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Abstract

We analyze the constraints on coloured scalar bosons imposed by the current LHC data
at
√
s = 13 TeV. Specifically, we consider an additional electroweak doublet of colour-

octet scalars, satisfying the principle of minimal flavour violation in order to fulfill the
stringent experimental limits on flavour-changing neutral currents. We demonstrate that
coloured scalars with masses below 800 GeV are already excluded, provided they are not
fermiophobic.

1 Introduction
The discovery of the Higgs boson by the ATLAS and CMS Collaborations [1,2] can be understood
not just like the confirmation of the mechanism for generating the masses of the Standard Model
(SM) particles but like the discovery of the first element of a possible more extended scalar
sector. Although the current data are compatible with the SM, there remain many unanswered
fundamental questions which motivate the existence of new physics (NP). Furthermore, with the
available data, there is still plenty of room for extensions of the scalar sector of the SM at the
TeV scale.

Electroweak models with extended scalar sectors usually introduce two potentially worrisome
problems: dangerous contributions to the mass ratio ρ ≡ M2

W/(M
2
Z cos2 θW ) and unsuppressed

flavour-changing neutral-current (FCNC) transitions. The phenomenological requirement that
ρ − 1 must be very small, ≤ O(10−3), selects SU(2)L singlets and doublets as the preferred
scalar candidates, while unwanted FCNCs are usually avoided introducing some ad hoc discrete
symmetry that forces each type of SM right-handed fermion to couple only to a single scalar
doublet. This guarantees that all Yukawa matrices are diagonal in the mass basis and keeps the
resulting flavour structure stable under quantum corrections (natural flavour conservation) [3].
However, there are more generic possibilities in order to suppress FCNCs.

The principle of minimal flavour violation (MFV) [4, 5] constitutes a much weaker (and
general) assumption that also leads to a very effective suppression of FCNCs. It is based on
the hypothesis that all Yukawa matrices are proportional to the same flavour structures that
break the SU(3)QL

⊗SU(3)uR⊗SU(3)dR symmetry. In multi-Higgs doublet models this leads to
the flavour alignment of all scalar Yukawa couplings to a given right-handed fermion type [6–8].
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FCNCs are then absent at tree level, and all flavour-changing phenomena are controlled by the
charged-current Cabibbo-Kobayashi-Maskawa (CKM) matrix [9, 10].

Manohar and Wise realized that the principle of MFV can only be satisfied by those scalar
representations transforming under SU(3)C ⊗ SU(2)L ⊗ U(1)Y like (1,2)1/2 or (8,2)1/2 [11].
Therefore models with additional scalar doublets that are either colour singlet or colour octet
become very interesting candidates for possible extensions of the scalar sector of the SM. The
phenomenological implications of having additional colour-singlet scalar doublets have been ex-
tensively studied [8, 12–47]. In this work we focus on the other possibility, scalar extensions in
which we add a colour-octet electroweak doublet satisfying the principle of MFV, the so-called
Manohar and Wise (MW) model [11]. This model is also motivated by the fact that some SU(5)
and SO(10) unification theories predict colour-octet electroweak doublets with masses around
the electroweak scale [48–53].

The MW model has also been widely studied in the literature, and its parameter space
has been constrained with theoretical considerations, such as unitarity and vacuum stability
[54, 55], and phenomenological analyses. The presence of colour-octet scalars affects the SM
Higgs production and its decay to diphotons [56–60], electroweak precision observables like the
oblique parameters [11, 61] or Rb [62, 63], flavour observables such as neutral-meson mixing or
the decay Bs → `+ `− [64], and the anomalous electric and magnetic dipole moments of the
quarks [65].

