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A complete one-loop matching calculation for real singlet scalar extensions of the Standard
Model to the Standard Model effective field theory (SMEFT) of dimension-six operators is
presented. We compare our analytic results obtained by using Feynman diagrams to the
expressions derived in the literature by a combination of the universal one-loop effective
action (UOLEA) approach and Feynman calculus. After identifying contributions that have
been overlooked in the existing calculations, we find that the pure diagrammatic approach
and the mixed method lead to identical results. We highlight some of the subtleties involved
in computing one-loop matching corrections in SMEFT.
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1 Motivation

The Standard Model (SM) effective field theory aka SMEFT provides a well-defined model-
independent framework to characterise and to constrain new physics that is too heavy to
be directly produced in laboratories. This virtue together with the lack of a clear evidence
for direct production of new particles at the Large Hadron Collider (LHC) has prompted
considerable theoretical and experimental activities that led to the development of the
SMEFT framework and its consistent and systematic application to LHC data.

Important steps in the theoretical development of SMEFT were the classification of all
independent dimension-six SMEFT operators in [1] (see also [2] for related earlier work)
and the calculation of the full one-loop anomalous dimension matrix of these operators in
a series of papers [3–6] — partial one-loop and two-loop results have also been obtained
in [7–13]. Considerable progress has also been made recently in improving the precision of
matching calculations in perturbative extensions of the SM. A complete tree-level dictionary
that allows to read off the Wilson coefficients of the dimension-six SMEFT operators in
any ultraviolet (UV) completion with general scalar, spinor and vector field content and
arbitrary interactions has been presented in [14]. The computation of one-loop matching
contributions has been advanced as well by the development of the so-called universal
one-loop effective action (UOLEA) approach [15] that generalised methods based on a
covariant derivative expansion (CDE) [16] (cf. also [17–19] for earlier works on functional
techniques). In its initial formulation the UOLEA did not allow to compute the quantum
effects associated to loops involving both heavy and light particles [20] (see also [21]). This
shortfall triggered several theoretical improvements aimed at capturing contributions of this
type [22–27]. Despite the latter efforts the UOLEA formalism still remains incomplete to
date, because a master formula that allows to calculate heavy-light contributions with open
derivatives and mixed statistics has so far not been derived in the literature. However,
see [28] for recent progress in this direction.
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Computations in the UOLEA framework of the complete set of Wilson coefficients
arising at the one-loop level in SMEFT therefore have to make use, at least partially,
of conventional Feynman diagram techniques. The article [29] for example has employed
the UOLEA master formulae of [26] in combination with Feynman calculus to obtain the
first complete one-loop matching corrections at dimension-six for real singlet scalar exten-
sions of the SM (SSM). In this work, we repeat the calculation of [29] from scratch, relying
entirely on the use of Feynman diagrams. With the help of our independent computation we
are able to identify terms that have been missed in the existing calculations [26, 29] — small
discrepancies in the latter publications have already been noted in the presentation [30], but
updated results have not been published so far. We stress that these discrepancies are due to
oversights, and not due to structural limitations of the UOLEA approach. See Appendix A
for further explanations.

The results presented in this article constitute an important stepping stone to our
forthcoming study [31] of the indirect collider sensitivity to pseudo Nambu-Goldstone bo-
son (pNGB) dark matter (DM). This type of DM candidate is characterised by a parametric
suppression of its scattering rate on ordinary matter, making it naturally compatible with
the null results of direct DM searches. Strong theoretical motivations for this scenario come
from composite Higgs models where the Higgs and DM both emerge as pNGBs [32, 33], but
the same DM phenomenology can also be realised in simple scalar extensions of the SM —
see e.g. [34, 35]. The collider reach on pNGB DM through tree-level production in vector
boson fusion has been recently analysed [36], finding a limited sensitivity even at future
accelerators. This prompts us to explore one-loop probes, such as for instance off-shell
Higgs production, employing an effective field theory (EFT) for the SM plus the DM candi-
date [31]. A non-trivial aspect of such an analysis is that the virtual DM effects arise at the
same order as those of DM-less, one-loop effective operators induced by heavy new physics.
To clearly understand the role of these DM-independent effects, it is useful to make use
of an explicit model such as that of [35], integrating out the scalar radial mode to obtain
precisely the dimension-six SMEFT operators considered in this work. This case study is
especially useful because by varying the strength of the parameters, one can effectively in-
terpolate between elementary Higgs-like and strongly-interacting light Higgs-like [37] EFT
power countings within a simple setup. Given its relevance to our upcoming work [31] and
in view of the arguments presented in the previous paragraph, we believe it is worthwhile
to provide the complete one-loop matching corrections for the SSM in this short note.

