

STANDARD MODEL OF THE ELECTROWEAK INTERACTION: PHENOMENOLOGY *

Su 3444

WOLFGANG HOLLIK †

Institut für Theoretische Physik, Universität Karlsruhe D-76128 Karlsruhe, Germany

ABSTRACT

The phenomenology of the electroweak Standard Model is reviewed facing recent precision data and including recent theoretical results which have contributed to improve the theoretical predictions for precision observables and the remaining inherent theoretical uncertainties.

1. Elements of the Standard Model

1.1. The fermion families

The family structure of the fermions is a manifestation of the $SU(2) \times U(1)$ symmetry. It is strongly consolidated by several recent experimental informations:

Three generations of massless neutrinos: From the measurements of the Z line shape at LEP the combined LEP value for the number of light neutrinos is 1 (universal couplings assumed)

$$N_{\nu} = 2.988 \pm 0.023$$
.

 $m_{
u}=0$ is consistent with the mass limits from decay experiments 2

$$m_{\nu_e} < 8 \,\text{eV}, \quad m_{\nu_u} < 250 \,\text{keV}, \quad m_{\nu_\tau} < 31 \,\text{MeV}.$$

Universality of neutral current couplings: The vector and axial vector coupling constants of the Z to e, μ, τ measured at LEP ¹ show agreement with lepton universality and with the Standard Model prediction (Figure 1).

Recent results on $\sigma(\nu_{\mu}e)$ and $\sigma(\bar{\nu}_{\mu}e)$ by the CHARM II Collaboration yield for the ν_{μ} and e coupling constants ³

$$\begin{split} g_V^{\nu e} &\equiv 2 g^\nu \, g_V^e = -0.035 \pm 0.012 \pm 0.012 \\ g_A^{\nu e} &\equiv 2 g^\nu \, g_A^e = -0.503 \pm 0.006 \pm 0.016, \end{split}$$

compatible with $g_{V,A}^{lept}$ from LEP ¹. With the LEP input one obtains ³

$$2q^{\nu} = 1.004 \pm 0.033$$
.

Differently from the Z line shape result on the invisible Z width this is a specific determination of the individual ν_{μ} coupling.

^{*}invited talk at the Tennessee International Symposium on Radiative Corrections, Gatlinburg 1994 †supported in part by the European Union under contract CHRX-CT92-0004

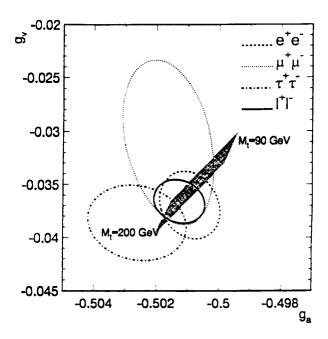


Figure 1: 68% C.L. contours for the leptonic coupling constants from LEP, ref (1).

Universality of charged current couplings: The τ - μ CC universality can be expressed in terms of the ratio of the effective decay constants G_{τ} for $\tau \to \nu_{\tau} e \bar{\nu}_{e}$ and G_{μ} for $\mu \to \nu_{\mu} e \bar{\nu}_{e}$ to be unity in the Standard Model:

$$\left(\frac{G_{\tau}}{G_{\mu}}\right)^{2} = B_{e} \cdot \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} = 1.$$

The 1993 data on the τ mass m_{τ} , the τ lifetime τ_{τ} , and the branching ratio $B_e = BR(\tau \to \nu_{\tau} e \bar{\nu}_e)$ yield ⁴

$$\left(\frac{G_{\tau}}{G_{\mu}}\right)^2 = 0.996 \pm 0.006 \,, \tag{1}$$

consistent with CC τ - μ universality. The CC μ -e universality is demonstrated in terms of the experimental ratios ⁴

$$B_e = BR(\tau \to \nu_\tau e \bar{\nu}_e) = 0.1789 \pm 0.0014$$

$$B_\mu = BR(\tau \to \nu_\tau \mu \bar{\nu}_\mu) = 0.1734 \pm 0.0016.$$
 (2)

By purely kinematical reasons, $B_{\mu}=0.972B_{c}$, which actually is observed in the experimental ratios of Eq. (2).

The top quark: The top quark is required for completion of the third generation to have the Standard Model anomaly free. Experimental evidence for the top has been announced by the CDF collaboration ⁵ with mass $m_t = 174 \pm 10^{+13}_{-12}$ GeV. A

lower bound $m_t > 131$ GeV is obtained by the D0 collaboration ⁶.

1.2. The vector boson and Higgs sector

The spectrum of the vector bosons γ, W^\pm, Z with masses 1,6,7

$$M_W = 80.23 \pm 0.18 \,\text{GeV}, \quad M_Z = 91.1888 \pm 0.0044 \,\text{GeV}$$
 (3)

is reconciled with the $SU(2)\times U(1)$ local gauge symmetry with the help of the Higgs mechanism. For a general structure of the scalar sector, the electroweak mixing angle is related to the vector boson masses by

$$s_{\theta}^{2} \equiv \sin^{2}\theta = 1 - \frac{M_{W}^{2}}{\rho M_{Z}^{2}} = 1 - \frac{M_{W}^{2}}{M_{Z}^{2}} + \frac{M_{W}^{2}}{M_{Z}^{2}} \Delta \rho \equiv s_{W}^{2} + c_{W}^{2} \Delta \rho$$
 (4)

where the ρ -parameter $\rho = (1 - \Delta \rho)^{-1}$ is an additional free parameter. In models with scalar doublets only, in particular in the minimal model, one has the tree level relation $\rho = 1$. Loop effects, however, induce a deviation $\Delta \rho \neq 0$.