Being coloured particles, the MW scalars could be massively produced at the LHC, provided
they are light enough to be kinematically accessible. However, most of the works analysing the
direct production of these scalars have been performed before the huge release of data on heavy-
particle searches at the LHC [66–72]. The most complete analysis on the direct production of
these scalars was done in Ref. [70], where the single and pair production of neutral scalars was
studied. Slightly stronger limits were obtained in Ref. [72] for the particular case of a neutral
coloured pseudoscalar, assuming that it decays exclusively into top quarks (top-philic limit).
The recent release of high-luminosity experimental searches for massive resonances decaying
into heavy quarks [73–76] makes it now possible to improve those bounds. In this work, we
focus on the associated production of neutral and charged scalars with heavy quarks that was
not considered in previous analyses. With these searches we are able to cover some regions
of the parameter space that have not been studied before. Furthermore, we also update the
experimental data on the single production of neutral scalars decaying to top quarks, at

√
s = 13

TeV. However, the limits obtained from this channel are still not better than those obtained for√
s = 8 TeV in Ref. [70].
Note that in order to compare our theoretical predictions with the experimental data we

make use of specific analyses performed by the ATLAS and CMS Collaborations. In the case
of the single production, we compare our predictions with the experimental limits found for Z ′
particles and Kaluza-Klein gluons and gravitons [73]. For the associated production, we exploit
the limits obtained for the type-II two-Higgs-doublet model (2HDM) in Refs. [74–76]. We have
considered that the kinematics of our production channels and the experimental analyses we
compare with are very similar, which is a reasonable assumption.

Although in this work we have focused in the MW model, it is worth to mention that there
are other possibilities to suppress the NP contributions to FCNCs, like the next-to-minimal-
flavour-violation scenario where the NP dominantly couples with the third-generation quarks
and is quasialigned with the Yukawa matrices [77]. Phenomenological signatures of coloured-
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octet scalars in this type of models have been studied in Refs. [78,79].
We first provide in Section 2 a very brief description of the MW model and define the

relevant parameters. Our phenomenological analyses are detailed in Section 3, where we analyze
the single production of neutral scalars and the associated production of neutral and charged
scalars with top quarks. We finally summarize in Section 4.

2 The MW Model
As we mentioned in the Introduction, the MW model adds a new scalar field to the SM with
the SU(3)C ⊗ SU(2)L ⊗ U(1)Y quantum numbers (8,2)1/2. Therefore the scalar sector will be
formed by the usual Higgs doublet φ = (φ+, φ0)T plus an SU(3)C-octet field SA = (SA,+, SA,0)T .
Since they are colourful particles, the new scalars cannot acquire a vacuum expectation value
(vev), neither can they mix with the SM Higgs doublet.

The most general potential that can be build with this scalar sector takes the form:

V =
λ

16
(2φ†iφi − v2)2 + 2m2

S Tr(S†iSi) + λ1 φ
†iφi Tr(S†jSj) + λ2 φ

†iφj Tr(S†jSi)

+
[
λ3 φ

†iφ†j Tr(SiSj) + λ4 φ
†i Tr(S†jSjSi) + λ5 φ

†i Tr(S†jSiSj) + h. c.
]

+ λ6 Tr(S†iSiS
†jSj) + λ7 Tr(S†iSjS

†jSi) + λ8 Tr(S†iSi) Tr(S†jSj)

+ λ9 Tr(S†iSj) Tr(S†jSi) + λ10 Tr(SiSj) Tr(S†iS†j) + λ11 Tr(SiSjS
†jS†i) , (1)

where i and j are SU(2)L indices, the traces are in colour space and we have used the notation
S = SATA, with TA the generators of the SU(3)C group. All potential parameters are real
except λ3, λ4 and λ5, but we can choose λ3 to be real performing a global phase rotation of the
S multiplet field.

The vev of the SM Higgs doublet, 〈φ0〉 = v/
√

2, generates a mass splitting among the physical
coloured scalars,

m2
S± = m2

S + λ1
v2

4
, m2

S0
R,I

= m2
S + (λ1 + λ2 ± 2λ3)

v2

4
, (2)

where mS± is the charged-scalar mass, while mS0
R
and mS0

I
are the masses of the CP-even and

CP-odd neutral scalars, respectively.
The interaction of the octet scalars with the gauge bosons is generated by the kinetic term

LK = 2 Tr[(DµS)†DµS] , (3)

through the covariant derivative,

DµS = ∂µS + igs [Gµ, S] + ig
σi

2
W i
µS +

i

2
g′BµS , (4)

with Gµ = GA
µT

A the octet gluon field. The factor of 2 in Eq. (3) generates the correct canonical
normalisation for the fields.

