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Using the general formalism presented in Refs. [1, 2|, we study the finite-volume effects for the
2+ J — 2 matrix element of an external current coupled to a two-particle state of identical scalars
with perturbative interactions. Working in a finite cubic volume with periodicity L, we derive a
1/L expansion of the matrix element through O(1/L%) and find that it is governed by two universal
current-dependent parameters, the scalar charge and the threshold two-particle form factor. We
confirm the result through a numerical study of the general formalism and additionally through an
independent perturbative calculation. We further demonstrate a consistency with the Feynman-
Hellmann theorem, which can be used to relate the 1/L expansions of the ground-state energy and
matrix element. The latter gives a simple insight into why the leading volume corrections to the
matrix element have the same scaling as those in the energy, 1/L?, in contradiction to earlier work,
which found a 1/L* contribution to the matrix element. We show here that such a term arises at
intermediate stages in the perturbative calculation, but cancels in the final result.

I. INTRODUCTION

Understanding the emergence of hadrons from the interactions of their constituent quarks and gluons has remained
a challenge, even many decades after the formulation of the fundamental theory of quantum chromodynamics (QCD).
In recent years, significant progress has been made in determining the properties single-hadron ground states via nu-
merical calculations using lattice QCD [3-5]. Most states, however, manifest as resonances in multi-hadron scattering
processes, and are rigorously defined only as poles in analytically continued scattering amplitudes. In addition, while
hadronic amplitudes allow the extraction of masses, widths and couplings, to constrain structural, information includ-
ing charge radii or parton distribution functions, one must calculate and analytically continue electroweak transition
amplitudes, in which an external current is coupled to the multi-hadron scattering states.

Determining scattering and transition amplitudes in lattice QCD calculations is complicated by the fact that
the latter are necessarily performed in a finite Euclidean spacetime, where one cannot directly construct asymptotic
states. Presently, the most systematic method to overcome this issue is to derive and apply non-perturbative mappings
between finite-volume spectra and matrix elements (which are directly calculable) and infinite-volume scattering and
transition amplitudes. This methodology was first introduced by Liischer [6, 7], in the context of relating the finite-
volume energies of two pions, in a cubic periodic volume of length L, to the elastic 2 — 2 scattering amplitude.

Within this framework, on-shell intermediate states yield power-law finite-volume corrections, O(1/L"), while the
contribution from off-shell quantities is exponentially suppressed, scaling as e~™L, where m;, is the pion mass.
For sufficiently large box sizes, the second class of corrections can be neglected, giving a systematic path towards
extracting scattering observables. In the past decades, Liischer’s formalism has been extended to include non-zero
momentum in the finite-volume frame as well as coupled two-particle channels and particles with spin [8-16]. Lattice
QCD applications of the methodology have proven highly effective in the determination of two-hadron bound and
resonant states [17-35], including those at energies where multiple channels are kinematically open [36—44]. This
success in the two-hadron sector has also motivated the extension to 2 — 3 and 3 — 3 scattering [45-54], with the
first lattice QCD computations of the 37T system published last year [55-58].}

Extensions of these finite-volume mappings have also been derived to extract electroweak transition amplitudes
from lattice QCD calculations. As first shown in Ref. [61] in the context of K — 7w decays, finite-volume matrix
elements are related to electroweak transition amplitudes through a mapping that depends on both the box size
and the scattering amplitude of the multi-particle final state. This has been generalized to arbitrary 1 + J — 2

amplitudes [9, 12, 62-65] and applied in lattice QCD studies of K — 77w decay [66—-69] as well as v* — 7w [70, 71]
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and my* — 7w [72-74] transition amplitudes. The ideas have further been generalized to 1 + J — 1 + J matrix
elements, with long range-contributions form multi-particle intermediate states [75-77]. Most recently, the formalism
for 2 + J — 2 electroweak transition amplitudes has been developed [1, 2], generalizing previous studies based in
fixed-order calculations in a specific effective field theory [13, 78]. As compared to the 1 4+ J — 2 methodology, the
relations in Refs. [1, 2] are more complicated due to the presence of additional finite-volume effects from triangle-
diagram topologies.

