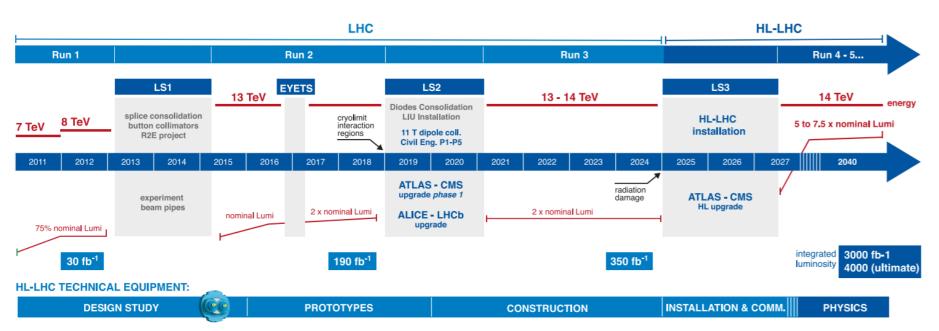
# The ATLAS Strip Detector System for the High-Luminosity LHC

Arturo Rodriguez Rodriguez
On behalf of the ATLAS ITk Strip Community

Instrumentation for Colliding Beam Physics

Novosibirsk, Russia 24 - 28 February, 2020

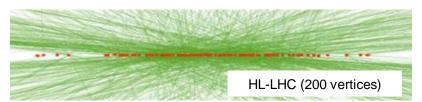



#### Future of the LHC

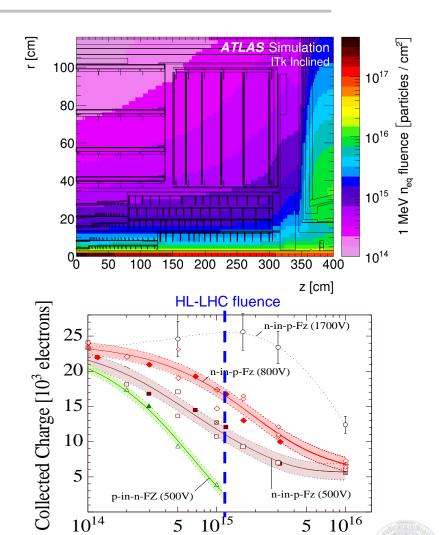


#### LHC / HL-LHC Plan



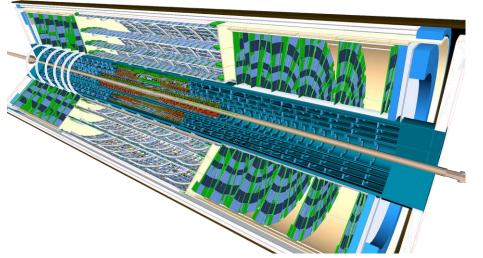






### ATLAS upgrade. Why?

- HL-LHC  $\mathcal{L}_{int} \sim 4000 \text{ fb}^{-1}$ 
  - Requires increased radiation hardness
- Pile-up from  $\sim$ 50 to  $\sim$ 200
  - Requires increased granularity to maintain the current performance
- Faster readout, higher data bandwidth
- Increase  $|\eta|$  coverage of tracking to 4



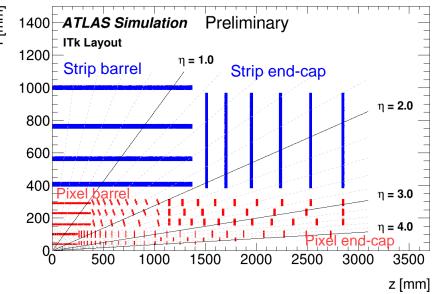



New all-silicon Inner Tracker (ITk)



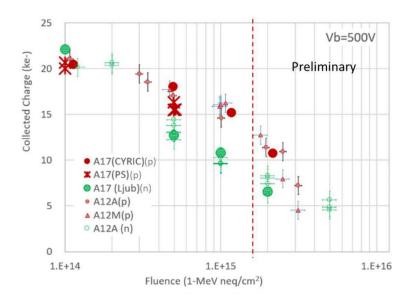
 $\Phi_{\rm eq}$  [cm<sup>-2</sup>]