This paper is organised as follows. In Section 2 we specify our notation and conven-
tions, while Section 3 contains the analytic results of the tree-level and one-loop matching
calculation for the SSM. In Appendix A we show that the analytic results for the heavy
one-loop matching corrections presented in Section 3.2 can also be obtained in the UOLEA
framework, while in Appendix B we collect the anomalous dimensions that describe the
renormalisation group (RG) evolution of the SSM parameters and discuss their impact on
our one-loop calculations.
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2 Preliminaries

In order to set up our notation and conventions, let us first define the electroweak (EW) part
of the SM. Before spontaneous EW symmetry breaking the tree-level EW SM Lagrangian
takes the following familiar form,

LSM = (DµH)†(DµH) + µ2
h|H|2 −

1

2
λh|H|4 −

1

4
BµνB

µν − 1

4
W a
µνW

aµν

+
∑

f = q,u,d,`,e

f̄ i /Df −
(
yuq̄H̃u+ ydq̄Hd+ ye ¯̀He+ h.c.

)
.

(2.1)

Here H denotes the SM Higgs doublet and the shorthand notation H̃i = εij(Hj)
∗ with εij

totally antisymmetric and ε12 = 1 has been used. The covariant derivative is defined as

Dµ = ∂µ − ig1Y Bµ − ig2
σa

2
W a
µ , (2.2)

with g1 and g2 the U(1)Y and SU(2)L gauge coupling, respectively, and Bµ and W a
µ (Bµν

andW a
µν) the corresponding gauge fields (field strength tensors). The hypercharge operator

is denoted by Y with eigenvalues {YH , Yq, Yu, Yd, Y`, Ye} = {1/2, 1/6, 2/3,−1/3,−1/2,−1}
and σa are the Pauli matrices. The Yukawa couplings yu, yd and ye are matrices in flavour
space and a sum over flavour indices is implicit in (2.1). Finally, the symbols q and ` denote
left-handed quark and lepton doublets, while u, d and e are right-handed fermion singlets.

As stated before, the goal of this article is to calculate the complete matching correc-
tions up to one-loop order that arise in the SSM. At the renormalisable level, Lorentz and
gauge invariance allow a real singlet scalar to couple to the SM exclusively through |H|2,
and as a result the Lagrangian relevant for the further discussion can be written as

Lφ =
1

2
(∂µφ)2 − 1

2
M2φ2 −A|H|2φ− 1

2
κ|H|2φ2 − 1

3!
µφ3 − 1

4!
λφφ

4 . (2.3)

Here we have ignored a potential tadpole contribution, meaning that the field φ in (2.3)
corresponds to the excitation around a possible non-zero vacuum expectation value. The
parametersM2, A, κ, µ and λφ appearing in (2.3) are treated as independent in what follows.

3 Calculation

By integrating out the field φ that appears in the SSM Lagrangian

LSSM = LSM + Lφ , (3.1)

one can determine the Wilson coefficients Ck that multiply the operators Qk in SMEFT

LSMEFT =
∑
k

CkQk , (3.2)

order by order in perturbation theory by performing a loop expansion

Ck = C
(0)
k +

C
(1)
k

(4π)2
+ . . . , (3.3)
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where C(0)
k and C(1)

k denote the tree-level and one-loop coefficients, respectively. The no-
tation introduced in (3.3) will also be used when expanding other quantities of interest.
The full set of dimension-six SMEFT operators has been presented in the so-called Warsaw
basis in [1]. Up to the one-loop level, it turns out that matching the theory described by the
Lagrangian (3.1) to the SMEFT Lagrangian (3.2) generates non-zero Wilson coefficients for
the following set of 18 effective operators:

QH� = |H|2�|H|2 , QHu = (H†i
↔
DµH)(ūγµu) ,

QH = |H|6 , QHd = (H†i
↔
DµH)(d̄γµd) ,

QHD = (H†DµH)∗(H†DµH) , QHud = (iH̃†DµH)(ūγµd) ,

QHB = |H|2BµνBµν , QHe = (H†i
↔
DµH)(ēγµe) ,

QHW = |H|2W a
µνW

aµν , Q
(1)
Hq = (H†i

↔
DµH)(q̄γµq) , (3.4)

QHWB = (H†σaH)W a
µνB

µν , Q
(3)
Hq = (H†i

↔
Da
µH)(q̄γµσaq) ,

QuH = |H|2(q̄H̃u) , Q
(1)
H` = (H†i

↔
DµH)(¯̀γµ`) ,

QdH = |H|2(q̄Hd) , Q
(3)
H` = (H†i

↔
Da
µH)(¯̀γµσa`) ,

QeH = |H|2(¯̀He) Q2y =
∣∣q̄jyuuεji + d̄y†dq

i + ēy†e`
i
∣∣2 .

Here � = ∂µ∂
µ, H†i

↔
DµH = iH†

(
Dµ −

←
Dµ

)
H and H†i

↔
Da
µH = iH†

(
σaDµ −

←
Dµσ

a
)
H. For

the operators QψH with ψ = u, d, e, as well as for QHud , the sum of the hermitian conjugate
in (3.2) is understood.