Because the 2+ .7 — 2 finite-volume mapping is complicated, it is necessary to provide various non-trivial checks on
the formalism, and calculate limiting cases in which more straightforward predictions may be extracted. With this in
mind, in a previous study [79] we provided two important checks on the general relations. First we demonstrated that
the formalism, in conjunction with the Ward-Takahashi identity, protects the electromagnetic charge of finite-volume
states. Though obvious from the general properties of the theory, in the context of our mapping this required exact
cancellations between various combinations of finite-volume functions and thus provided a clear demonstration that
all effects have been properly incorporated. We then explored the bound-state limit of matrix elements and recovered
the expected result, that finite-volume corrections scale as e™*% for large L, where & is the binding momentum of
the two-particle bound state. As is already well known for finite-volume bound-state energies [80-82], in the case
of a shallow bound state, KL < m,L, many terms in the large-volume expansion (scaling as powers of e~"L) give
significant contributions. As a result, we find it is crucial to consider the all-orders framework of Refs. [1, 2] to extract
reliable predictions of bound-state form factors.

In the present article, we continue our series of consistency checks by studying the 1/L expansion of the finite-
volume matrix element, (Fy, L| J(0) |Eo, L), where |Ey, L) is the ground state of a perturbative two-scalar system
and J(z) is a scalar current. In contrast to our previous check, here we restrict attention to finite-volume scattering
states meaning that the energy, Ey(L), approaches the two-scalar threshold as L — oo. For finite L, both Eq(L)
and (Ey, L| J(0) |Eo, Ly admit 1/L expansions with coefficients depending on the geometry of the finite volume as
well as infinite-volume parameters governing the interactions. In the case of the energy, the expansion is well-known
and has been studied, through various orders in 1/L, in Refs. [6, 83-88]. An analogous study for matrix elements
was performed in Ref. [89], in which non-relativistic quantum mechanics is used to expand an n-particle ground-state
matrix element through 1/L*.

In this work, we derive the 1/L expansion of L3 (Ey, L| J(0)|Ey, L) through O(1/L%). We compare our result with
Ref. [89] and find significant disagreement, including a difference in the behavior of the leading volume correction,
with our result scaling as 1/L? and that of the earlier work as 1/L?. To confirm our own determination, we cross-check
both through a numerical study of the general formalism and through an independent perturbative calculation. In
addition we use the Feynman-Hellmann theorem to relate (Ey, L| 7 (0) |Eo, L) to a mass derivative of Ey(L) and show
that this enforces certain common features between the two expansions, e.g. that both start at O(1/L?). Finally, in
our perturbative cross-check, we identify classes of terms that, if omitted, lead to the behavior reported by Ref. [89].

The remainder of this article is organized as follows: We first review the 1/L expansion of Ey(L) in Sec. ITA, based
in the Liischer scattering formalism. Then, in Sec. II B, we derive the corresponding expansion of (Ey, L| J(0) |Eo, L)
using the relations of Refs. [1, 2], and also describe how the results for the energy and matrix element are related
via the Feynman-Hellman theorem. The main expressions are succinctly summarized in Egs. (1) and (3) below. In
Sec. ITC we provide a numerical check of our expansion against the all-orders formalism and in IID we provide a
detailed comparison of our result with Ref. [89]. Section III then describes the perturbative confirmation of our results
and gives additional insight into the discrepancy with Ref. [89]. We briefly conclude in Sec. IV. We also include an
appendix to derive one of the technical results required for Sec. II B, concerning the imaginary part of the triangle
diagram entering the infinite-volume 2 + J — 2 matrix element.

II. THRESHOLD EXPANSION

In this section we review the 1/L expansion of the ground-state two-particle energy, Fo(L), and then turn to the
main result of this work, the corresponding expansion of the finite-volume matrix element. The expressions hold
for a generic, relativistic quantum field theory in a periodic, cubic spatial volume with side-length L, provided the
lowest-lying two-particle state consists of two identical scalars with mass m. We additionally require that the center-
of-momentum frame (CMF) and finite-volume frame coincide, i.e. that the particles have zero momentum, P = 0, in
the finite volume.

For convenience we summarize the two key results here:

1. In Sec. IT A we review the well-known expansion of the two-particle energy [6, 83-88]
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where a and r are the scattering length and effective range respectively, defined in Eq. (7) below, and m is the
physical mass. The three geometric constants

7 =-8.913633, J =16.532316, K =28.401924, (2)
are defined and evaluated to high precision in Refs. [6, 84].

2. In Sec. II B we show that the ground-state matrix element of a scalar current at zero momentum transfer admits
an analogous expansion
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where (Fy, L|Fy, L) = 1, g is the scalar charge of a single particle under the scalar current, J(x), and
64mm?
T =mr+ —2 Fo - (4)

Here Fy is the threshold form factor, defined in Eqs. (24) and (27) below via a straightforward relation to the
infinite-volume 2 + J — 2 transition amplitude.