The last remaining piece is the Yukawa interaction of the colour-octet scalar multiplet. The
MFV assumption implies that the Yukawa flavour matrices of the S field are proportional to the
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SM ones,

LY = −
3∑

i,j=1

[
ηD Y

d
ij QLi

SdRj
+ ηU Y

u
ij QLi

S̃uRj
+ H.c.

]
, (5)

where ηD and ηU are, in general, complex parameters. The scalar-fermion interactions are then
proportional to the corresponding fermion masses since Y f =

√
2Mf/v.

The S0
R,IG

2 interaction plays an important role in the production and decay of the coloured
neutral scalars. The dimension-4 Lagrangian does not contain any direct coupling of the neutral
octet scalars to two gluon fields. However, this coupling gets generated by quantum effects
through scalar and fermion loops. The corresponding vertex can be represented by the dimension-
6 gauge-invariant effective Lagrangian,

LSGG = FR G
A
µνG

BµνdABCS0C

R + FI G̃
A
µνG

BµνdABCS0C

I , (6)

where GA
µν is the gluon strength tensor and G̃A

µν = 1
2
εµναβGA

αβ. The Wilson coefficients FR and
FI are easily obtained at the one-loop level. This was first calculated in Ref. [62], neglecting the
mass splitting between the scalars. If the splitting is not neglected, these coefficients are given
by

FR = (
√

2GF )1/2
αs
8π

[
ηU Iq

(
m2
t

m2
SR

)
+ ηD Iq

(
m2
b

m2
SR

)

− 9

4

v2

m2
SR

λ4 + λ5
2

{
Is(1) +

1

3

[
Is

(
m2
SI

m2
SR

)
+ 2Is

(
m2
S±

m2
SR

)]}]
,

FI = (
√

2GF )1/2
αs

16π

[
ηU

m2
t

m2
SI

F
(
m2
t

m2
SI

)
+ ηD

m2
b

m2
SI

F
(
m2
b

m2
SI

)]
, (7)

in the CP-conserving limit, i.e., considering all parameters to be real. In these expressions we
have made use of the functions,

Iq(z) = z [2 + (4z − 1)F(z)] , Is(z) = −z [1 + 2zF(z)] , (8)

where

F(z) =


1
2

[
log
(

1+
√
1−4z

1−
√
1−4z

)
− iπ

]2
, z < 1/4

−2 arcsin2(1/
√

4z) , z > 1/4

. (9)

In order to reduce the total number of parameters, we will work in the CP-conserving limit.
Furthermore, the couplings m2

S, λ1, λ2 and λ3 are only needed for the determination of the
scalar masses; since we only have three different coloured scalars, we can then remove 1 degree
of freedom. Moreover, the parameters λ4 and λ5 are just relevant for the decay of the CP-even
neutral scalar to gluons, which depends on their sum λ4 + λ5, allowing us to remove another
degree of freedom. Finally, the four-point interactions of the coloured scalars will be irrelevant
for this analysis, so we can take λ6−11 = 0 for simplicity.
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With this considerations, we end up with only 6 degrees of freedom,

m2
S± , λ4,5 =

λ4 + λ5
2

, ηU , ηD ,

∆m2
SR

= m2
S0
R
−m2

S± =
v2

4
(λ2 + 2λ3) ,

∆m2
SI

= m2
S0
I
−m2

S± =
v2

4
(λ2 − 2λ3) . (10)

These parameters must satisfy some theoretical requirements and phenomenological constraints.
Perturbative unitarity enforces the modulus of λ4,5 to be smaller than 13 [54]. Flavour observ-
ables [64] and Rb [62] put an upper bound on the up-type Yukawa, |ηU | < 2, for a charged-scalar
mass below 1 TeV. The analogous limits on |ηD| are currently very weak, allowing it to go beyond
100. Finally, the mass splittings are constrained by the oblique parameters S, T and U. For light
scalar masses (≤ 350 GeV), ∆m2

SI
(∆m2

SR
) is constrained to be smaller than 60 GeV if λ2 and

λ3 have the same (opposite) sign [67]. The oblique constraint becomes weaker for larger masses.