We can get a value for ρ from directly using the data on M_W, M_Z and the mixing angle $s_{\theta}^2 = s_{\ell}^2 = 0.2321 \pm 0.0004$ measured at LEP ¹ as independent experimental information, yielding $\rho = M_W^2/M_Z^2 c_{\ell}^2 = 1.0081 \pm 0.0046$. In the Standard Model M_W, M_Z, s_{ℓ}^2 are correlated. Taking into account the constraints from the data ¹ yields $\rho_{SM} = 1.0097 \pm 0.0020$. The deviation $\rho - \rho_{SM}$ can be interpreted as a measure for a possibly deviating tree level structure. The data imply that it is compatible with zero.

2. Precision tests of the Standard Model

2.1. Loop calculations

The possibility of performing precision tests is based on the formulation of the Standard Model as a renormalizable quantum field theory preserving its predictive power beyond tree level calculations. With the experimental accuracy in the investigation of the fermion-gauge boson interactions being sensitive to the loop induced quantum effects, also the more subtle parts of the Standard Model Lagrangian are probed.

Before one can make predictions from the theory, a set of independent parameters has to be determined from experiment. All the practical schemes make use of the same physical input quantities

$$\alpha, G_{\mu}, M_Z, m_f, M_H \tag{5}$$

for fixing the free parameters of the SM. Differences between various schemes are formally of higher order than the one under consideration. The study of the scheme dependence of the perturbative results, after improvement by resumming the leading terms, allows us to estimate the missing higher order contributions.

Large loop effects in electroweak parameter shifts. The fermionic content of the subtracted photon vacuum polarization ⁸

$$\Delta\alpha = \Pi_{ferm}^{\gamma}(0) - \operatorname{Re}\Pi_{ferm}^{\gamma}(M_Z^2) = 0.0595 \pm 0.0009$$

corresponds to a QED induced shift in the electromagnetic fine structure constant which can be resummed according to the renormalization group. The result is an effective fine structure constant at the Z mass scale:

$$\alpha(M_Z^2) = \frac{\alpha}{1 - \Delta\alpha} = \frac{1}{128.87 \pm 0.12}.$$
 (6)

The ρ -parameter in the Standard Model gets a deviation $\Delta \rho$ from 1 by radiative corrections, essentially by the contribution of the (t,b) doublet ⁹, in 1-loop and neglecting m_b :

$$\left[\frac{\Sigma^{ZZ}(0)}{M_Z^2} - \frac{\Sigma^{WW}(0)}{M_W^2}\right]_{(t,b)} = \frac{3G_\mu m_t^2}{8\pi^2 \sqrt{2}} = \Delta\rho.$$
 (7)

This potentially large contribution constitutes also the leading shift for the electroweak mixing angle when inserted into Eq. (4).

2.2. The vector boson masses

The correlation between the masses M_W, M_Z of the vector bosons in terms of the Fermi constant G_{μ} reads in 1-loop order of the Standard Model ¹⁰:

$$\frac{G_{\mu}}{\sqrt{2}} = \frac{\pi \alpha}{2s_W^2 M_W^2} \left[1 + \Delta r(\alpha, M_W, M_Z, M_H, m_t) \right] . \tag{8}$$

The 1-loop correction Δr can be written in the following way

$$\Delta r = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + (\Delta r)_{remainder} \,. \tag{9}$$

in order to separate the leading fermionic contributions $\Delta \alpha$ and $\Delta \rho$. All other terms are collected in the $(\Delta r)_{remainder}$, the typical size of which is of the order ~ 0.01 .

The presence of large terms in Δr requires the consideration of higher than 1-loop effects. The modification of Eq. (8) according to

$$1 + \Delta r \to \frac{1}{(1 - \Delta \alpha) \cdot (1 + \frac{c_W^2}{s_W^2} \Delta \overline{\rho}) - (\Delta r)_{remainder}} \equiv \frac{1}{1 - \Delta r}$$
 (10)

with

$$\Delta \overline{\rho} = 3 \frac{G_{\mu} m_t^2}{8\pi^2 \sqrt{2}} \cdot \left[1 + \frac{G_{\mu} m_t^2}{8\pi^2 \sqrt{2}} \rho^{(2)} \right) + \delta \rho_{QCD} \right]$$
 (11)

accommodates the following higher order terms (Δr in the denominator is an effective correction including higher orders):