A. Finite-volume energies

For a range of CMF energies from 2m up to the first inelastic threshold, the finite-volume spectrum is described
by the Liischer quantization condition [6], which is exact up to exponentially suppressed L dependence of the form
e~™L. The result of Ref. [6] relates the discrete energies, E,, (L), to the physical scattering amplitude, by expressing
the former as roots of a determinant in the space of two-particle angular momenta. The effects of higher angular
momenta first appear in powers of 1/L well-beyond the orders that we control, so that for our purposes it is sufficient
to consider the truncated quantization condition

Mfl(En) = _F(E'm L) ) (5)
where I is a known finite-volume function, and M is the S-wave scattering amplitude, related to the S-wave scattering

phase shift, §, via
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Here g is the relative momentum of the two particles in the CMF, defined via E = 24/m2 + ¢2. We recall also that
g cot d(q) admits a convergent expansion about two-particle threshold, referred to as the effective range expansion:

1 1
geotd = —= + 2rg* + O(¢"), (7)
a
where a is the scattering length and r the effective range.

The finite-volume function, F, can be expressed in many forms, all equivalent up to exponentially suppressed
corrections (see, e.g., Refs. [1, 8, 9, 11, 15]). We begin with the following definition,
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2 The leading corrections from non-trivial angular momenta enter via a finite-volume function denoted by F0,00(E, L) and defined, for
example, in Ref. [9]. This quantity encodes the mixing of the S-wave (¢ = 0) and the G-wave (¢ = 4) due to the reduced rotational
symmetry of the cubic volume. The Fyg go-correction enters as an additive term in Eq. (5), scaling as Fio,00(E, L)? = O(1/L8). The
corresponding G-wave correction to the ground-state energy, Eo(L), then scales as 1/L'! and is therefore five orders beyond the 1/L6
contributions that we keep.
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and O is the usual Heaviside step function, included here to implement the hard cutoff. In Eq. (9) we have separated
F into its real and imaginary parts, denotlng the former by Fp,. The subscript “pv” stands for principal value,
indicating that the real part of F' is equivalently given by taking the original definition and replacing the e pole
prescription in the integral with a principal value. Separating out the imaginary part is useful as it exactly cancels
the imaginary part of the inverse scattering amplitude [see Eq. (6)]. It follows that Eq. (5) is exactly equivalent to
the real equation

gn cotd(g,) = —167E, F, (E,, L), (11)

where ¢2 = E2 /4 —m?.

From these relations, it is straightforward to determine the 1/L expansion of the lowest lying two-particle energy,
denoted Ey(L) and defined as smallest hamiltonian eigenvalue satisfying limy,_, o Fo(L) = 2m. The infinite-volume
value motivates the definitions

AEO(L)_EO(L)2m_2m{ 1 qiif) ] (12)
- () (13)
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Here the first line serves to define AE (the distance from the finite-volume state to the infinite-volume threshold)
and its relation to ¢3. Equation (13) introduces notation for a generic power series in 1/L, and the 1/L3 prefactor,
as well as the factors of scattering length, simplify the form of ; in the final result. The aim of this subsection is to
review the determination of the coefficients v;, defining the large-volume expansion of Ey(L).

The final non-trivial ingredient is the threshold expansion of F},,, which can be written as
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where Z; are numerical constants characterizing the cubic geometry,
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with n = |n| and with the sums running over all non-zero integer vectors, n € Z3/{0}.?

The coefficients, v;, can now be determined in a two step procedure: First, one substitutes the effective range
expansion, Eq. (7) and the expansion of Fj,,, Eq. (14), into the real version of the quantization condition, Eq. (11).
In this way, both sides of the equation are expressed as polynomials in ¢3 or, via the relation ¢¢ = E3/4 — m?, as
polynomials in E3. Second, substituting the 1/L expansion of AEy(L) given in Eq. (12), one reaches an equality
involving two series of 1/L. The result can only be satisfied for all L by tuning the values of y; to enforce the equality
of all coefficients. One finds y_5 = vy_; = 0, meaning that AFy(L) scales as 1/L3. The first few non-trivial coefficients

are then given by [6, 83-88]
70:17 ’yl:_Ia 72212_L7a
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where we have adopted the notation of Ref. [84]: T; = Z, T, = J, I3 = K.* This result is summarized in Eq. (1).

3 A convenient method to evaluate these is given in Ref. [87], in which an exponential damping function is used to accelerate convergence.
4 High-precision numerical determinations of these constants can also be found in that reference.