3 Collider Phenomenology
In our phenomenological analysis, we have considered the processes p p → S0

R,I → t t̄, p p →
S0
R,I t t̄→ t t̄ t t̄ and p p→ S+ t̄ b→ t b̄ t̄ b. In order to constrain the model, we will focus on those

regions of the parameter space in which the coloured scalar particles decay mainly to quarks,
i.e., where decay modes into another coloured scalar and a weak boson such as S0

R,I → S+W−,
S+ → S0

R,IW
+ and S0

R,I → S0
I,RZ

0 are suppressed. Of course, these channels are only possible for
the heavier scalars decaying to the lighter ones because the opposite possibility is kinematically
forbidden. Therefore, when we consider the production of every scalar, we select λ2 and λ3 in
such a way that this scalar is the lightest one, avoiding then the unwanted decay modes. Hence,
the study of the CP-even neutral scalars, the one of the CP-odd neutral scalars and the one
of the charged scalars analyze different regions of λ2 and λ3, but once we combine the results
coming from the three searches, we are able to cover all possible values of these parameters.

We have generated collision events with the program MG5_aMC@NLO [80], using first
feynrules [81, 82] to produce the universal Feynrules Output needed to run our model. All
calculations in MG5aMC@NLO were performed at tree level. In the event generation we have
used the particle distribution functions (PDF) set NNPDF23_nlo_ as_0119 of the package
lhapdf_6.1.6 [83]. The centre-of-mass energy has been fixed to

√
s = 13 TeV, while the

experimental data had an integrated luminosity of 36.1 fb−1 for the ATLAS data [73–75] and
137 fb−1 for the CMS data [76]. Furthermore, we have estimated the theoretical uncertainties
varying the values of the renormalisation and factorisation scales by a factor between 1/2 and 2.

3.1 Single Production of Neutral Scalars

The neutral coloured scalars, apart from decaying into top quarks, can also decay to gluons and
to bottom quarks. The decay amplitude to gluons depends on the parameters ηU and ηD for
the CP-odd scalars, and also on λ4,5 for the CP-even scalars; the decay to t t̄ is proportional to
ηU and the decay to b b̄ is proportional to ηD. Furthermore, as mentioned before, we select the
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values of λ2 and λ3 in such a way that the decay into another coloured scalar is kinematically
forbidden, i.e., λ2 + 2λ3 < 0 and λ3 < 0 for the CP-even scalar, and λ2− 2λ3 < 0 and λ3 > 0 for
the CP-odd scalar.

In order to maximize the production cross section of a coloured neutral CP-even scalar
through gluon fusion, we have chosen λ4,5 with the opposite sign to ηU and ηD, so that all
contributions to FR in Eq. (7) interfere constructively. Notice that this Wilson coefficient also
governs the S0

R decay into two gluons. Hence, both the single production cross section and the
decay amplitude to gluons are higher in this case compared with the alternative sign choice
for λ4,5. However, as shown in Ref. [70], the scalar contribution is much smaller than the top
one, unless |λ4,5| is very large. Therefore, one gets finally similar results with both signs. The
resulting limits are just slightly better with our choice of sign due to the increase of the cross
section; the corresponding increase of the decay width into gluons does not worsen them because
the branching ratio of the S0

R decay into quarks remains always very close to one, for the values
of ηU considered here. We have varied |λ4,5| from 0 to 10, which is almost at the limit of
its perturbative unitarity region (|λ4,5| . 13) [54]. As it has been previously commented, the
parameter ηU is strongly constrained by flavour observables and, for masses of the coloured
scalars smaller than 1 TeV, its absolute value cannot be higher than 2 [62,64], so we go at most
up to this value of |ηU |.

For the single production we have taken the experimental data from the ATLAS search for
Z ′ bosons and Kaluza-Klein gravitons and gluons, in Ref. [73]. The interference with the SM
production amplitudes has not been considered in those searches, although it could have some
effects on the signal shape for scalars and pseudoscalars decaying to top quarks [84]. Therefore,
some care has to be taken with the limits obtained from these channels, until more direct searches
for coloured scalars and pseudoscalars are released. Note also that for these searches we have
not considered any QCD corrections. In the SM these corrections enhance the single production
of the Higgs boson at the LHC by a factor around 1.5 [85], and we could expect a similar or even
larger contribution for our coloured scalars. However, there are additional Feynman diagrams
contributing to the production of the coloured scalars, which have not been calculated yet. Since
the missing QCD corrections are expected to increase the production cross section, our limits
are then quite conservative.