- The leading log resummation ¹¹ of $\Delta \alpha$: $1 + \Delta \alpha \rightarrow (1 \Delta \alpha)^{-1}$
- The resummation of the leading m_t^2 contribution 12 in terms of $\Delta \overline{\rho}$. Thereby, however, also irreducible higher order diagrams contribute. The electroweak 2-loop part is described by the function $\rho^{(2)}(M_H/m_t)$ derived in 13 for general Higgs masses. $\delta \rho_{QCD}$ is the QCD correction to the leading m_t^2 term of the ρ -parameter 14,15

$$\delta\rho_{QCD} = -\frac{\alpha_s}{\pi} \cdot \frac{2}{3} \left(\frac{\pi^2}{3} + 1\right) + \left(\frac{\alpha_s}{\pi}\right)^2 c_2. \tag{12}$$

with the recently calculated 3-loop coefficent ¹⁵ c_2 ($c_2 = -10.553...$ for $\mu = m_t$ and 6 flavors). It reduces the scale dependence of $\delta\rho_{QCD}$ significantly. The complete $O(\alpha\alpha_s)$ corrections to the self energies beyond the m_t^2 approximation are available from perturbative calculations ¹⁶ and by means of dispersion relations ¹⁷ (see also ¹⁸).

• With the quantity $(\Delta r)_{remainder}$ in the denominator non-leading higher order terms containing mass singularities of the type $\alpha^2 \log(M_Z/m_f)$ from light fermions are also incorporated ¹⁹.

The quantity Δr in Eq. (10)

$$\Delta r = 1 - \frac{\pi \alpha}{\sqrt{2} G_{\mu}} \frac{1}{M_W^2 \left(1 - \frac{M_W^2}{M_Z^2}\right)}.$$

is experimentally determined by M_Z and M_W . Theoretically, it is computed from M_Z, G_μ, α after specifying the masses M_H, m_t . The theoretical prediction for Δr is displayed in Figure 2. For comparison with data, the experimental 1σ limits from the direct measurements of M_Z at LEP and M_W in $p\bar{p}$ are indicated.

The quantity s_W^2 resp. the ratio M_W/M_Z can indirectly be measured in deep-inelastic neutrino scattering, in particular in the NC/CC neutrino cross section ratio for isoscalar targets. The recent CCFR result 20

$$s_W^2 = 0.2222 \pm 0.0057$$

combined with the CDHS and CHARM results 21 yields the world average 20

$$s_W^2 = 0.2256 \pm 0.0047 \,.$$

It is fully consistent with the direct vector boson mass measurements and with the standard theory.

1.3. Z boson observables

Measurements of the Z line shape in $e^+e^- \to f\bar{f}$

$$\sigma(s) = \sigma_0 \frac{s\Gamma_Z^2}{\mid s - M_Z^2 + i\frac{s}{M_Z^2}\Gamma_Z\mid^2} + \sigma_{\gamma Z} + \sigma_{\gamma}, \quad \sigma_0 = \frac{12\pi}{M_Z^2} \cdot \frac{\Gamma_e \Gamma_f}{\Gamma_Z^2}$$
(13)

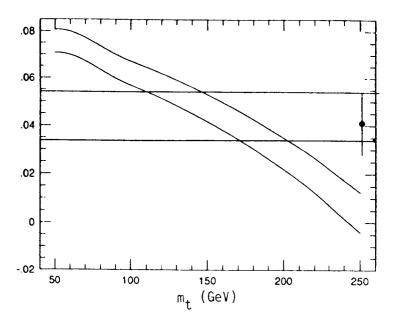


Figure 2: Δr as a function of the top mass for $M_H = 60$ and 1000 GeV. 1σ bounds from M_Z and s_W^2 : horizontal band from $p\bar{p}$, \bullet from νN .

(with small photon exchange and interference terms) yield the parameters M_Z , Γ_Z , and the partial widths Γ_f or the peak cross section σ_0 . Whereas M_Z is used as a precise input parameter, together with α and G_{μ} , the width and partial widths allow comparisons with the predictions of the Standard Model. The predictions for the partial widths as well as for the asymmetries can conveniently be calculated in terms of effective neutral current coupling constants for the various fermions.

Effective Z boson couplings: The effective couplings follow from the set of 1-loop diagrams without virtual photons, the non-QED or weak corrections. These weak corrections can conveniently be written in terms of fermion-dependent overall normalizations ρ_f and effective mixing angles s_f^2 in the NC vertices ²²:

$$J_{\nu}^{NC} = \left(\sqrt{2}G_{\mu}M_{Z}^{2}\rho_{f}\right)^{1/2} \left[(I_{3}^{f} - 2Q_{f}s_{f}^{2})\gamma_{\nu} - I_{3}^{f}\gamma_{\nu}\gamma_{5} \right]$$
$$= \left(\sqrt{2}G_{\mu}M_{Z}^{2}\right)^{1/2} \left[g_{V}^{f}\gamma_{\nu} - g_{A}^{f}\gamma_{\nu}\gamma_{5} \right]. \tag{14}$$

 ρ_f and s_f^2 contain universal parts (i.e. independent of the fermion species) and non-universal parts which explicitly depend on the type of the external fermions. In their leading terms, incorporating also the next order, the parameters are given by

$$\rho_f = \frac{1}{1 - \Delta \overline{\rho}} + \cdots, \quad s_f^2 = s_W^2 + c_W^2 \Delta \overline{\rho} + \cdots$$
 (15)

with $\Delta \overline{\rho}$ from Eq. (11).