The matching of (3.1) onto (3.2) can be performed using either Feynman diagrams or
functional methods. In fact, the work [26] employed the UOLEA approach to calculate the
heavy (i.e. only φ loops) and the heavy-light (i.e. loops with both φ and Higgs exchange)
one-loop matching corrections for the Wilson coefficients CH� and CH . Based on the results
of that article, the paper [29] then presented the complete one-loop matching corrections
in the model described by (3.1), computing the missing heavy-light contributions involving
a φ scalar and a gauge boson or a fermion, by means of traditional Feynman diagram
techniques.1

In contrast to [26, 29] our calculation of the Wilson coefficients C(0)
k and C

(1)
k relies

on Feynman diagrams only, and therefore represents an independent cross-check of the re-
sults obtained earlier. To allow for a direct comparison with the expressions given in the
publications [26, 29], we regularise UV divergences using dimensional regularisation (DR)
in d = 4 − 2ε dimensions and renormalise the results in the MS scheme supplemented by
the renormalisation scale µR. Infrared (IR) divergences have also been regularised dimen-
sionally. The matching corrections can therefore be found by simply Taylor expanding
the corresponding scattering amplitudes in powers of external momenta squared divided
by M2 before performing any loop integration. On the other hand, SMEFT loop graphs

1The correction to the operator QHud was not given in [29]. It was also missed in previous versions of
this paper.
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Figure 1. Example diagrams that contribute to the tree-level matching coefficients λ(0)h and
C

(0)
H� (left) and C

(0)
H (right), respectively. Double-dashed lines represent virtual exchange of the

heavy real singlet scalar field φ, while single-dashed lines stand for H or H† fields.

do not contribute to the matching, because after Taylor expansion of the integrands they
involve only scaleless integrals which vanish in DR — see e.g. [38, 39] for further technical
details. The actual generation and computation of the off-shell amplitudes made use of the
Mathematica packages FeynArts [40], FeynRules [41], FormCalc [42] and Package-X [43],
and part of the one-loop matching corrections obtained by computer were also verified with
pen and paper.

3.1 Tree-level results

In the SM extension (3.1) only the Higgs quartic |H|4
(
cf. (2.1)

)
and the two effective

operators QH� and QH
(
see (3.4)

)
receive a non-zero matching correction at tree level.

The corresponding Feynman diagrams are shown in Figure 1. For the additive shift λ(0)
h of

the quartic Higgs coupling, i.e. λh → λ = λh + λ
(0)
h , in agreement with [29] we find

λ
(0)
h = − A

2

M2
, (3.5)

while in the case of the Wilson coefficients we obtain

C
(0)
H� = − A2

2M4
, (3.6)

C
(0)
H =

A3µ

6M6
− A2κ

2M4
. (3.7)

The results (3.6) and (3.7) are well-known and agree with the analytic expressions reported
for instance in the works [14, 16, 29].

3.2 One-loop results

In order to determine the one-loop matching corrections C(1)
k to the Wilson coefficients

of the dimension-six SMEFT operators Qk as given in (3.4), we consider only Feynman
diagrams that are one-particle-irreducible in the light fields, i.e. we work in the so-called
Green’s basis defined in [29], subsequently projecting our off-shell results onto the Warsaw
basis using the operator identities given in Appendix A of the latter paper.
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Figure 2. Examples of heavy contributions to the one-loop matching correction C(1)
H�. The line

styles and their meanings resemble those of Figure 1.

The one-loop matching corrections of the tree-level operators QH� and QH receive
contributions from three sources that we describe in the following. The first two types
encode the threshold effects at a matching scale µM around M . The first kind of threshold
corrections arise from heavy loops. For the case of C(1)

H�, the relevant graphs are shown in
Figure 2. Notice that diagrams with φ tadpoles in general contribute to this type of correc-
tions, hence the analytic expressions for the heavy contributions to the Wilson coefficients
C

(1)
H� and C

(1)
H depend on how the tadpole contributions are fixed. In our diagrammatic

calculation, as well as in the UOLEA approach described in Appendix A, we renormalise φ
tadpoles minimally [44, 45] and (3.9), (3.11), (A.8) and (A.9) therefore correspond to the
MS scheme. Notice that in the MS scheme the effective one-loop scalar potential contains
a term linear in the φ field, which by definition would be absent in the on-shell scheme
where the tadpole counterterm is fixed such that all tadpole diagrams vanish [46] — see
also [47–49] for excellent discussions of the different treatments of tadpoles.

The second type of threshold corrections to C(1)
H� and C(1)

H stem from heavy-light loop
diagrams involving either a H or a Bµ (W a

µ ) field. Universal effects related to the wave
function renormalisation of the Higgs field belong to this class. In fact, after the field re-
definition H →

(
1− Z(1)

H /(4π)2
)
H the Wilson coefficients CH� and CH receive a one-loop

contribution proportional to C(0)
H� and C(0)

H , respectively. The relevant wave function renor-
malisation constant Z(1)

H is determined by calculating the one-loop corrections to the Higgs
kinetic term (DµH)†(DµH) that arises from the graph displayed on the left in Figure 3. In
agreement with [29] we obtain

Z
(1)
H =

A2

4M2
. (3.8)
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Figure 3. Higgs wave function renormalisation effects. Left: heavy-light contribution to Z(1)
H

in (3.8). Right: gauge-boson and fermionic contributions to the anomalous dimensions of the SSM
parameters A and κ in (B.3) and (B.4). The wiggly line corresponds to a Bµ or W a

µ field, the
solid straight lines represent fermion fields, while the rest of the line styles and their meanings are
identical to those employed in Figure 1.

Figure 4. Examples of heavy-light scalar contributions to the one-loop matching correction C(1)
H�.