Figure 1 compares the (95% C.L.) experimental limits on the production of heavy particles
that decay into top-quark pairs [84] with the calculated production cross section times branching
ratio for the CP-even coloured scalar, as a function of the scalar mass. The model-dependence
of the ATLAS exclusion limits can be appreciated from the broad range of bounds obtained
for the different explicit models analyzed: Z ′ bosons, Kaluza-Klein gluons and Kaluza-Klein
gravitons decaying into t t̄. The production of CP-even scalars is dominated by the gluon-fusion
mechanism, which depends on ηU , ηD and λ4,5. Therefore, this experimental constraint can be
easily avoided, taking small-enough values for these parameters. When |ηU | is of order one, the
branching ratio for the decay S0

R → tt̄ is almost one, provided mS0
R
> 2mt, for all values of λ4,5

within its perturbative unitarity region. Owing to the large mass splitting between the top and
bottom quarks, the value of ηD is also almost irrelevant for this branching ratio, so we have just
taken ηD = 1 as a representative value.

It is evident from the figure that this channel does not provide strong constraints on the
scalar mass. For ηU = 1 and λ4,5 = −10, we can just infer that mS0

R
should be heavier than

500 GeV, comparing the predicted cross section with the ATLAS bound on the production of
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Figure 1: Cross section times branching ratio for the single production of S0
R and its decay to tt̄.

In (a) we set ηU to 1 and vary λ4,5 from −10 to 0 and in (b) λ4,5 = −10 and ηU is varied from 1
to 2. The nonsolid lines correspond to the experimental limits from Ref. [73].

Kaluza-Klein gravitons. For smaller values of ηU and/or |λ4,5|, one does not obtain any useful
constraints. Obviously, the missing QCD corrections could not change much the situation,
which, furthermore, gets slightly worse with the opposite sign choice for λ4,5. In spite of the
much higher statistics accumulated at 13 TeV, compared with the data sample analyzed in
Ref. [70], the emerging limits are still not better than those extracted from the 8 TeV data and
are not competitive with the ones obtained from the associated-production process, which are
shown afterwards.

The analogous limits on the single production of the CP-odd scalar S0
I are shown in Fig. 2.

The behaviour is very similar to the CP-even case with λ4,5 = 0, because the production of
CP-odd scalars does not depend on λ4,5. The production cross section depends only on ηU and
ηD, and it grows with the modulus of these parameters, although the dependence on ηD is again
extremely weak. The numerical differences between the left (ηD = 1) and right (ηD = 10) panels
can hardly be seen in the figure. For values of |ηU | ≤ 2, the predicted signal remains below
the experimental limits in the whole range of mS0

I
analyzed. Therefore, this channel does not

provide any constraint.

3.2 Associated Production of Neutral Scalars and Top Quarks

The production of the coloured neutral scalars in association with top quarks proceeds through
the two mechanisms indicated in Fig. 3. Both diagrams contain a single S0

R,Itt̄ vertex with a
coupling ηU . However, in the kinematical region of interest, the production through the left
mechanism is dominated by an on shell intermediate S0

R,I particle decaying into tt̄. Therefore,
as long as the branching ratio of this decay is close to one, the dependence with ηU will be
small (gets cancelled by the total decay width contained in the on shell propagator). The second
mechanism on the right will then become more relevant for values of |ηU | in its higher allowed
range. However, for values of |ηU | of order 10−1 or smaller, the left diagram dominates, provided
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Figure 2: Cross section times branching ratio for the single production of S0
I and its decay to tt̄.

ηU has been varied from 0.5 to 2, while ηD = 1 (ηD = 10) in the left (right) panel. The nonsolid
lines correspond to the experimental limits from Ref. [73].