B. Finite-volume matrix elements

We now turn to the 1/L expansion of the finite-volume 2 + J — 2 matrix element, where J is a generic scalar
current density. As above, we assume that the total momentum vanishes in the finite-volume frame, and we truncate
all infinite-volume amplitudes to the S wave. Then the formalism presented in Refs. [1, 2] simplifies to

L*(E!, L J(0)|Epn, L) = Wr.at(EL, By, L)\/R(E!,, L)R(E,,, L), (17)

where |E,,, L) is the nth finite-volume excited state, normalized to unity. As with the Liischer quantization condition,
this relation holds up to the first inelastic threshold and is exact up to exponentially suppressed corrections of the
form e~™L.

The right-hand side is composed of the Lellouch-Liischer factor, R, defined via
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and Wy, 4+, a finite-volume quantity that contains the infinite-volume 2 + J — 2 transition amplitude

Wr.a(E',E,L) = Wae(E', E) + f(Q*) M(E') G(E', E,L) M(E) . (20)

Here f(Q?) is the single-particle form factor with momentum transfer Q? = —(E’ — E)2. In the forward limit this

becomes the scalar charge, denoted by ¢ = f(0). In the second term in Eq. (20) we have also introduced G, a
double-pole finite-volume function given explicitly by

1 1 1
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The final ingredient in the definition of Wy, 4r is the first term on the right-hand side of Eq. (20), the infinite-volume
divergence-free transition amplitude, Wys. Here ‘divergence free’ refers to the subtraction of diagrams where the
current probes one of the external legs. (See Refs. [1, 2] for a detailed discussion of the relation between Wys and
infinite-volume matrix elements.) Though the long-distance poles have been removed, Wys does still contain two
other types of kinematic singularities: (i) threshold singularities arising from the two-particle initial and final state
interactions, analogous to those in the standard 2 — 2 scattering amplitude, and (4) anomalous triangle singularities,
which occur at the boundaries of the kinematic region where all intermediate states of the triangle topology can go
on shell.

For the remainder of this article, we focus on the special case where E' = F, i.e. we evaluate the matrix element at
zero momentum transfer. One of the many simplifying features of this limit is that the anomalous triangle singularities,
type (ii) above, then only arise at threshold and are completely given by the imaginary part of the integral defining
G(E,E, L). Since the sum in G is pure real, this is equal (up to a minus) to

1 1 1
ImG(E, E,L) = Im lim i — — = — ; (22)
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where the final equality is proven in Appendix A. It will prove convenient in the following to also introduce notation
for the real part of G. We define

(23)
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One can remove both the usual threshold singularities (x ¢) and the threshold triangle singularities (o< 1/q) by
introducing a zero-momentum-transfer two-hadron form factor, F(FE), related to Wgt(E, E) via

Wat(E, E) = M(E) [}‘(E) +iz 25Eq] M(E). (24)



Here the S-wave scattering amplitude, M, removes the initial- and final-state two-particle interactions so that F does
not contain the threshold cusp appearing in M and Wg¢. The second term, taken directly from Eq. (22), then removes
the remaining singular behavior.

This completes our general discussion of the building blocks entering Eq. (17). Substituting the finite- and infinite-
volume functions at zero momentum transfer into the general result, we deduce an all-orders expression for the
finite-volume matrix element in the S-wave only approximation

-F(En) +g Gpv(E'm L)
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Given finite-volume energies and matrix elements, e.g. computed from lattice QCD, Eq. (25) can be used to solve for
the unknown F. Together with the scattering amplitude, M, and the single-particle charge, g, this yields a prediction
for the full 2 4+ J — 2 transition amplitude in the kinematic region around the zero-momentum-transfer point.

In the present article, however, our aim is to analytically study the L dependence of the threshold matrix el-
ement, (Fo,L|J |Ey, L), by expanding the right-hand side of Eq. (25) in powers of 1/L. Specifically, we expand
L3 (Ey, L| J |Ey, L) through O(L~®), corresponding to four non-trivial orders in the matrix element’s large volume
behavior. To set up the calculation we introduce an expression analogous to Eq. (13) above

L3 (E,,L|J|En, L) = (25)

E=FE,

L*(Bo, LI T |Bo. L) = 237 () (26)
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where, as before, we have removed various factors to simplify the expressions of §; that arise in our final result.
We next expand all quantities entering Eq. (25) about E? = 4m?, equivalently about ¢? = 0, beginning with

F(E)=Fo+ 0O(¢?). (27)

