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1. Introduction. Present quantum theory does not make definite prediction of the value of an

observable in an individual observation except in an eigenstate of the observable. Application of

quantum rules to two separated systems which interacted in the past together with a local reality

principle (Einstein locality) led Einstein, Podolsky and Rosen1 to conclude that quantum theory

is incomplete. Bell2 showed that previous proofs of impossibility of a theory more complete

than quantum mechanics3 made unreasonable assumptions; he went on however to prove4 that

a hidden variable theory agreeing with the statistical predictions of quantum theory cannot

obey Einstein locality.

Bell’s research was influenced by the construction by De Broglie and Bohm5 (dBB) of a

hidden variable theory which reproduced the position probability density of quantum mechanics

but violated Einstein locality for many particle systems. For a single particle moving in one

dimension with Hamiltonian

H = −h̄2/(2m)∂2/∂x2 + U(x), (1)

and wave function ψ(x, t), de Broglie-Bohm proposed the complete description of the state to

be {λ(t), |ψ〉}, where λ(t) is the instantaneous position of the particle, and its momentum is

p̂dBB(λ, t) = mdλ/dt = [Re ψ⋆(−ih̄ ∂ψ/∂x)/(|ψ|2)]x=λ. (2)

In an ensemble the position density ρ(λ, t) agrees with |ψ(λ, t)|2 for all time. However, Takabayasi6

pointed out that the joint probability distribution for position and momentum given by the

theory

ρdBB(λ, p, t) = |ψ(λ, t)|2δ (p− p̂dBB(λ, t)) (3)

does not yield the correct quantum mechanical expectation value of pn for integral n 6= 1.

De Broglie5 stated that these values in his theory “correspond to the unobservable probability

distribution existing prior to any measurement” and measurement will reveal different values

distributed according to standard statistical quantum mechanical formula. On the other hand

position measurements have no central role since they simply reveal the existing position. The

asymmetrical treatment of position and momentum in the dBB theory constitutes breaking of

a fundamental symmetry of the quantum theory and has been considered by some physicists

as a defect of the dBB theory (Holland, Ref. 5, p. 21).
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Without using hidden variables, Griffiths7 and Gell-Mann and Hartle8 introduced joint

probability distributions for noncommuting observables at different times in the consistent

history approach to quantum theory of closed systems. Wigner9 had earlier introduced a joint

distribution for x and p at the same time,

ρW (x, p, t) =
∫ ∞

−∞

dy

2πh̄
ψ⋆
(

x+
y

2
, t
)

ψ
(

x−
y

2
, t
)

exp(ipy/h̄) (4)

which yielded the correct quantum probability distributions separately for x and p on inte-

gration over p and x respectively. The Wigner distribution cannot however be considered a

probability distribution because it is not positive definite, as seen from the fact that the integral

∫

dx dp ρW,ψ(x, p)ρW,φ(x, p) = |(ψ, φ)|2/(2πh̄)

vanishes for two orthogonal states ψ, φ.

We wish now to propose a deterministic quantum theory of a closed system with the fol-

lowing properties. (We consider in this paper only 1 particle in 1 space dimension).

(i) The system point (x(t), p(t)) in phase space has a Hamiltonian flow with a c-number causal

Hamiltonian HC(x, p, ψ(x, t), t) so that in an ensemble of mental copies of the system the phase

space density ρ(x, p, t) obeys Liouville’s theorem

dρ(x, p, t)/dt = 0. (5)

Here ψ(x, t) is the solution of the usual Schrödinger equation

ih̄ ∂ψ(x, t)/∂t = Hψ(x, t) (6)

with H being the standard quantum mechanical Hamiltonian for the system and HC being

determined from the following criteria.