(a) (b)

Figure 3: Representative Feynman diagrams contributing to the associated production of neutral
scalars with top quarks.

the branching ratio of the decay to top quarks is of order one. Note that when the left diagram
dominates, the resulting amplitude does not change under a global rescaling of the parameters
ηU , ηD and λ4,5.‡

The limits on the production of neutral scalars in association with top-quark pairs are shown
in Figs. 4 and 5, for the CP-even and CP-odd cases, respectively. As mentioned before, we
compare our theoretical predictions for σ · Br of pp → S0

R,I tt̄ → tt̄ tt̄ with the experimental
upper bounds obtained for the type-II 2HDM by ATLAS [74] and CMS [76].§ Note that the
ATLAS analysis covers a higher mass region, reaching masses up to 1 TeV, while the CMS
one, although being more restrictive, only applies to mS0

R,I
≤ 650 GeV. Regarding the QCD

‡Obviously, the decay width into top quarks should be large enough for the decay to happen before the
detector. At the LHC, this condition is fulfilled even for values of |ηU | of order 10−7.

§Diagram 3a is absent in the 2HDM. Since this topology dominates at small values of |ηU |, we have simulated
the kinematical cuts employed by ATLAS [74] and checked that the selection efficiency is not lower in our case.
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Figure 4: Cross section of the associated production of S0
R with tt̄ times its branching ratio into

tt̄, as a function of mS0
R
, for representative choices of the parameters. In the top panels ηU = 0.1

and λ4,5 is varied from 0 to −10, while ηD = 1 (left) or ηD = 3 (right). The bottom panels
correspond to λ4,5 = −10, with ηU varying from 0.1 to 1, and ηD = 5 (left) or ηD = 10 (right).
The experimental bounds are taken from Refs. [74] and [76].

corrections, they increase the SM prediction for this process (pp → H tt̄ → tt̄ tt̄) by a factor
of 1.2 [86]. We expect them to be more relevant for the coloured scalars, because they can
directly couple to gluons. However, these corrections have not been calculated yet. Since they
are expected to increase the prediction for σ · Br, our limits without QCD corrections are then
conservative.

The four panels in Fig. 4 show the predicted production of the CP-even scalar, as a function
of mS0

R
, for several representative choices of the relevant parameters. In all cases, we have

considered that the CP-even neutral scalar is the lightest coloured scalar. Taking ηU = 0.1 and
ηD ≤ 1 (top-left panel), the predictions are well above the experimental bounds in the whole
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Figure 5: Cross section of the associated production of S0
I with tt̄ times its branching ratio into

tt̄, as a function of mS0
I
, for representative choices of the parameters. In all panels, ηU is varied

from 0.1 to 1, while ηD = 1 (top-left), 3 (top-right), 5 (bottom-left) and 10 (bottom-right). The
experimental bounds are taken from Refs. [74] and [76].

range of mS0
R
, for any value of |λ4,5|, resulting in a lower limit of 1 TeV for the mass of the

neutral scalar. This limit remains valid for larger values of |ηU | because they result in much
larger theoretical predictions for σ · Br. The expected signal decreases with increasing values of
|ηD|, mainly because it increases the branching ratio of the decay to bottom quarks, relaxing
the experimental constraint. The decay amplitude to gluons also depends on ηD, and on its
relative sign with ηU and λ4,5, but the effect is extremely weak. Indeed, the decay to gluons is
also affected by λ4,5 but, as we discussed before, the effect is small for values of this parameter
inside its perturbative unitarity region. Looking at the top panels, we can see that the difference
between setting λ4,5 to 0 or to -10 is very small. For positive values of λ4,5, the effect would be
even smaller because the decay amplitude to gluons would grow less while varying λ4,5. With
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(a) (b)

Figure 6: Representative Feynman diagrams contributing to the associated production of charged
scalars with heavy quarks.

ηU = 0.1 and ηD = 3 (top-right panel), one still obtains mS0
R
≥ 850 GeV, for values of λ4,5

inside its perturbative unitarity region. As we keep increasing ηD (lower panels) the constraints
become worse, but even with ηD = 10 the mass of the CP-even scalar is constrained to be higher
than 1 TeV for ηU = 1.