### ATLAS ITk Strip Detector




#### ITk Detector

- All-silicon tracking detector
- Pixel and strips
- Total area of silicon ~180 m<sup>2</sup>
- 10 times the current number of readout channels


#### ITk Strip

- Barrel and end-caps follow same design philosophy
- Single-sided modules on both sides of a carbon support structure



### ITk Strip Sensor

- ~300 μm thick n+-in-p float zone (FZ) silicon sensors
- Required to be radiation tolerant up to
  - $1.6 \times 10^{15} \, \text{n}_{\text{eq}}/\text{cm}^2$
  - 81 Mrad
- Bias voltage 100 500 V (depending on radiation damage)



| Barrel                                                                                          | End-cap                                                        |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Rectangular $\sim$ 97 × 97 mm <sup>2</sup><br>Parallel strips                                   | Trapezoidal shape (R $-\phi$ coverage) Radial strips           |
| pitch 75 μm<br>2 designs (Short Strips, Long Strips)<br>Strip length 4 rows 24 mm, 2 rows 48 mm | pitch 70 – 81 μm<br>6 designs R0-R5<br>Strip length 15 – 60 mm |



#### Hybrids, Front-End

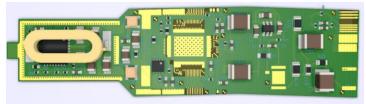
#### Hybrids

- 4 layer Kapton PCB
- Front-end ASICs (ABCStar)
  - Binary hit determination
  - Stores events until requested
- Aggregation ASIC (HCCStar)
  - Communicates with up to 640 Mbits
  - Clock-control-readout requests are provided to all ABC

#### Powerboard

- Converts 11 to 1.5 V for hybrids
- Autonomous monitor and control chip (AMAC)
  - Measures temperatures, voltages, currents
  - Controls LV, power states, switch off HV

#### R0 End-cap hybrid: Curvature follows sensor geometry



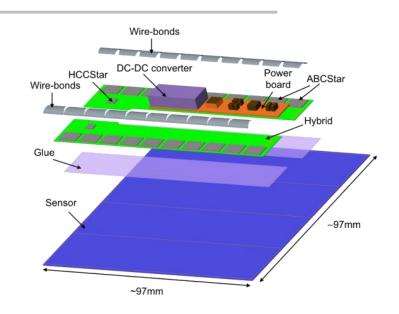


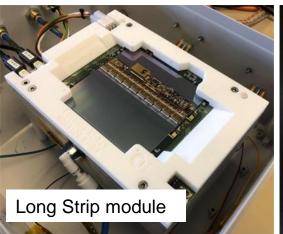

Barrel hybrid

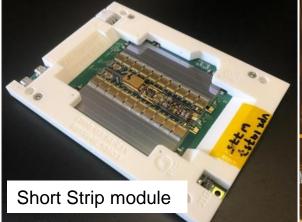


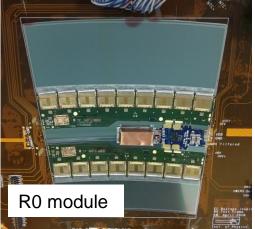
#### End-cap powerboard







### ITk Strip Module

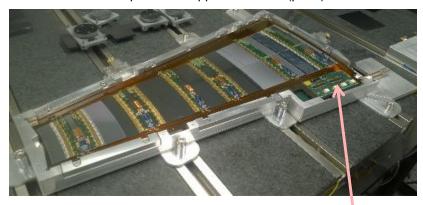

- Silicon sensor
- Hybrids and powerboard glued directly on the sensor
- Wire bonds for connections (25 μm aluminium)
- Modules glued and wire-bonded to stave/petals

17,888 strip modules required (barrel + end-cap)
Module design following mass production scheme with
dedicated tools for module assembly