Diagrams with loops that contain only H fields are not shown, since they evaluate to zero in DR
if the H fields are taken to be massless before Taylor expanding the corresponding loop integrals.
The line styles and their meanings resemble those of Figure 1.

In addition to the wave function renormalisation contributions, non-universal heavy-light
corrections arise. The corresponding scalar and gauge-boson contributions to C

(1)
H� are

displayed in Figure 4 and Figure 5, respectively. Notice that when IR divergences are
regulated dimensionally, SSM diagrams involving only light particles in the loop do not need
to be considered, because such graphs result in scaleless integrals after Taylor expanding
the associated off-shell amplitudes in powers of external momenta squared divided by M2.
This should be contrasted to methods that use small external momenta or small light-field
masses as IR regulators (cf. for instance [50–52]). In these cases, SSM diagrams with only
light particles in the loop give non-zero IR divergent corrections but their contributions are
exactly cancelled by the corresponding SMEFT graphs. As a result, the one-loop matching
corrections C(1)

H� and C
(1)
H turn out to be independent of the procedure that is used to

regulate IR divergences (as they should), and in our calculation we have employed DR to
regulate both UV and IR divergences simply because it is technically the easiest method to
implement.
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Figure 5. Example of a heavy-light gauge-boson contribution to the one-loop matching correc-
tion C(1)

H�. Graphs with loops of only H and Bµ, or H and W a
µ fields are not displayed, because

such diagrams do not contribute if IR divergences are regulated dimensionally. The line styles and
their meanings mirror those in Figure 3.

The third type of corrections to C(1)
H� and C(1)

H arise instead from the renormalisation
of the SSM parameters that enter the tree-level Wilson coefficients (see e.g. [53] for a
pedagogical discussion). These contributions are, therefore, purely logarithmic in the MS

scheme. The logarithmic terms proportional to the SM couplings generate a RG flow that
extends below the matching scale, providing one of the contributions to the anomalous
dimensions of the SMEFT Wilson coefficients. These effects, coming from light loops, give
the same corrections to both the SSM and SMEFT amplitudes. On the other hand, the
RG-flow contributions proportional to UV SSM parameters appear only above µM . The
anomalous dimension of M2 is obtained from the Feynman diagrams shown in Figure 6,
while Figure 7, Figure 8 and Figure 9 display example graphs of contributions to the
running of A, κ and µ, respectively. Notice that the anomalous dimensions that describe
the RG flow of the SSM parameters A and κ also contain pieces arising from the light
contributions to the Higgs wave function displayed on the right-hand side in Figure 3, since
the corresponding operators contain two powers of the H field. See Appendix B for further
details and explanations.

In the case of the dimension-six SMEFT operator QH�, we find after combining the
three different types of contributions described above the following result for the one-loop
matching correction:

C
(1)
H� = − κ2

24M2
+

25A2κ− 6A2λφ − 5Aκµ

12M4
+

38A4 − 26A3µ+ 11A2µ2

24M6

−
31A2

(
g2

1 + 3g2
2

)
72M4

+ γH�,H�C
(0)
H� ln

µM
M

.

(3.9)

Here
γH�,H� = 12λ− 4

3

(
g2

1 + 3g2
2

)
+ 4y2 , (3.10)

with λ denoting the quartic Higgs coupling that includes the tree-level shift (3.5) and
the objects C(0)

H� and y2 defined in (3.6) and (B.8), respectively. Notice that all mass
and coupling parameters in (3.9), (3.10) as well as in the tree-level expression (3.6) are
renormalised at the scale M .

A couple of comments concerning our result (3.9) seem to be in order. The rational
terms in (3.9) receive contributions from the Higgs wave function renormalisation con-

– 8 –



Figure 6. One-loop contributions to the propagator of the real singlet scalar. In the MS scheme
the UV poles of the first and second diagram cancel against each other. The line styles and their
meanings are identical to those employed in Figure 1.

stant (3.8) and heavy and heavy-light diagrams (see Figure 2, Figure 4 and Figure 5), while
the logarithmic terms result from the combination of heavy and heavy-light graphs as well
as the renormalisation of M2 and A according to (B.2) and (B.3). In fact, the logarithmic
pieces proportional to SM couplings combine to give the anomalous dimension γH�,H�,
whereas the remaining terms cancel, because they do not run below the matching scale
(see Appendix B for further details). The anomalous dimension describes the self-mixing
of the dimension-six operator QH�, and our expression (3.10) agrees with the results of the
direct calculation of γH�,H� presented in [3–5] — the found agreement constitutes a non-
trivial cross-check of our computation. We add that the logarithmic corrections in (3.9) are
scheme-independent, while the rational terms in C(1)

H� depend on the choice of renormali-
sation scheme, including the specific treatment of φ tadpoles. Notice that the cancellation
in (3.9) of logarithms that are not proportional to SM couplings is crucial to achieve the
correct factorisation of short-distance and long-distance effects. In fact, in the SMEFT only
the combination of SSM parameters that forms a Wilson coefficient has a non-trivial RG
flow, together with the SM couplings λ, g1, g2 and yf . Thus, the correct description of
long-distance physics has to be formulated in terms of the SM couplings and the Wilson
coefficient CH� evaluated at the low-energy scale. Let us finally mention that (3.9) differs
from the expression for C(1)

H� given in both [26] and [29]. The disagreement has two sources.
First, as shown in Appendix A, the latter calculations miss certain heavy-loop contribu-
tions, and second, RG effects associated to the running of SSM parameters have not been
explicitly included in the existing computations.