For the b quark, also the non-universal parts have a strong dependence on m_t resulting from virtual top quarks in the vertex corrections. The difference between the d and b couplings can be parametrized in the following way

$$\rho_b = \rho_d (1+\tau)^2, \quad s_b^2 = s_d^2 (1+\tau)^{-1}$$
(16)

with the quantity

$$\tau = \Delta \tau^{(1)} + \Delta \tau^{(2)} + \Delta \tau^{(\alpha_s)}$$

calculated perturbatively, at the present level comprising: the complete 1-loop order term 23

$$\Delta \tau^{(1)} = -2x_t - \frac{G_\mu M_Z^2}{6\pi^2 \sqrt{2}} (c_W^2 + 1) \log \frac{m_t}{M_W} + \cdots, \quad x_t = \frac{G_\mu m_t^2}{8\pi \sqrt{2}};$$
 (17)

the leading electroweak 2-loop contribution of $O(G_u^2 m_t^4)^{-13,24}$

$$\Delta \tau^{(2)} = -2 x_t^2 \tau^{(2)}, \tag{18}$$

where $\tau^{(2)}$ is a function of M_H/m_t with $\tau^{(2)} = 9 - \pi^2/3$ for $M_H \ll m_t$; the QCD corrections to the leading term of $O(\alpha_s G_\mu m_t^2)^{-25}$

$$\Delta \tau^{(\alpha_s)} = 2 x_t \cdot \frac{\alpha_s}{\pi} \cdot \frac{\pi^2}{3} \,. \tag{19}$$

Asymmetries and mixing angles: The effective mixing angles are of particular interest since they determine the on-resonance asymmetries via the combinations

$$A_f = \frac{2g_V^f g_A^f}{(g_V^f)^2 + (g_A^f)^2}. (20)$$

Measurements of the asymmetries hence are measurements of the ratios

$$g_V^f/g_A^f = 1 - 2Q_f s_f^2 (21)$$

or the effective mixing angles, respectively.

Z width and partial widths: The total Z width Γ_Z can be calculated essentially as the sum over the fermionic partial decay widths

$$\Gamma_Z = \sum_f \Gamma_f + \cdots, \quad \Gamma_f = \Gamma(Z \to f\bar{f})$$
 (22)

The dots indicate other decay channels which, however, are not significant. The fermionic partial widths, when expressed in terms of the effective coupling constants read up to 2nd order in the (light) fermion masses:

$$\Gamma_f = \Gamma_0 \left[(g_V^f)^2 + (g_A^f)^2 \left(1 - \frac{6m_f^2}{M_Z^2} \right) \right] \cdot (1 + Q_f^2 \frac{3\alpha}{4\pi}) + \Delta \Gamma_{QCD}^f$$

with

$$\Gamma_0 = N_C^f \frac{\sqrt{2} G_\mu M_Z^3}{12\pi}, \quad N_C^f = 1 \text{ (leptons)}, = 3 \text{ (quarks)}.$$

The QCD correction for the light quarks with $m_q \simeq 0$ is given by

$$\Delta\Gamma_{QCD}^f = \Gamma_0 \left[(g_V^f)^2 + (g_A^f)^2 \right] \cdot K_{QCD}$$
 (23)

with 26

$$K_{QCD} = \frac{\alpha_s}{\pi} + 1.41 \left(\frac{\alpha_s}{\pi}\right)^2 - 12.8 \left(\frac{\alpha_s}{\pi}\right)^3. \tag{24}$$

For b quarks the QCD corrections are different due to finite b mass terms and to top quark dependent 2-loop diagrams for the axial part:

$$\Delta\Gamma_{QCD}^{b} = \Delta\Gamma_{QCD}^{d} + \Gamma_{0} \left[(g_{V}^{b})^{2} R_{V} + (g_{A}^{b})^{2} R_{A} \right]$$
 (25)

The coefficients in the perturbative expansions

$$R_V = c_1^V \frac{\alpha_s}{\pi} + c_2^V (\frac{\alpha_s}{\pi})^2 + c_3^V (\frac{\alpha_s}{\pi})^3 + \cdots, \quad R_A = c_1^A \frac{\alpha_s}{\pi} + c_2^A (\frac{\alpha_s}{\pi})^2 + \cdots$$

depending on m_b and m_t , are calculated up to third order in the vector and up to second order in the axial part 27 .

Standard Model predictions versus data: In table 1 the Standard Model predictions for Z pole observables are put together. The first error corresponds to the variation with m_t , M_H in the range allowed by M_W and Δr (Fig. 2), the second error is the hadronic uncertainty from $\alpha_s = 0.123 \pm 0.006$ measured by QCD observables at the Z^{28} . In the numbers of the second row also the CDF top mass result is included. The recent combined LEP results on the Z resonance parameters 1 , under the assumption of lepton universality, are also shown in table 1, together with s_e^2 from the left-right asymmetry at the SLC 29 .