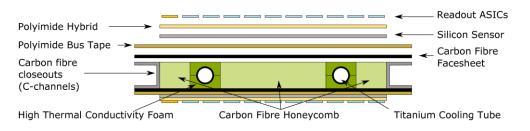


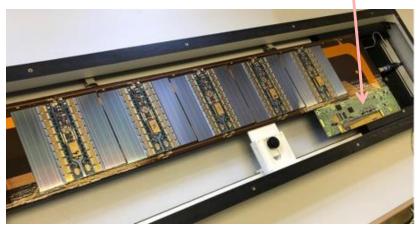






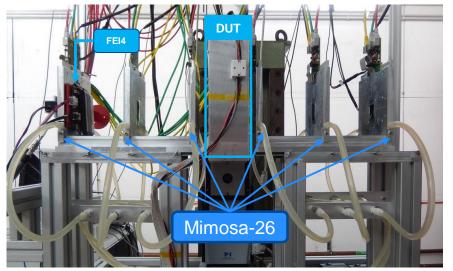




### ITk Module Support

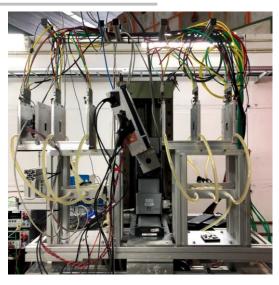

- Mechanical support (low-mass carbon-fiber)
  - Staves (Barrel) and Petals (for the End-Caps)
  - Common electrical, optical and cooling services
- Cooling via embedded Titanium tubes with evaporative CO<sub>2</sub> cooling (at -35°C)
- Copper/kapton co-cured bus tape (power, TTC, data, detector control system)
- Interface between staves and petals with the off-detector electronics through the End-Of-Substructure Card (EoS)

#### End-cap loaded support structure (petal)




EoS Card on an "ear" of the support structures





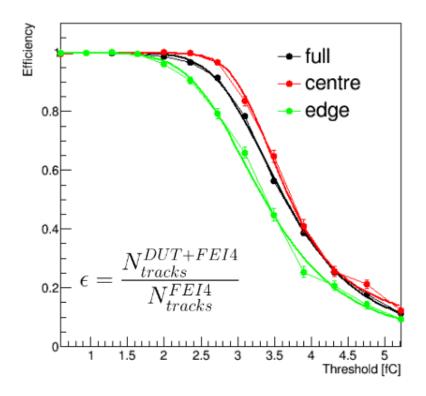

Barrel loaded support structure (stave)

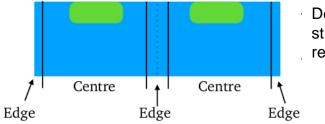
#### Module testing at test beams











- 4.4 GeV electron beam @DESY
- 120 GeV Pion beam @CERN SPS
- EUDET-type telescope resolution:
  - 5-10 µm @DESY
  - 3-5 µm @CERN
- Track time tagging from telescope with USBPix system with FE-I4 chip.
- Dry ice cooling box used for irradiated modules



### Module testing. Long Strip

- Module built using ATLAS17LS sensor and ABCStar chipset
  - Strip pitch 75 μm
  - Implant size 16 μm
  - Aluminum strip 22 μm



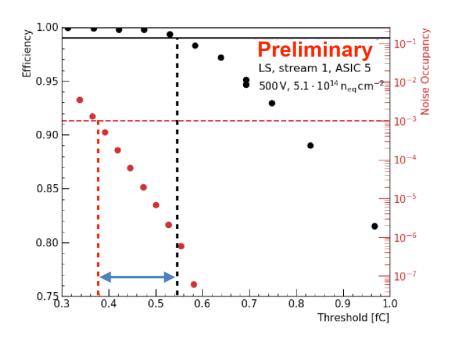


Define an edge of strip/inter-strip region of  $15 \mu m$ 

- Binary readout → infer charge collection in leading strip from threshold scan
- Edges shown:
  - lower median charge → charge sharing

| Median Charge (fC)        | Full | Center | Edge |
|---------------------------|------|--------|------|
| Perpendicular to the beam | 3.65 | 3.72   | 3.37 |




### Module Testing. Irradiated Long Strip

 Testing of irradiated modules performance at the "end-of-life" expected fluence in the HL-LHC is a key point of the ATLAS upgrade project

ITk requirements:

Efficiency > 99%Noise-occupancy < 0.1%Signal-to-noise ratio > 10

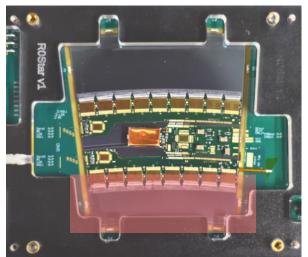
Proton irradiated sensor to  $5.\,1\times10^{14}\,n_{eq}/cm^2$  Gamma irradiated hybrids to  $25\,Mrad$ 

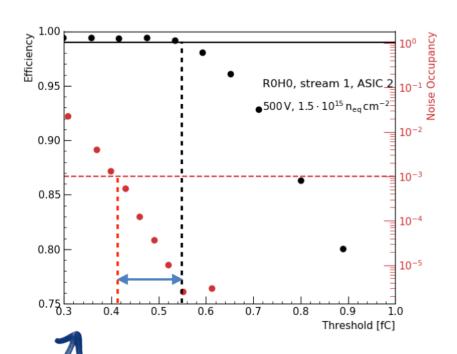


Between  $\sim 0.37 - 0.55$  fC Signal-to-noise ratio 15.9



Requirements are satisfied!


### Module Testing. Irradiated R0


Testing of irradiated modules performance at the "end-of-life" expected fluence in the HL-LHC is a key
point of the ATLAS upgrade project

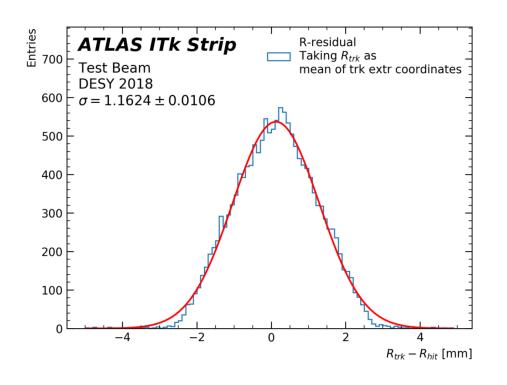
ITk requirements:

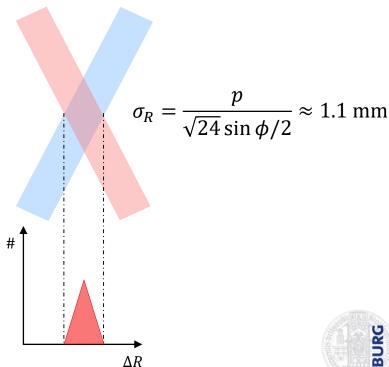
Efficiency > 99%Noise-occupancy < 0.1%Signal-to-noise ratio > 10

Proton irradiated sensor to 1.5  $\times$   $10^{15}\,n_{eq}/cm^2$  Gamma irradiated hybrids to 35 Mrad






Innermost segment in endcap


Between  $\sim 0.4 - 0.55$  fC Signal-to-noise of 11.7

Requirements are satisfied!

## Module testing. Double-sided R0

- First double-sided ITk module prototype
- Stereo angle allows reconstruction of space points
  - Expectation for resolution of ITk strip detector: 540 µm in direction "along" strips
- Stereo angle α below nominal 31 instead of 40 mrad. Only two layers at test beam