(ii) Each pure “causal state”, i.e., a set of phase space points moving according to a single

causal Hamiltonian HC has phase space density of the deterministic form

ρ(x, p, t) = |ψ(x, t)|2δ (p− p̂(x, t)) , (7)

in which p − p̂(x, t) = 0 not only determines p as a function of x, but also determines x as a

function of p at each time (step functions being allowed when necessary). Eqn. (7) guarantees
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on integration over p the correct quantum probability distribution in x for any real function

p̂(x, t). The function is determined from the requirement that on integration over x, ρ(x, p, t)

should also yield the correct quantum probability distribution in p. That such a determination

is possible and unique apart from a discrete 2-fold ambiguity will be a crucial part of the present

theory. It is obvious that our p̂(x, t) will have to be different from the p̂(x, t) of de Broglie-Bohm

theory.

(iii) Since the quantum probability distributions for x and p in the statistics of many measure-

ments are exactly reproduced, so are the standard uncertainty relations.

In Secs. II, III we describe the construction of the momentum p̂(x, t) and the causal Hamil-

tonian HC , in Sec. IV applications to simple quantum systems, and in Sec. V conceptual

features of the new mechanics.

2. Construction of Joint Probability Distribution of position and

momentum. We seek a positive definite distribution of the form (7) where p̂ is a monotonic

function of x

ǫ ∂p̂(x, t)/∂x ≥ 0, ǫ = ±1 (8)

The monotonicity property ensures that for a given t, the δ-function establishes one-to-one

invertible correspondence between x and p whenever ∂p̂/∂x is finite and non-zero. (This is

the simplest qualitative assumption about p̂(x, t) which will be shown to result in Hamiltonian

evolution; in future development we should try to replace the monotonicity assumption by the

assumption of Hamiltonian evolution). The requirement of reproducing the correct quantum

probability distribution of p is that

∫ ∞

−∞
ρ(x, p, t)dx =

1

h̄
|ψ̃
(

p

h̄
, t
)

|2, (9)

where ψ̃(k, t) is the Fourier transform of ψ(x, t). We substitute the ansatz (7) into (9) and

integrate over momentum to obtain

∫ p

−∞
dp′

∫

p̂(x′,t)≤p
dx′|ψ(x′, t)|2δ (p′ − p̂(x′, t)) =

∫ p

−∞

dp′

h̄
|ψ̃

(

p′

h̄
, t

)

|2. (10)
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The region p̂(x′, t) ≤ p becomes x′ ≤ x if ǫ = 1, and x′ ≥ x if ǫ = −1, where p̂(x, t) = p. Thus,

we obtain, for ǫ = ±1,

∫ ǫx

−∞

dx′|ψ(ǫx′, t)|2 =
∫ p̂(x,t)/h̄

−∞

dk′|ψ̃(k′, t)|2. (11)

The left-hand side is a monotonic function of x which tends to 1 for ǫx→ ∞ for a normalized

wave function; the right-hand side is a monotonic function of p̂ tending to 1 for p̂ → ∞

(Parseval’s theorem). Hence, for each t, Eq. (11) determines two monotonic functions p̂ of x,

one for each sign of ǫ. (Note that the curve p̂(x, t) may have segments parallel to x-axis or p-axis

corresponding to ψ(x, t) or ψ̃(p/h̄, t) vanishing in some segment). The two curves p = p̂±(x, t)

so determined yield via Eq. (7) phase space densities ρ±, with different causal Hamiltonians

(HC)± determined below.

3. Determination of the Causal Hamiltonian. We view ρ(x, p, t) as describing an ensem-

ble of system trajectories in the phase space. We saw in the last section that such a description

is possible at each time. We would now like to find causal Hamiltonian such that the time

evolution in phase space implied thereby is consistent with the time dependent Schrödinger

equation.

In order that the total number of trajectories is conserved in time we must have the conti-

nuity equation

∂ρ/∂t + ∂(ρẋ)/∂x + ∂(ρṗ)/∂p = 0 (12)

If the dynamics of the trajectories is of Hamiltonian nature i.e.