With exception of two quantities: $R_b = \Gamma_b/\Gamma_{had}$ and A_{LR} , all data are in perfect agreement with the predictions.

A quantity of special interest is the mixing angle s_ℓ^2 measured from the asymmetries. An approximate expression where only the shift $\alpha \to \alpha(M_Z^2)$ is taken into account

$$s_0^2 c_0^2 = \frac{\pi \alpha(M_Z^2)}{\sqrt{2} G_\mu M_Z^2} \tag{26}$$

yields $s_0^2 = 0.2312 \pm 0.0003$, which is 2σ away from the experimental result in table 1. Loop effects beyond $\alpha(M_Z^2)$ are also visible in ρ_ℓ which is different from 1 by more than 2σ . Other indications can be found in the \overline{MS} -mixing angle \hat{s}^2 and in the unitarity relations in the CKM matrix elements 31 .

Table 1. LEP	results and	Standard Model	predictions for	the Z parameters.
Table 1. Der	1Cours and	D'ourier at a series		

: LEP results and Standard Model predictions for the 2 parameters				
observable	LEP 1994	Standard Model prediction		
M_Z (GeV)	91.1888 ± 0.0044	input		
Γ_Z (GeV)	2.4974 ± 0.0038	$2.4922 \pm 0.0075 \pm 0.0033$		
		$2.4933 \pm 0.0064 \pm 0.0033$		
σ_0^{had} (nb)	41.49 ± 0.12	$41.45 \pm 0.03 \pm 0.04$		
0 ()		$41.45 \pm 0.01 \pm 0.04$		
Γ_{had}/Γ_{e}	20.795 ± 0.040	$20.772 \pm 0.028 \pm 0.038$		
+ haa / - e		$20.774 \pm 0.017 \pm 0.038$		
$\Gamma_{inv} ({ m MeV})$	499.8 ± 3.5	500.8 ± 1.3		
1 inv (===)		500.8 ± 0.9		
Γ_b/Γ_{had}	0.2202 ± 0.0020	0.2158 ± 0.0013		
1 0/ - nau		0.2160 ± 0.0006		
ρ_{ℓ}	1.0047 ± 0.0022	1.0038 ± 0.0026		
PE		1.0028 ± 0.0007		
s_{ℓ}^2	0.2321 ± 0.0004	0.2324 ± 0.0012		
		0.2322 ± 0.0010		
$s_e^2(A_{LR})$	0.2292 ± 0.0010	0.2324 ± 0.0012		
Je(1-LR)	(SLC result)	0.2322 ± 0.0010		
	(SLC result)	0.2322 ± 0.0010		

Standard Model fits: Assuming the validity of the Standard Model a global fit to all electroweak LEP results constrains the parameters m_t , α_s as follows: ¹

$$m_t = 173^{+12+18}_{-13-20} \,\text{GeV}, \quad \alpha_s = 0.126 \pm 0.005 \pm 0.002$$
 (27)

with $M_H = 300$ GeV for the central value. The second error is from the variation of M_H between 60 GeV and 1 TeV. The fit results include the uncertainties of the Standard Model calculations to be discussed in the next subsection. The parameter range in Eq. (27) predicts a value for the W mass via Eq. (8,10)

$$M_W = 80.28 \pm 0.07^{+0.01}_{-0.02} \text{GeV}$$
,

in best agreement with the direct measurement, Eq. (3), but with a sizeably smaller error. Simultaneously, the result (27) is a consistency check of the QCD part of the full Standard Model : the value of α_s at the Z peak, measured from others than electroweak observables, is 28 $\alpha_s = 0.123 \pm 0.006$.

Low energy results: A new measurement of the mixing angle in neutrino-e scattering by the CHARM II Collaboration yields ³

$$\sin^2 \theta_{\nu e} = 0.2324 \pm 0.0062 \pm 0.0059. \tag{28}$$

This value coincides with the LEP result on s_{ℓ}^2 , table 1, as expected by the theory. The major sources of a potential difference: the different scales and the neutrino charge radius, largely cancel each other by numerical coincidence ³³.

The results from deep inelastic ν scattering have already been discussed in the context of M_W . Including the information from CDHS, CHARM, CCFR, and with M_W from $\bar{p}p$ modifies the fit result only marginally ¹:

$$m_t = 171^{+11+18}_{-12-21} \,\text{GeV}, \quad \alpha_s = 0.126 \pm 0.005 \pm 0.002.$$
 (29)

Incorporating also the SLC result on A_{LR} yields ¹

$$m_t = 178^{+11+18}_{-11-19} \,\text{GeV}, \quad \alpha_s = 0.125 \pm 0.005 \pm 0.002.$$
 (30)

A simultaneous fit to m_t and M_H from all low and high energy data but for constrained $\alpha_s = 0.118 \pm 0.007$ yields a slightly lower range ³² $m_t = 153 \pm 15$ GeV. For larger values of α_s the result is very close to the one in Eq. (29) ³².