In the case of the operator QH , we have calculated the H → H, HHH → HHH,
HH† →W a

µ and HH → HHW a
µW

b
ν scattering amplitudes to find the following expression

for the one-loop correction to the Wilson coefficient CH :

C
(1)
H = − κ3

12M2
−

6A2κλφ + 162A2κλ− 66A2κ2 − 164A2λ2 + 3Aκ2µ

12M4

+
87A4κ− 6A4λφ − 72A4λ− 60A3κµ+ 4A3µλφ + 78A3λµ+ 6A2κµ2

12M6

− 8A6 + 21A5µ− 12A4µ2 + 2A3µ3

12M8
− 31A2λg2

2

18M4

+
(
γH,H�C

(0)
H� + γH,HC

(0)
H

)
ln
µM
M

.

(3.11)
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Figure 7. Examples of one-loop contributions to the renormalisation of the coupling A. The UV
poles of the first and second graph cancel against each other in the MS scheme. The line styles and
their meanings are analogue to those of Figure 5.

Figure 8. Examples of one-loop contributions to the renormalisation of the coupling κ. The line
styles and their meanings are analogue to those of Figure 5.

The anomalous dimensions entering (3.11) read

γH,H� = −40λ2 +
20λg2

2

3
, (3.12)

γH,H = 54λ− 9

2

(
g2

1 + 3g2
2

)
+ 6y2 , (3.13)

while (3.6), (3.7) and (B.8) contain the explicit expressions for C(0)
H�, C

(0)
H and y2. All

mass and coupling parameters that appear in (3.11) to (3.13) as well as in the tree-level
expressions (3.6) and (3.7) are renormalised at the scale M .

Like in the case of (3.9), one observes that the logarithmic corrections in (3.11) involve
only anomalous dimensions that depend on SM couplings, but not on SSM parameters. In
fact, our expressions (3.12) and (3.13) for γH,H� and γH,H agree with the results obtained
in the articles [3–5]. The source of the difference between the first four terms in (3.11) and
the rational terms of C(1)

H as quoted in [26, 29] is unraveled in Appendix A. In addition, the
existing calculations do not explicitly include effects stemming from the renormalisation of
SSM parameters — cf. (B.2) to (B.5) — and therefore the logarithmic corrections given
in (3.11) differ from the corresponding terms specified in [26, 29] as well.
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Figure 9. Examples of one-loop contributions to the renormalisation of the coupling µ. The line
styles and their meanings resemble those of Figure 1.

Figure 10. Examples of one-loop heavy-light scalar diagrams that need to be considered to
extract the one-loop matching corrections of the bosonic dimension-six SMEFT operators in (3.4)
that do not receive a tree-level Wilson coefficient. The line styles and their meanings resemble those
of Figure 5.

In the case of the 16 dimension-six SMEFT operators in (3.4) that do not receive a
tree-level Wilson coefficient, only heavy-light Feynman diagrams contribute to the one-
loop matching. To extract the relevant one-loop corrections of the bosonic operators, we
have calculated the off-shell amplitudes for HH → HH, HH† → Vµ and HH† → VµV

′
ν

scattering with V (′)
µ = Bµ,W

a
µ . See Figure 10 for the processes with external gauge bosons.

We obtain

C
(1)
HD = −31A2g2

1

18M4
+ γHD,H�C

(0)
H� ln

µM
M

, (3.14)

C
(1)
HB =

A2g2
1

12M4
, (3.15)

C
(1)
HW =

A2g2
2

12M4
, (3.16)

C
(1)
HWB =

A2g1g2

6M4
. (3.17)

Here

γHD,H� =
20g2

1

3
, (3.18)

and the expression for the tree-level Wilson coefficient C(0)
H� has already been given in (3.6).

We emphasise that our results (3.14) to (3.17) agree with (A.20) to (A.23) of [29] and that
the anomalous dimension (3.18) matches that calculated in [5]. Notice that in contrast
to C(1)

HD, the Wilson coefficients C(1)
HB, C

(1)
HW and C(1)

HWB do not receive logarithmic correc-
tions. This feature is expected, because the tree-level operators QH� and QH do not mix
into QHB, QHW and QHWB at the one-loop level [3–5].

– 11 –



Figure 11. Examples of one-loop heavy-light scalar diagrams that need to be considered to extract
the one-loop matching corrections of the fermionic dimension-six SMEFT operators in (3.4). The
line styles and their meanings duplicate those of Figure 3.