ẋ = ∂HC/∂p, ṗ = −∂HC/∂x (13)

then we have Liouville’s theorem that the phase space density is conserved,

∂ρ/∂t + ẋ∂ρ/∂x + ṗ∂ρ/∂p = 0 (14)

i.e.

∂ρ/∂t + (∂HC/∂p) ∂ρ/∂x − (∂HC/∂x) ∂ρ/∂p = 0. (15)
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The c-number Hamiltonian HC describing the causal time evolution of the trajectories in the

phase space will be allowed to be different from the usual q-number Hamiltonian H describing

the time evolution of the Schrödinger wave function ψ according to Eq. (6).

On substituting into Eq. (15) the ansatz (7) discussed in the last section, we obtain

ξδ(p− p̂) +
∂

∂p
(ηδ(p− p̂)) = 0 (16)

where
ξ = ∂|ψ|2/∂t+ (∂HC/∂p) ∂|ψ|

2/∂x− ∂η/∂p

η = −|ψ|2 {∂p̂/∂t+ (∂p̂/∂x) ∂HC/∂p + ∂HC/∂x} .

We thus need for consistency

ξ = 0 and η = 0 if p = p̂. (17)

We now specialise to the usual case when H is given by Eq. (1). We find that this situation is

taken care of with the choice of HC(x, p, t)

HC =
1

2m
(p− A(x, t))2 + V (x, t). (18)

The causal Hamiltonian is of the Newtonian form apart from the introduction of a vector

potential A(x, t) and allowing the potential V (x, t) to differ from U(x). Eqs. (17) lead to

the following equations to determine V and A (after using Schrödinger eqn. to substitute for

∂|ψ|2/∂t),

−∂V (x, t)/∂x = ∂p̂(x, t)/∂t+ (2m)−1∂ (p̂(x, t) − A(x, t))2 /∂x, (19)

∂
[

|ψ|2(p̂−A−mv)
]

/∂x = 0, (20)

where v is given by

v(x, t) = h̄/(2im) ∂ℓn(ψ/ψ⋆)/∂x (21)

which is just the de Broglie-Bohm velocity. Eq. (20) implies that the quantity in square

brackets must be a function of t alone. We choose this function of t to be zero in order to avoid

a singularity of the vector potential at the nodes of the wave function. We thus obtain

A(x, t) = p̂(x, t) −mv(x, t) (22)
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With the calculation of the causal Hamiltonian thus completed via Eqs. (18), (19) and (22) a

consistent Liouville description emerges.

It should be stressed that the qualitatively new feature of the theory, p̂(x, t) 6= mv(x, t) is

quite independent of the specific ansatz (18) for Hc. Comparison of the continuity equation

for the spatial probability density ρ(x, t) in a deterministic theory with that following from

Schrödinger eqn. plus the requirement ρ(x, t) = |ψ(x, t)|2 imply that dx/dt = v(x, t), the dBB

velocity. The assumption p̂ = mv will then lead to the dBB answer for momentum probability

density which conflicts with the quantum answer. Hence, to reproduce both position and

momentum probability densities correctly we need p̂ 6= mv. On taking ensemble average, the

equality is restored in our theory in agreement with Ehrenfest’s theorem.

4. Illustrative Examples. (i) Quantum Free Particle. Let the quantum free particle be

described by the Gaussian momentum space wave function

ψ̃(p/h̄, t) = (απ)−1/4 exp
[

−(p− β)2/(2αh̄2) − ip2t/(2mh̄)
]

(23)

so that the coordinate space wave function is

ψ(x, t) = (πα)−1/4 (mα/(m+ iαh̄t))1/2 exp f, (24)

f = −(α/2)

[

(x− βt/m)2 − i

(

αh̄t

m
x2 +

2βx

αh̄
−

β2t

mαh̄

)]

/

(

1 +
α2h̄2t2

m2

)

.