We will see below that Fy first contributes to L3 (Ey, L| J |Eo, L) at O(1/L3), i.e. to B3, implying that the O(q?)
corrections first enter at O(1/L%) (B6) and are beyond the order we work. Next, the finite-volume G function has
a similar expansion to that given in Eq. (14), but with the leading L scaling enhanced by the (E — 2m)? ~ ¢* pole
in the summand. Using Eq. (A2) in the appendix, one can readily recover the full expansion through a derivative
relation to Fiy:

1 0
GpV(EaL) == —Eaiqg

Note that, when evaluated at the finite-volume ground state energy, ¢> = O(1/L?) implying G,y = O(L3). In Eq. (25)
this leads to an O(L?) scaling of the numerator, which is, however, canceled by the same scaling in the denominator
so that L3 (Ey, L| J |Eo, L) is finite as L — oo.

To conclude the exercise we rewrite the denominator of Eq. (25) as a derivative with respect to ¢> and expand the
remaining functions to reach

[EFy(E,L)], (28)
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L3 (Ey,L| J |Fy, L) = O(1/L°%), (30)

where it is understood that ¢? is set to g3 = Ey(L)?/4—m? everywhere on the right-hand side. In the denominator we
have also substituted the threshold expansion of ¢ cot d, through the order we require, and used the fact that the g2
derivative annihilates the constant term. Expanding this expression and matching to Eq. (26) yields the main result
of this work: By =1, 81 = 82 =0,
2t ot
fs = m2a? + maT7 (31)
ot 4mt
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Figure 1. Plots of (mL)? x Ms(L) (top row) and (mL)?® x M(L) (bottom row) vs mL, with M. (L) as defined in Eqs. (25)
and (36). In each panel the solid line shows (mL)"™ x My (L) and the horizontal dashed line shows the expected asymptote,
predicted by the analytic 1/L expansion. All plots are evaluated at fixed g/m = 1.0 and ma = 0.1, with mr and mFy varied,
as indicated in the labels and in the main text.

where T is a combination of 7y and the effective range, r, defined in Eq. (4) above. The leading order term, 5y,
represents a pure single-hadron contribution which arises from the G function, while the two-hadron form-factor Fy
is sub-leading, along with relativistic corrections from the single-hadron term.

We close the subsection with a simple argument that explains the absence of 1/L and 1/L? terms, and also gives
insight into the pattern of geometric constants entering 3, 54 and 5. If we work in a generic scalar field theory with the
field ¢(z) creating a single particle state, one possibility is to choose J () oc ¢(x)? for the scalar current. Then, by the
Feynman-Hellman theorem, the finite-volume matrix element is proportional to a mass derivative of the ground-state
energy. Given the result Eq(L) = 2m+O(1/L3), this immediately implies that L3(Eq, L|J (0)|Eo, L) = g/m~+O(1/L3),
i.e. the absence of 1/L and 1/L? terms in the energy implies the same must hold for the matrix element. Here the
factor of L3, multiplying the matrix element, is required because the contribution appearing in the Hamiltonian is
not directly J(x) but rather [, d*x J(z).

Indeed, the full result can be derived from the Feynman-Hellman theorem via the relation

dEo(L)

3 —
L¥{Eo, LIT (0)|Eo, L) = g =" (34)

The derivative corresponds to varying the physical mass by varying the bare mass in the Lagrangian, while keeping
all other bare parameters fixed. As a result, all other physical quantities predicted by the Lagrangian inherit an
m dependence, while L remains constant. Through the order we work one only requires an expression for the m?
derivative of the scattering length. Deriving this explicitly goes beyond the scope of this article. We only note that
the result

da 1 32rma? a?
am? =2ty Fom g, T (35)

leads to a perfect correspondence between the 1/L expansions of Eq(L) and L3{FEy, L|J(0)|Ep, L), as can be readily
seen from Eqs. (1) and (3).



C. Numerical confirmation

To verify our strategy for expanding the general formalism in powers of 1/L, here we numerically study the difference

mL?

Mg (L) = (Eo, LI J |Eo, L) = Bo , (36)
as a function of mL, using Eq. (25) to evaluate the finite-volume matrix element. By choosing various values of ma,
mr, g/m and mFy, we are able to confirm numerically that our analytic 1/L expansion is consistent with the general
formalism.