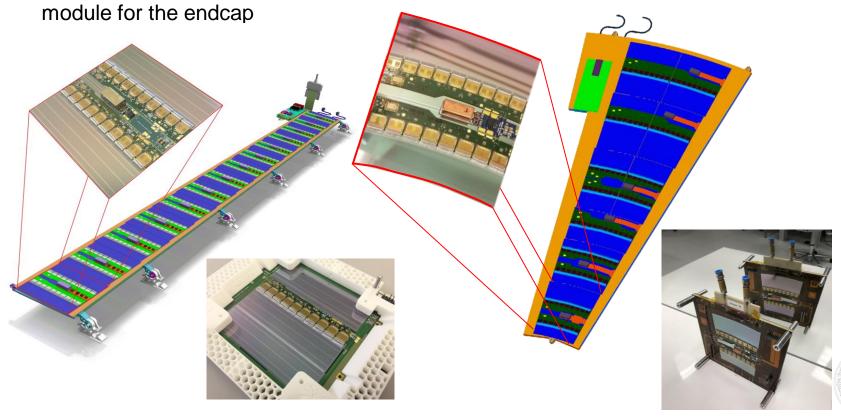






#### Summary and conclusions

- Results from sensor, readout, and module testing are well within the specification
- Irradiated modules prove:
  - Operational requirements of efficiency and noise occupancy of the ITk strip detector are satisfied
- After 15 years of designing, building prototypes, and testing we are confident the ITk Strip detector will be able to deliver the desired performance under the HL-LHC conditions
- Preproduction starts this year
  - Plenty of production components to test
- More that 20000 modules to build during production




# Thanks

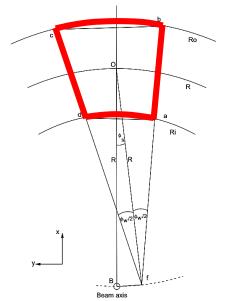
# Backup Slides

- Basic building block of ATLAS ITk Strip detector:
  - Staves for the barrel. Built from long and short strip modules
  - Petals for the endcaps

Prototyping phase based on long and short strip modules for the barrel and R0

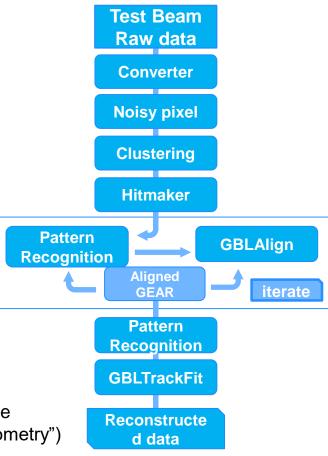


### Data Reconstruction and Analysis




#### Reconstruction

- Track reconstruction by EUTelescope software using General Broken Lines algorithm
- DUT positions in beam not precisely known from the setup
- Tracks are used to (re)align each new beam impact position


#### Analysis

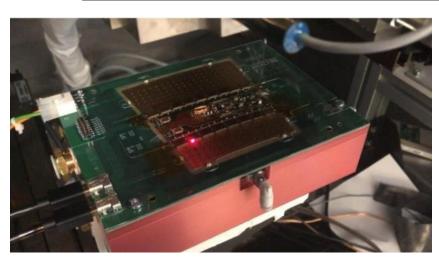
- Timing window: select particles in phase with 25 ns clock
- Time matching of hit on timing plane
- Only good tracks chi2/NDF

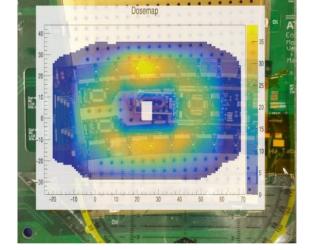


#### **Endcap sensors**

- Have in-sensor stereo angle implementation ("radial geometry")
- Custom EUTelescope modifications





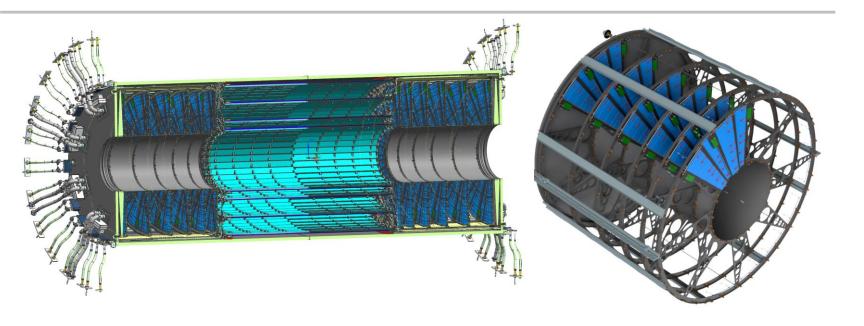


### Irradiated ITk Strip Modules

#### Typical irradiations:

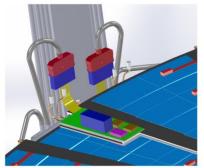
- Proton and neutron irradiation to the end-of-life fluence including safety factor of 1.4
- X-ray irradiation of hybrids, chips and power boards

| Module     | Tested    | Proton irradiation <sup>†</sup> $(10^{14}  n_{eq}/cm^2)$ | X-ray hybrids* irradiation (Mrad) |
|------------|-----------|----------------------------------------------------------|-----------------------------------|
| R0         | June      | 15                                                       | 35                                |
| Long Strip | September | 5.1                                                      | 25                                |