1.4 Status of the Standard Model predictions

For a discussion of the theoretical reliability of these numbers one has to consider the various sources for the uncertainties in the predictions:

The experimental error propagating into the hadronic contribution to $\alpha(M_Z^2)$, Eq. (8), leads to $\delta M_W = 17$ MeV in the W mass prediction, and $\delta \sin^2 \theta = 0.0003$ common to all of the mixing angles, which matches with the future experimental precision.

The uncertainties from the QCD contributions, besides the 3 MeV in the hadronic Z width, can essentially be traced back to those in the top quark loops for the ρ -parameter. They can be combined into the following net effects ¹⁸ $\delta(\Delta\rho) \simeq 2 \cdot 10^{-4}$, $\delta s_\ell^2 \simeq 1 \cdot 10^{-4}$ for $m_t = 150$ GeV and somewhat larger for heavier top.

The size of unknown higher order contributions can be estimated by different treatments of non-leading terms in higher order resummations and investigations of the scheme dependence. Explicit comparisons between the results of different computer codes based on on-shell and \overline{MS} calculations for the Z resonance observables, performed by the "Working Group on Precision Calculations for the Z Resonance" ³⁴ have shown differences around 0.1%, in particular, $\delta s_{\ell}^2 = 1 - 2 \cdot 10^{-4}$. Improvements require systematic 2-loop calculations.

3. Virtual New Physics

The parametrization of the radiative corrections from the vector boson self-energies in terms of the static ρ -parameter $\Delta \rho(0) \equiv \epsilon_1$ and two other combinations of self-energies, ϵ_2 and ϵ_3 , ³⁵ allows a generalization of the analysis of the electroweak data which accommodates extensions of the minimal model affecting only the vector boson self-energies. There is a wide literature ³⁶ in this field with various conventions.

Phenomenologically, the ϵ_i are parameters which can be determined experimentally from the normalization of the Z couplings and the effective mixing angle by (the residual corrections not from self-energies are dropped)

$$\rho_f = \Delta \rho(0) + M_Z^2 \Pi'^{ZZ}(M_Z^2) + \cdots, \quad s_f^2 = (1 + \Delta \kappa') s_0^2 + \cdots$$
 (31)

with s_0^2 from Eq. (26) and

$$\Delta \kappa' = -\frac{c_0^2}{c_0^2 - s_0^2} \Delta \rho(0) + \frac{\epsilon_3}{c_0^2 - s_0^2}, \tag{32}$$

the quantity Δr in the M_W - M_Z correlation:

$$\Delta r = \Delta \alpha - \frac{c_0^2}{s_0^2} \Delta \rho(0) + \frac{c_0^2 - s_0^2}{s_0^2} \epsilon_2 + 2\epsilon_3.$$
 (33)

Recently, the ϵ parameters have been redefined ³⁷ into $\epsilon_{N1,N2,N3}$ by including also the v and a vertex corrections for leptons, together with a 4th quantity ϵ_b to parametrize specific non-universal left handed contributions to the Zbb vertex via

$$g_A^b = g_A^d (1 + \epsilon_b), \quad g_V^b / g_A^b = (1 - \frac{4}{3} s_d^2 + \epsilon_b) (1 + \epsilon_b)^{-1}.$$
 (34)

A combined analysis leads to the 1σ contours in Fig. 3 ³⁸.

The level of consistency with the Standard Model is visualized by the Standard Model predictions displayed in terms of the lines with m_t , M_H as input quantities. The displacement of the ϵ_b -contours corresponds to the difference between the Standard Model prediction and the experimental result for R_b (see table 1). Among the alternative mechanisms of electroweak symmetry breaking, most versions of technicolor models are disfavored by the data ³⁹.

A current example of new physics with also extra vertex contributions is the Standard Model with two Higgs doublets. The charged Higgs bosons diminish the value of R_b even more and hence are strongly constrained, clearly disfavored for small values of $\tan \beta = v_2/v_1^{-40}$. Also the neutral sector of the general 2-doublet model turns out to be severely constrained ⁴⁰.

For more discussion of new physics and precision data we refer to the contribution of Langacker ⁴¹ to this conference.

4. Conclusions

The agreement of the experimental high and low energy precision data with the Standard Model predictions has shown that the Standard Model works as a fully fledged quantum field theory. A great success of the Standard Model would be the confirmation of the experimental top mass range coincides in an impressive way with the indirect determination from loop effects in precision data.

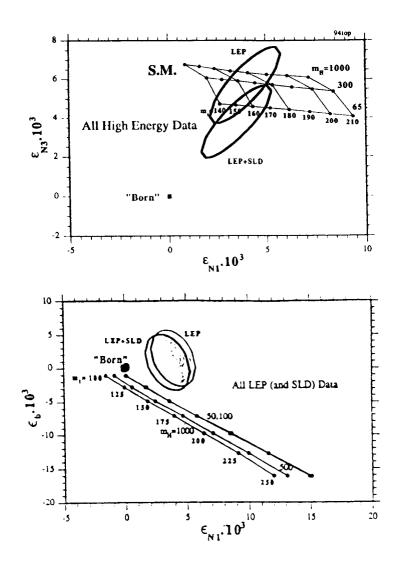


Figure 3: 1σ contours for the ϵ parameters and the Standard Model predictions, from ref 38

The steadily increasing accuracy of the data starts to exhibit also sensitivity to the Higgs mass 1,32 , although still marginally ($M_H < 1$ TeV at 95% C.L.) for the current situation.