In order to determine the one-loop matching corrections of the fermionic dimension-six
SMEFT operators appearing in (3.4), we have computed the heavy-light scalar contributions
to the HH† → f̄f and HH → Hf̄f off-shell amplitudes with f = q, u, d, `, e, as well as to
HH → ud̄. Examples of the corresponding diagrams are shown in Figure 11. We find

C
(1)
ψH = −

A2yψ
36M4

(
27κ− 87λ− 9Aµ

M2
+ 31g2

2 − 45y†ψyψ

)
+ γψH,H�C

(0)
H� ln

µM
M

, (3.19)

C
(1)
Hu = − A2

216M4

(
34g2

1 − 135y†uyu

)
+ γHu,H�C

(0)
H� ln

µM
M

, (3.20)

C
(1)
Hd =

A2

216M4

(
17g2

1 − 135y†dyd

)
+ γHd,H�C

(0)
H� ln

µM
M

, (3.21)

C
(1)
Hud = − 5A2

4M4
y†uyd + γHud,H�C

(0)
H� ln

µM
M

, (3.22)

C
(1)
He =

A2

72M4

(
17g2

1 − 45y†eye

)
+ γHe,H�C

(0)
H� ln

µM
M

, (3.23)

C
(1)

Hq(1)
= − A2

432M4

[
17g2

1 + 135
(
yuy
†
u − ydy

†
d

)]
+ γHq(1),H�C

(0)
H� ln

µM
M

, (3.24)

C
(1)

Hq(3)
= − A2

144M4

[
17g2

2 − 45
(
yuy
†
u + ydy

†
d

)]
+ γHq(3),H�C

(0)
H� ln

µM
M

, (3.25)

C
(1)

H`(1)
=

A2

144M4

(
17g2

1 + 45yey
†
e

)
+ γH`(1),H�C

(0)
H� ln

µM
M

, (3.26)

C
(1)

H`(3)
= − A2

144M4

(
17g2

2 − 45yey
†
e

)
+ γH`(3),H�C

(0)
H� ln

µM
M

, (3.27)

C
(1)
2y =

A2

6M4
. (3.28)

The one-loop anomalous dimensions appearing in the above expressions are

γψH,H� = −yψ
(

2λ− 10g2
2

3
+ 6y†ψyψ

)
, (3.29)

γHu,H� =
2g2

1

9
− y†uyu , (3.30)

γHd,H� = −g
2
1

9
+ y†dyd , (3.31)
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γHud,H� = 2y†uyd , (3.32)

γHe,H� = −g
2
1

3
+ y†eye , (3.33)

γHq(1),H� =
g2

1

18
+

1

2

(
yuy
†
u − ydy

†
d

)
, (3.34)

γHq(3),H� =
g2

2

6
− 1

2

(
yuy
†
u + ydy

†
d

)
, (3.35)

γH`(1),H� = −g
2
1

6
− 1

2
yey
†
e , (3.36)

γH`(3),H� =
g2

2

6
− 1

2
yey
†
e . (3.37)

A sum over flavour indices is implicit in the above equations and the index ψ in (3.19)
and (3.29) can take the values ψ = u, d, e. Our results (3.19) to (3.21) and (3.23) to (3.28)
for the one-loop matching corrections of the fermionic dimension-six SMEFT operators
agree with (A.24) to (A.34) as given in [29]. On the other hand, the correction (3.22) was
missed in [29]. In addition, the anomalous dimension expressions (3.29) to (3.37) fulfil the
one-loop SMEFT RG equations collected in [3–5]. Finally, note that the operator Q2y is a
linear combination of several four-fermion operators in the Warsaw basis [54]. The Wilson
coefficient C2y does not receive a logarithmic correction, since the (purely bosonic) tree-level
operators QH� and QH obviously cannot mix into four-fermion operators at one loop.
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A UOLEA results

In this appendix we apply functional methods to perform the one-loop matching and point
out some pieces which were missed in the previous calculation [26]. Once these missing
parts are accounted for, the results obtained in the UOLEA framework agree with the
expressions of our diagrammatic calculation described in Section 3. We demonstrate this
agreement explicitly for the contribution from heavy-particle loops to the one-loop matching
corrections to the Wilson coefficients CH� and CH . Our discussion follows the general line
of reasoning presented in the articles [15, 16, 26] and we refer to the works [22–24] for CDE
and UOLEA formulations including heavy-light loops.
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Starting from the Lagrangian (2.3) one can obtain the low-energy effective action by
performing the functional integral over the φ field. The part originating from heavy particle
loops is given by

Seff [H] ' S[H,φc] +
i

2
Tr ln

(
− δ2S

δφ2

∣∣∣∣
φ=φc

)
' S[H,φc] +

i

2
Tr ln

(
−P 2 +M2 + Uφ

)
.