For the analysis of the CP-odd neutral scalar, we have chosen λ2 and λ3 in such a way that
this particle is the lightest coloured scalar, as mentioned before. As illustrated by Fig. 5, the
results are similar to the previous ones; although in this case, there is no dependence on λ4,5,
which makes the analysis simpler. The decay width into gluons can be neglected compared to
the decays into top and bottom quarks because it is a loop process with only top and bottom
quarks in the loop. The dependence of the resulting limits with ηU and ηD follows the same
trend as before: the higher the value of |ηU/ηD|, the better the constraint. We find again a lower
limit of 1 TeV for values of |ηU | as small as 10−1 when ηD = 1 (top-left panel). For ηU = 0.1 and
ηD = 3 (top-right panel), the constraint is mS0

I
≥ 850 GeV, as in the CP-even case. However,

thanks to the CMS data, we can find a better limit on the CP-odd scalar, mS0
I
≥ 575 GeV, for

ηD = 10 and ηU = 0.1 (bottom-right panel).

3.3 Production of Charged Scalars

The analysis of charged-scalar production is much simpler because they cannot decay to gluons;
therefore, there is no dependence on λ4,5. Now, we restrict ourselves to the region of parameter
space with λ2 + 2λ3 > 0 and λ2 − 2λ3 > 0, so that the decays S+ → S0

R,IW
+ are kinematically

forbidden. Thus, the only possible two-body decays of the charged scalars are into two quarks,
and therefore, the decay to heavy quarks will always dominate. Hence, the cross section only
depends on ηU and ηD.

The production mechanisms, indicated in Fig. 6, are analogous to the associated production
of a neutral scalar with the obvious changes on the particle charges. Again, the mechanism on
the right dominates when |ηU | ∼ O(1), while the left diagram is the relevant one for |ηU | of
order 10−1 or smaller. But now the branching ratio of the decay into top and bottom quarks
is always close to one, independently of the values of ηU and ηD, provided the charged scalar is
not fermiophobic (ηU,D = 0). The only requirement needed for our analysis is that the charged
scalar indeed decays before entering the detector, which is the case even when ηU and ηD are of
order 10−5.
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Figure 7: σ · Br of the process pp → S+t̄ b → t b̄ t̄ b, as a function of mS± , compared with the
(95% C.L.) experimental bound [75].

Fig. 7 compares our theoretical predictions for the cross section times branching ratio of
the process pp → S+t̄ b → t b̄ t̄ b, with the (95% C.L.) experimental bounds, as a function of
mS± . We profit here from the ATLAS analysis performed in the context of the type-II 2HDM
model [75]. In the left panel, ηD = 1 and ηU is varied from 0 to 3, while in the right panel the
most pessimistic possibility, ηU = 0, is taken and ηD is varied between 1 and 20. From this plot,
we are able to constrain the mass of the charged scalars to be higher than 800 GeV, even for
ηU = 0 and for any value of |ηD| as small as 10−5. For higher values of |ηU | the constraints become
stronger, and for ηU = 2 we push this limit up to 900 GeV. Note that this is the maximum value
of ηU allowed by flavour constraints, for charged-scalar masses up to 1 TeV [62,64], with a 95%
C.L.

The production cross section depends very weakly on |ηD|. This is easy to understand, since
ηD couples proportionally to the bottom quark mass while ηU brings an mt factor. Even when
ηU = 0 (right panel), the sensitivity to |ηD| is quite mild because the left diagram dominates in
this case.

4 Conclusion
In this work, we have found lower limits for the masses of all the coloured scalars of the MW
model: the CP-even and CP-odd neutrals and the charged coloured scalars. Our phenomeno-
logical study has been performed in the CP-conserving limit. In order to avoid unwanted decay
modes into other coloured scalars, for each separate analysis, we have selected the parameters of
the scalar potential in such a way that the analyzed scalar was the lightest. Thus, once we find
a limit for the mass of this scalar, the others must be necessarily heavier, so the limit applies to
all of them. Combining the results obtained for all possible mass splittings, the least restrictive
limit is valid for any value of the parameters λ2 and λ3.