Not understood at present are the deviations from the theoretical expectation observed in the measurement of A_{LR} and R_b . The possibility that they might be first hints for non-standard physics makes the future experimental investigations particularly exciting.

5. Acknowledgements

I want to thank G. Altarelli, D. Schaile and the members of the Working Group on Precision Calculations for the Z Resonance for valuable information and helpful discussions.

6. References

- D. Schaile, talk at the 27th International Conference on High Energy Physics, Glasgow, July 1994
- 2. A. Smirnov, proceedings of the XVI International Symposium on Lepton and Photon Interactions, Cornell University, Ithaca 1993, eds.: P. Drell and D. Rubin
- 3. CHARM II Collaboration, R. Beyer, proceedings of the International Europhysics Conference on High Energy Physics, Marseille 1993, eds.: J. Carr and M. Perrottet
- 4. A. Schwarz, proceedings of the XVI International Symposium on Lepton and Photon Interactions, Cornell University, Ithaca 1993, eds.: P. Drell and D. Rubin
- 5. CDF Collaboration, F. Abe et al., FERMILAB-PUB-94/097-E
- 6. CDF and D0 results, Y. Ducros, La Thuile, March 1994
- UA2 Collaboration, J. Alitti et al., Phys. Lett. B 276 (1992) 354; CDF Collaboration, F. Abe et al., Phys. Rev. D 43 (1991) 2070; C.K. Jung, talk at the 27th International Conference on High Energy Physics, Glasgow, July 1994
- 8. H. Burkhardt, F. Jegerlehner, G. Penso, C. Verzegnassi, Z. Phys. C 43 (1989) 497; F. Jegerlehner, Progress in Particle and Nuclear Physics 27 (1991) 1
- M. Veltman, Nucl. Phys. B 123 (1977) 89; M.S. Chanowitz, M.A. Furman,
 I. Hinchliffe, Phys. Lett. B 78 (1978) 285
- A. Sirlin, Phys. Rev. 22 (1980) 971; W.J. Marciano, A. Sirlin, Phys. Rev. 22 (1980) 2695
- 11. W.J. Marciano, Phys. Rev. D 20 (1979) 274
- 12. M. Consoli, W. Hollik, F. Jegerlehner, Phys. Lett. B 227 (1989) 167
- R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci, A. Vicere, Phys. Lett. B
 288 (1992) 95; Nucl. Phys. B 409 (1993) 105; J. Fleischer, F. Jegerlehner,

- O.V. Tarasov, Phys. Lett. B 319 (1993) 249
- 14. A. Djouadi, C. Verzegnassi, Phys. Lett. B 195 (1987) 265
- 15. L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, Bielefeld preprint BI-TH-93/60 (June 1994); J. Fleischer, these proceedings
- A. Djouadi, Nuovo Cim. A 100 (1988) 357; D. Yu. Bardin, A.V. Chizhov,
 Dubna preprint E2-89-525 (1989); B.A. Kniehl, Nucl. Phys. B 347 (1990)
 F. Halzen, B.A. Kniehl, Nucl. Phys. B 353 (1991) 567; A. Djouadi, P. Gambino, Phys. Rev. D 49 (1994) 3499
- B.A. Kniehl, J.H. Kühn, R.G. Stuart, Phys. Lett. B 214 (1988) 621; B.A. Kniehl, A. Sirlin, Nucl. Phys. B 371 (1992) 141; Phys. Rev. D 47 (1993) 883;
 S. Fanchiotti, B.A. Kniehl, A. Sirlin, Phys. Rev. D 48 (1993) 307
- 18. B.A. Kniehl, these proceedings, and proceedings of the International Europhysics Conference on High Energy Physics, Marseille 1993, eds.: J. Carr and M. Perrottet
- 19. A. Sirlin, Phys. Rev. D 29 (1984) 89
- 20. CCFR Collaboration, A. Bodek, proceedings of the International Europhysics Conference on High Energy Physics, Marseille 1993, eds.: J. Carr and M. Perrottet
- CDHS Collaboration, H. Abramowicz et al., Phys. Rev. Lett. 57 (1986) 298; A. Blondel et al, Z. Phys. C 45 (1990) 361; CHARM Collaboration, J.V. Allaby et al., Phys. Lett. B 177 (1987) 446; Z. Phys. C 36 (1987) 611; CHARM-II Collaboration, D. Geiregat et al., Phys. Lett. B 247 (1990) 131; Phys. Lett. B 259 (1991) 499
- D. Bardin, M.S. Bilenky, G.V. Mithselmakher, T. Riemann, M. Sachwitz,
 Z. Phys. C 44 (1989) 493; W. Hollik, Munich preprints MPI-Ph/93-21; MPI-Ph/93-22 (1993)
- A.A. Akhundov, D.Yu. Bardin, T. Riemann, Nucl. Phys. B 276 (1986) 1;
 W. Beenakker, W. Hollik, Z. Phys. C 40 (1988) 141; J. Bernabeu, A. Pich,
 A. Santamaria, Phys. Lett. B 200 (1988) 569;
- 24. A. Denner, W. Hollik, B. Lampe, Z. Phys. C 60 (1993) 193
- J. Fleischer, F. Jegerlehner, P. Raczka, O.V. Tarasov, Phys. Lett. B 293 (1992) 437; G. Buchalla, A.J. Buras, Nucl. Phys. B 398 (1993) 285; G. Degrassi, Nucl. Phys. B 407 (1993) 271; K.G. Chetyrkin, A. Kwiatkowski, M. Steinhauser, Mod. Phys. Lett. A 8 (1993) 2785
- K.G. Chetyrkin, A.L. Kataev, F.V. Tkachov, Phys. Lett. B 85 (1979) 277;
 M. Dine, J. Sapirstein, Phys. Rev. Lett. 43 (1979) 668;
 W. Celmaster, R. Gonsalves, Phys. Rev. Lett. 44 (1980) 560;
 S.G. Gorishny, A.L. Kataev, S.A. Larin, Phys. Lett. B 259 (1991) 144;
 L.R. Surguladze, M.A. Samuel, Phys. Rev. Lett. 66 (1991) 560
- T.H. Chang, K.J.F Gaemers, W.L. van Neerven, Nucl. Phys. B 202 (1982) 407; J.H. Kühn, B.A. Kniehl, Phys. Lett. B 224 (1990) 229; Nucl. Phys. B 329 (1990) 547; K.G. Chetyrkin, J.H. Kühn, Phys. Lett. B 248 (1992) 359; K.G. Chetyrkin, J.H. Kühn, A. Kwiatkowski, Phys. Lett. B 282 (1992) 221; K.G. Chetyrkin, A. Kwiatkowski, Phys. Lett. B 305 (1993) 285; Karlsruhe