(A.1)

Here φc = φc[H] is the solution of the classical equation of motion of φ, i.e. δS/δφ
∣∣
φ=φc

= 0,
Pµ = i∂µ and Uφ in the case of (2.3) takes the form

Uφ =
∂2Lφ
∂φ2

∣∣∣∣
φ=φc

= κ|H|2 + µφc +
1

2
λφφ

2
c . (A.2)

In order to find an expression for φc we perturbatively solve the equation of motion of φ,
which explicitly reads

(
� +M2 + κ|H|2

)
φ = −A|H|2 − µ

2
φ2 −

λφ
6
φ3 . (A.3)

Making the ansatz φc = φ
(0)
c + φ

(1)
c + φ

(2)
c + . . . with φ

(k)
c = O(µlλnφ) and k = l + n it is

straightforward to obtain

φ(0)
c = − 1

� +M2 + κ|H|2
A|H|2 , (A.4)

φ(1)
c = − 1

� +M2 + κ|H|2

(
µ

2

(
φ(0)
c

)2
+
λφ
6

(
φ(0)
c

)3)
, (A.5)

φ(2)
c = − 1

� +M2 + κ|H|2

(
µφ(0)

c φ(1)
c +

λφ
2

(
φ(0)
c

)2
φ(1)
c

)
. (A.6)

Expanding φc up to four Higgs fields and two derivatives or six Higgs fields and no derivative,
we then find the following expression

φc =− A

M2
|H|2 +

(
Aκ

M4
− A2µ

2M6

)
|H|4 +

A

M4
�|H|2

−
(
Aκ

M6
− A2µ

M8

)
|H|2�|H|2 −

(
Aκ2

M6
−
A3λφ + 9A2κµ

6M8
+
A3µ2

2M10

)
|H|6 .

(A.7)

Comparing the above result for φc to (4.2) of [26] one observes that while the first three
terms of (A.7) agree with the |H|2, |H|4 and �|H|2 contributions given in the latter work,
the |H|2�|H|2 and |H|6 contain additional pieces, all of which vanish in the limit µ→ 0.

These additional terms affect the matching contributions from heavy loops to the one-
loop Wilson coefficients C(1)

H� and C(1)
H , which consequently differ from the results presented

in the work [26]. Considering the full solution of the classical equation of motion, we find
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that the heavy-loop contribution to C(1)
H� is given by

C
(1)
H�

∣∣∣
heavy

= −
(
A2λφ +Aκµ

2M6
− A2µ2

2M8

)
f̃2

+

(
Aκµ

M4
− A2µ2

M6

)
f̃4 +

(
κ2

2
− Aκµ

M2
+
A2µ2

2M4

)
f̃7

= − κ2

24M2
−

6A2λφ + 5Aκµ

12M4
+

11A2µ2

24M6
−
A2λφ
M4

ln
µM
M

,

(A.8)

where to obtain the final result we have inserted the expressions for the universal coeffi-
cients f̃N reported in Appendix B of [26]. Notice that only the prefactor of f̃2 in (A.8) differs
from the result (4.10) presented in the article [26]. Diagrammatically the observed difference
of A2µ2 (1 + 2 lnµM/M) /(2M6) is due to propagator-type tadpole contributions — see the
last diagram in Figure 2 — that have effectively been missed in the latter calculation.

In the case of the heavy one-loop matching contributions to the Wilson coefficient of
the operator QH

(
cf. (3.2) and (3.4)

)
, we instead obtain the following expression

C
(1)
H

∣∣∣
heavy

= −
(
A2κλφ +Aκ2µ

2M6
−

4A3µλφ + 9A2κµ2

12M8
+
A3µ3

4M10

)
f̃2

+

(
A2κλφ + 2Aκ2µ

2M4
−
A3µλφ + 3A2κµ2

2M6
+
A3µ3

2M8

)
f̃4

+

(
κ3

2
− 3Aκ2µ

2M2
+

3A2κµ2

2M4
− A3µ3

2M6

)
f̃8

= − κ3

12M2
−

2A2κλφ +Aκ2µ

4M4
+

2A3µλφ + 3A2κµ2

6M6
− A3µ3

6M8

−
(
A2κλφ
2M4

−
A3µλφ
6M6

)
ln
µM
M

.

(A.9)

Apart from the prefactor of f̃2, the latter result agrees with (4.9) of [26]. The result-
ing difference of A2µ2

(
Aµ− 2M2κ

)
(1 + 2 lnµM/M) /(4M8) can again be traced back to

propagator-type tadpole contributions that have not been correctly included in the lat-
ter article. Our formula (A.9) is in accord with the preliminary results presented in the
talk [30], where small discrepancies with the formula for C(1)

H given in [26] were already
observed.

The heavy-light contributions to the one-loop matching corrections to the dimension-
six SMEFT operators QH� and QH are not affected by the additional terms in (A.7). In
fact, the operators generated by heavy-light loops that are proportional to φc appear with
at least two additional Higgs fields compared to QH� and QH . As a result the missing
terms only affect the one-loop matching of operators with a mass dimension of eight or
higher. However, when trying to reproduce the results in [26] we discovered an unrelated
typo in the heavy-light contribution to C(1)

H that appears in the prefactor of f̃4A in (4.8)
of that work. We find that the actual contribution of the universal coefficient f̃4A to the
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Wilson coefficient C(1)
H should read

C
(1)
H

∣∣∣
f̃4A

=
3A2κ2

M4
− A3κµ

M6
. (A.10)

Once the additional terms in (A.7) and the correction (A.10) are taken into account we
recover the diagrammatic results for C(1)

H� and C(1)
H originating from heavy and heavy-light

pure scalar loops, meaning that our UOLEA calculation reproduced the terms in the first
two lines of (3.9) as well as the terms in the first three lines of (3.11). Note that the above
mistakes and typos are also present in (3.1) and (3.2) of [29], which employed the UOLEA
master formulas of [26] to obtain the aforementioned results.