Our procedure yields

p̂− β = ±h̄

√

m2α2

m2 + α2h̄2t2

(

x−
βt

m

)

, (25)

A = (p̂− β)



1 ∓
h̄αt

√

m2 + (h̄αt)2



 ,

and

∂V/∂x = ±(m2 + α2h̄2t2)−3/2[xt(αh̄)2 + βm](h̄αm) (26)

The determination of the causal Hamiltonian is now complete apart from an irrelevant additive

function of t. The quantum potentials A and V are seen to be proportional to h̄ in this example.

An interesting feature of Eq. (25) is that for ǫ = +1, for t≫ m/(αh̄) ≈ 2(h̄E/(∆E)2), it agrees

with the naive classical expectation corresponding to zero vector potential.
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(ii) Quantum Oscillator. For the minimum uncertainty coherent state of the harmonic oscillator

of mss m, angular frequency ω and amplitude of oscillation a we find

ρ(x, p, t) =

√

mω

πh̄
exp

[

−
1

2

mω

h̄
(x− a cos(ωt))2

]

δ (p− p̂(x, t)) , (27)

where

p̂(x, t) = −mωa sin(ωt) ±mω(x− a cos(ωt)), (28)

and

A(x, t) = ±mω(x− a cos(ωt)), (29)

−∂V (x, t)/∂x = −mω2a cos(ωt) ±mω2a sin(ωt) (30)

The causal Hamiltonian yields the equation of motion

md2x/dt2 = −mω2a cosωt (31)

which results in exact harmonic motion even for x away from the centre of the packet. We do

not of course expect this for solutions of the Schrödinger eqn. different from the coherent state

here considered.

5. New conceptual features. (a) We have derived corresponding to every quantum wave

function ψ, two joint probability distributions for position and momentum of the form (7) which

are (i) positive definite, (ii) have Hamiltonian evolution with causal Hamiltonians (HC)± and

obey (iii)
∫

(f(x) + g(p))ρ±(x, p, t)dx dp =

(

ψ,

(

f(x) + g

(

−ih̄
∂

∂x

))

ψ

)

, (32)

for arbitrary functions f(x) and g(p). Eq. (32) is the major advantage of the present theory over

the dBB theory. We postpone the discussion of measurements until we present a generalization

of the theory to many particles.

(b) Since both ρ+ and ρ− obey Eq. (32) so will ρ = Cρ+ +(1−C)ρ− with 0 ≤ C ≤ 1. But since

ρ+ and ρ− correspond to different causal Hamiltonians (HC)±, ρ will not correspond to a ‘pure

causal state’. We are led to the concept of a pure causal state as being more fine grained than

a pure wave function ψ. All ρ = Cρ+ + (1 − C)ρ− correspond to ψ (ρ ↔ ψ) for a continuum
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of values of C, but only C = 0, 1 correspond to pure causal states. To quantum density matrix

states ΣCα|ψα〉〈ψα| correspond phase space densities ΣCαρα if ρα ↔ ψα.

(c) One can ask if Eq. (32) can be generalized to more general quantum observables. Here we

face the old problem that there exist nonclassical observables e.g. x
(

−ih̄ ∂
∂x

)

x,
((

−ih̄ ∂
∂x

)

xxh.c.
)

/2

which have different expectation values but the same ‘naive’ classical analogue x2p. A trivial

but nonunique way followed already for the dBB distribution is: given a nonclassical observable

A the phase space analogue can be f(x, p, ψ) such that f(x, p̂, ψ) = ψ⋆Aψ/|ψ|2.

(d) It can be proved that for the individual trajectories, Newton’s first law [dp̂/dt = 0 for

U(x) = 0] holds, unlike dBB theory.

(e) A qualitative advantage of our theory over the dBB theory is the symmetric treatment of

x and p obvious from our phase space density

ρ(x, p, t) = |ψ(x, t)|2|ψ̃(p/h̄, t)|2h̄−1δ

(

∫ ǫx
−∞ dx′|ψ(ǫx′, t)|2

−
∫ p̂(x,t)/h̄
−∞ dk′|ψ̃(k′, t)|2

)
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