- preprint TTP93-24 (1993); K.G. Chetyrkin, Karlsruhe preprint TTP93-5 (1993)
- 28. S. Bethke, these proceedings
- 29. SLD Collaboration, K. Abe et al., SLAC-PUB-6456 (1994)
- 30. P. Gambino, A. Sirlin, NYU-TH-94/04/01
- 31. A. Sirlin, NYU-TH-93/11/01
- 32. J. Ellis, G.L. Fogli, E. Lisi, CERN-TH.7261/94
- S. Sarantakos, A. Sirlin, Nucl. Phys. B 217 (1983) 84; D.Yu. Bardin V.A. Dokuchaeva, Nucl. Phys. B 246 (1984) 221; M. Böhm, W. Hollik, H. Spiesberger, Z. Phys. C 27 (1985) 523
- 34. G. Passarino, talk at the 27th International Conference on High Energy Physics, Glasgow, July 1994; D. Bardin et al., Report of the Working Group on Precison Calculations for the Z Resonance (in preparation)
- G. Altarelli, R. Barbieri, Phys. Lett. B 253 (1991) 161; G. Altarelli, R. Barbieri, S. Jadach, Nucl. Phys. B 269 (1992) 3; E: Nucl. Phys. B 276 (1992) 444
- M.E. Peskin, T. Takeuchi, Phys. Rev. Lett. 65 (1990) 964; W.J. Marciano,
 J.L. Rosner, Phys. Rev. Lett. 65 (1990) 2963; B.W. Lynn, M.E. Peskin, R.G.
 Stuart, in: Physics with LEP, eds. J. Ellis and R. Peccei, CERN 86-02 (1986);
 D.C. Kennedy, P. Langacker, Phys. Rev. Lett. 65 (1990) 2967; R. Barbieri,
 M.Frigeni, F. Caravaglios, Phys. Lett. B 279 (1992) 169; V.A. Novikov, L.B.
 Okun, M.I. Vysotsky, CERN-TH.6943/93 (1993), M. Bilenky, K. Kolodziej,
 M. Kuroda, D. Schildknecht, Phys. Lett. B 319 (1993) 319
- G. Altarelli, R. Barbieri, F. Caravaglios, Nucl. Phys. B 405 (1993) 3; CERN-TH.6895/93 (1993)
- 38. G. Altarelli, Lectures at the Fifth BCSPIN Summer School in Physics, Kathmandu 1994
- B. Holdom, J. Terning, Phys. Lett. B 247 (1990) 88; M. Golden, L. Randall, Nucl. Phys. B 361 (1991) 3; C. Roiesnel, T.N. Truong, Phys. Lett. B 256 (1991) 439; T. Appelquist, G. Triantaphyllou, Phys. Lett. B 278 (1992) 345; J. Ellis, G.L. Fogli, E. Lisi, Phys. Lett. B 285 (1992) 238; S. Chivukula, proceedings of the XVI International Symposium on Lepton and Photon Interactions, Cornell University, Ithaca 1993, eds.: P. Drell and D. Rubin
- 40. F. Cornet, W. Hollik, W. Mösle, MPI-PhT/94-13 (1994), to appear in Nucl. Phys. B
- 41. P. Langacker, these proceedings