität München,

85748 Garching, Germany

^c Theoretical Physics Department, CERN, 1211 Geneva 23, Switzerland E-mail: haisch@mpp.mpg.de, max.ruhdorfer@tum.de,

ennio.salvioni@cern.ch, elena.venturini@tum.de, andreas.weiler@tum.de

ERRATUM TO: JHEP04(2020)164

ARXIV EPRINT: 2003.05936

Due to an oversight, in the original paper we did not give the one-loop matching correction to the (non-hermitian) operator $Q_{Hud} = (i \tilde{H}^{\dagger} D_{\mu} H)(\bar{u} \gamma^{\mu} d)$, which reads

$$C_{Hud}^{(1)} = -\frac{5A^2}{4M^4} y_u^{\dagger} y_d + \gamma_{Hud,H\Box} C_{H\Box}^{(0)} \ln \frac{\mu_M}{M}, \qquad \gamma_{Hud,H\Box} = 2y_u^{\dagger} y_d,$$

as computed from the amplitude for the $HH \rightarrow u\bar{d}$ process. Thus, up to the one-loop level, matching the real singlet scalar extensions of the Standard Model to the Standard Model effective field theory generates non-zero Wilson coefficients for 18 effective operators. We thank Benjamin Summ for bringing this omission to our attention.

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