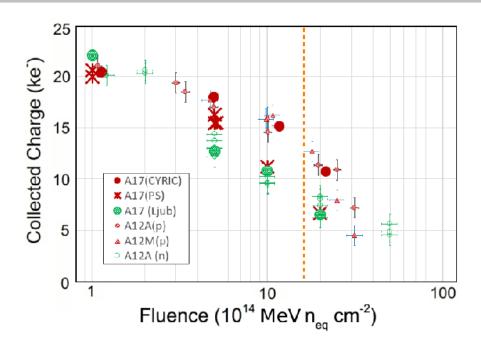






<sup>†</sup> Only silicon sensor

<sup>\*</sup>Fully populated hybrids (ABCStar, HCCStar)

### ITk Module Global Support




- Cylinders in barrel and disks in end-cap region provide structural support for insertion of staves and petals, respectively
- Services (cooling lines and cables) via interface at end of structures.





#### ITk Sensor Irradiation Tests

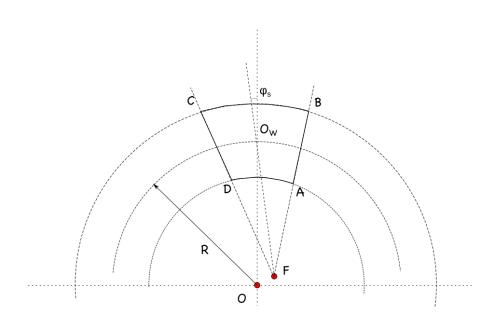


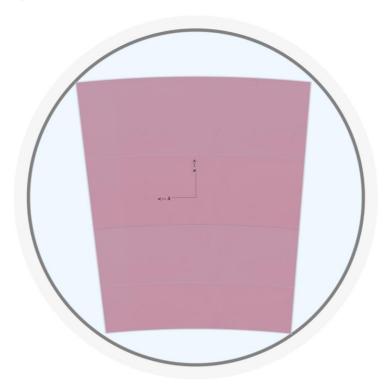
- Full-sized sensors have undergone an extensive irradiation (protons, neutrons, pions and gammas) tests at the expected end-of-life dose  $2 \times 10^{15}$  n<sub>eq</sub> /cm<sup>2</sup> and 70 Mrad
- At expected fluence still signal larger than 10,000 electrons compared to expected noise values of below 1,000 electrons
- Signal-to-noise ratio within design specification
- Good agreement for neutron and fair for proton irradiation between averaged results of A12 and A17 sensors



### Signal-to-noise ratio

From experience it has been proven that a signal-to-noise ratio higher than 10 guarantees the existence of an operational window where the efficiency (> 99%) and the noise occupancy (< 0.1%) requirements are satisfied.


| Module (ABCStar)                 | Signal [fC] (e.) | S/N  |
|----------------------------------|------------------|------|
| Unirrad. LS (400 V)              | 3.28 (20500)     | 23.8 |
| Unirrad. R0S (400 V)             | 3.28 (20475)     | 29.3 |
| Irrad. R0 innermost ring (500 V) | 1.65 (9281)      | 14.8 |
| Irrad. R0 second ring (500 V)    | 1.71 (9619)      | 13.2 |
| Irrad. R0 third ring (500 V)     | 1.80 (10125)     | 11.9 |
| Irrad. R0 outermost ring (500 V) | 1.84 (10350)     | 11.6 |
| Irrad. LS (500 V)                | 1.59 (9956)      | 15.9 |


It is clear that all the modules with the ABCStar readout chip tested satisfied the requirements!



### Stereo Annulus Geometry of EC Sensors

- Stereo angle directly implemented in the sensor (20 mrad)
- Non-parallel strips
- No stereo angle implementation in module assembly required (total 40 mrad)