B RG evolution of SSM parameters

We define the one-loop anomalous dimensions γx that enter the RG evolution of the pa-
rameters x by

dx

d lnµR
=

γx
(4π)2

. (B.1)

Renormalising all UV poles including those arising from φ tadpoles in the MS scheme, the
anomalous dimensions of the parameters M2, A, κ, µ, λφ and λh read

γM2 = M2λφ + 4A2 , (B.2)

γA = A

(
4κ+ 6λh −

3

2

(
g2

1 + 3g2
2

)
+ 2y2

)
, (B.3)

γκ = κ

(
4κ+ λφ + 6λh −

3

2

(
g2

1 + 3g2
2

)
+ 2y2

)
, (B.4)

γµ = 2µλφ + 12Aκ , (B.5)

γλφ = 12κ2 + 3λ2
φ , (B.6)

γλh = κ2 + 12λ2
h − 3λh

(
g2

1 + 3g2
2

)
+

3

4

(
g4

1 + 2g2
1g

2
2 + 3g4

2

)
+ 4λhy2 − 4y4 , (B.7)

with

y2 = Tr
(

3y†uyu + 3y†dyd + y†eye

)
, (B.8)

y4 = Tr
(

3y†uyuy
†
uyu + 3y†dydy

†
dyd + y†eyey

†
eye

)
. (B.9)

Examples of Feynman graphs that contribute to the anomalous dimensions γM2 , γA, γκ
and γµ are shown on the right of Figure 3 as well as in Figure 6 to Figure 9. We add that
the results for γλφ and γλh are not needed in the context of this work, but we provide them
for completeness.

In Section 3.2 of this article we have presented our final results (3.9) and (3.11) for
the one-loop matching corrections C(1)

H� and C(1)
H . In both cases we have observed that the

logarithmic corrections to the Wilson coefficients involve only anomalous dimensions that
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depend only on SM couplings but not on SSM parameters. Below we explicitly show how
this feature arises. The given formulae should also facilitate a comparison to the existing
computations [26, 29] as well as to the preliminary results presented in the talk [30].

In order to derive the logarithmic terms that arise from the renormalisation of the
SSM parameters, we first notice that if the tree-level Wilson coefficients C(0)

k are expressed
through the SSM parameters x one has

dC
(0)
k

d lnµR
=
∑
x

∂C
(0)
k

∂x

dx

d lnµR
=

1

(4π)2

∑
x

∂C
(0)
k

∂x
γx , (B.10)

where the sum over x includes M2, A, κ, µ, λφ and λh, and in the last step we have used
the definition (B.1). Integrating (B.10) from µM to M then gives rise to the logarithmic
corrections that are associated to the renormalisation of the SSM parameters.

Applying the master formula (B.10) to the case of the Wilson coefficient C(1)
H�, we find

the following logarithmic terms

C
(1)
H�

∣∣∣
ln
µM
M

=
4A2κ−A2λφ

M4
+

2A4

M6
−

5A2
(
g2

1 + 3g2
2

)
6M4

+
A2γM2

M6
− AγA
M4

=

(
12λ− 4

3

(
g2

1 + 3g2
2

)
+ 4y2

)(
− A2

2M4

)
.

(B.11)

The first three terms in the first line of (B.11) result from the heavy and heavy-light
loop diagrams shown in Figure 2 to Figure 5. The terms proportional to γM2 and γA
instead arise from the renormalisation of the parametersM2 and A that enter the tree-level
Wilson coefficient (3.6). In the second line of (B.11) we can manifestly see that there is
a cancellation of logarithmic terms involving the combinations of SSM parameters that do
not form a SMEFT Wilson coefficient, yielding the logarithmic correction quoted in (3.9)
as final result.

In the case of the Wilson coefficient C(1)
H using (B.10) instead leads to

C
(1)
H

∣∣∣
ln
µM
M

= −
A2κλφ + 36A2κλ− 12A2κ2 − 40A2λ2

2M4

+
18A4κ− 12A3κµ+A3µλφ + 36A3λµ

6M6
− A5µ

M8
− 10A2λg2

2

3M4

+

(
A2κ

M6
− A3µ

2M8

)
γM2 −

(
Aκ

M4
− A2µ

2M6

)
γA −

A2γκ
2M4

+
A3γµ
6M6

=

(
−40λ2 +

20λg2
2

3

)(
− A2

2M4

)
+

(
54λ− 9

2

(
g2

1 + 3g2
2

)
+ 6y2

)(
A3µ

6M6
− A2κ

2M4

)
.

(B.12)

The first two lines of the above expression correspond to the contributions from heavy and
heavy-light graphs, while the terms proportional to the anomalous dimensions γM2 , γA,
γκ and γµ are the counterterm contributions that are associated to the renormalisation of
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the relevant SSM parameters appearing in the tree-level Wilson coefficient C(0)
H . Notice

that the final result in (B.12) agrees with the logarithmic correction that we have obtained
in (3.11), and that these terms have the correct form to allow for a resummation of large
logarithms using the RG equations of the dimension-six SMEFT operators QH� and QH
derived in [3–5].
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