We have analyzed the single production of neutral scalars and the associated production of
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neutral and charged scalars with heavy quarks, using the available LHC data at
√
s = 13 TeV.

From the study of the single production, we could not find better constraints than those already
obtained in Ref. [70], at lower LHC energies. However, our analysis of the associated production
results in relevant limits on the scalar masses, which are significantly better than those extracted
in previous works.

The associated production of the CP-even neutral scalar depends on λ4,5, ηU and ηD. Nev-
ertheless, we have found a very small sensitivity to λ4,5 for values of |ηU | higher than 10−1. If
this is the case, the limits on the scalar mass only depend on the relation between ηU and ηD.
For |ηD/ηU | ≤ 10, a CP-even scalar is excluded in the whole range explored by ATLAS, which
extends up to 1 TeV. The limit gets relaxed for larger values of this ratio. Taking |ηD/ηU | ∼ 30,
one still finds mS0

R
> 850 GeV. However, no limit is found when |ηD/ηU | > 100. Similar results

are obtained for |ηU | smaller than 10−1, as long as |λ4,5/ηU | ≤ 100.
The associated production of the CP-odd scalar behaves in a similar way, but it does not

depend on λ4,5, which results in somewhat stronger constraints for some parameter configura-
tions. The limits on mS0

I
are only sensitive to the ratio ηD/ηU and are valid for values of ηU

as small as 10−7. For |ηD/ηU | ≤ 10, one finds again that a CP-odd scalar is excluded in the
full kinematical range analyzed, i.e., mS0

I
> 1 TeV. The limit gets relaxed to 850 GeV, when

|ηD/ηU | ∼ 30, as in the CP-even case. However, even for |ηD/ηU | ∼ 100, one still finds a relevant
limit of mS0

I
> 575 GeV.

Since the charged scalars cannot decay into gluons, the analysis of their associated production
is much simpler. We found a quite strong lower bound, mS± > 800 GeV, provided the charged
scalars are not fermiophobic. This constraint remains valid as long as |ηD| > 10−5 or |ηU | > 10−7.
The limit becomes stronger with increasing values of |ηU |, reaching 900 GeV for |ηU | = 2, the
maximum value of this parameter allowed by flavour constraints.

Combining all searches, we find an absolute lower bound of 800 GeV on the masses of all
coloured scalars, which is valid under very mild requirements on the relevant model parameters:
|ηD/ηU | < 30, |λ4,5/ηU | < 100 and |ηU | > 10−7. Note that this limit applies for all possible mass
splittings among the scalars. Our analysis puts then a very severe limitation on the hypothetical
existence of light coloured scalars with masses below the TeV. In practice, they seem to be
strongly excluded for all reasonable choices of parameters. The only possibility that remains
still viable are fermiophobic scalars with ηU,D = 0. The analysis of this extreme case would
require a quite different and much more tricky phenomenological approach.

Much larger data samples are going to be accumulated in the forthcoming run 3 and, spe-
cially, at the High Luminosity LHC (HL-LHC). Prospective analyses for the pair production of
pseudoscalar colour-octet particles decaying into the (tt̄)(tt̄) final state [72] have been presented
in Ref. [87]. From these results, we can infer that our 850 GeV limit on the CP-odd scalar mass,
when |ηD/ηU | ∼ 30, could be pushed to 1 TeV. In order to find a rough estimate for the High
Energy LHC (HE-LHC), we have generated some events at a center-of-mass energy of 27 TeV
in the same channel, finding an exclusion lower limit of 1.4 TeV in the top-philic case. Larger
mass scales could of course be reachable at the FCC-hh, since the pair production cross section
would be orders of magnitude larger, for a given scalar mass value [88]. In the single production
channel, the achievable sensitivity at the FCC-hh can be roughly estimated from existing simu-
lations of strongly interacting vector particles, which quote limits on σ(pp→ Z ′)× Br(Z ′ → tt̄)
in the 10−4 to 10−3 pb range, for Z ′ masses between 10 and 35 TeV [88]. Extrapolating these
estimates to lower masses, exclusion limits around 3 to 5 TeV for the octet scalar mass appear
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to be feasible. More detailed analyses would be needed to reliably assess the discovery potential
of future colliders.
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