In Fig. 1 we show the behavior of (mL)? x M7(L) (top row) and (mL)? x Ms(L) (bottom row) vs mL, with
ma = 0.1, g/m = 1, and various choices of mr and mFy. In the first column we take mr = 0 and mFy = 0,
in the second mr = 0.25 and mFy = 0, and in the third mr = 0.25 and mFy = 0.5. The plots of the top row
indicate that, as mL — oo, (mL)? x Ms(L) asymptotes to zero, confirming the result 8 = 0. This behavior is
unchanged by varying the values of mr and mJFy, as shown. The plots of the bottom row show that (mL)? x Mz (L)
asymptotes to a non-zero value corresponding to 33(ma/7)3 in the expansion. For the numerical values considered,
B3(ma/7)® = —0.63,—0.62,5.7, for the first, second, and third columns, respectively. The numerical results again
confirm that there is no contribution at O(L~2) and that the first non-trivial correction, at O(L™3), is in agreement
with the analytic expression for the threshold expansion. We have also checked that the large L numerical result for
the O(L™*) coincides with our expansion.

D. Comparison with Ref. [89]

In this section we compare our result, summarized in Eq. (3), to that of Ref. [89], and find clear discrepancies. The
earlier work uses a non-relativistic effective field theory to calculate the 1/L expansion for n + J — n ground state
finite-volume matrix elements, where n is any number of identical scalar particles. For n = 2 the result of Ref. [89]
becomes

20102 2 4a1a 2000 2a1a

L3 (Fy, L| J |Eo, L) (Ref. [89]) = 20 + It Lt ——(K-1J) - L+ o C O1/L%), (37
where o7 and as are couplings relating the scalar current to creation and annihilation operators and C is another
geometric constant, related to those specifically defined in Ref. [89] via C = 3727 — 6ZK — J? + 3L. The discrepancy
of this result with Eq. (3) is immediately clear, in particular due to the 1/L? term. As already described at the end
of Sec. I1 B, the Feynman-Hellmann theorem implies that a 1/L? correction to the matrix element requires the same
for the finite-volume ground state energy. Since the latter is well-known to be absent, we are confident that this term
cannot arise.

To give a more detailed comparison, we must next relate the effective-field-theory-independent parameters of our
calculation, g and T, to the couplings that enter the earlier work. First, note that the relation between g and «; is
given unambiguously by matching the L — oo results of the two calculations:

2a; (Ref. [89]) = % (38)

By contrast, the expression for ay is less clear. We can derive a partial relation by matching the 1/L? coefficients, but
it is unclear whether we should only match the Fy term within 7 or if we should also absorb other infinite-volume
terms, e.g. those depending on the scalar charge g and scattering parameters. We take the relation

as(Ref. [89]) = g%(maT— 1) —-¢, (39)

where ¢ parametrizes our ignorance of the full relation and can be used to remove the —1 in parenthesis as well as
the r-dependent term within 7. Here we do not allow the geometric constants Z, 7 and K to enter the relation, as
these are only defined via the cubic geometry of the finite-volume, and it must be possible to relate the scattering
parameters and the couplings with no reference to this. We deduce

as + ¢ B 2(ae + Q)a 4ovia?

5
- St ST 0(1/L7), (40)

L3 (Ey, L| J |Ey, L) (this work) = 2ay +

Comparing to Eq. (37) we first note that the 2a; and ay/L? terms now agree by construction. Thus, the only non-
trivial agreement is in the ay/L* term, which exactly corresponds between the two expressions. Otherwise the results



are inconsistent due to (i) the 1/L? term of Ref. [89] and (ii) geometric-constant-dependent discrepancies at both
O(1/L3) and O(1/L%).

In the next section we provide a final cross-check of our result by performing an explicit perturbative calculation
of the finite-volume matrix element, similar in spirit to that of Ref. [89] but based here in a relativistic effective field
theory. The results of this excercise verify our general expression and also shed light on the source of the incorrect
1/L scaling found in Ref. [89].

III. PERTURBATIVE EXPANSION OF MATRIX ELEMENT

In this section, we provide an alternative derivation of the matrix element near threshold using perturbation theory.
This requires deriving expansions of the finite-volume two- and three-point correlation functions, using the time-
dependence to isolate the ground state, and then forming a ratio to identify L3(FEy, L|J(0)|Eo, L). We work with a
generalized effective field theory of a scalar field with mass m.

As we are interested in the two-particle threshold state, it is convenient to use an interpolator defined as the product
of two scalar fields, each projected to zero spatial momentum. The two-point function is thus defined as

Cop(t) = 2 2t (G (D EL(0)) (a1)

where ¢p(t) defines our notation for a single scalar field of momentum p at time ¢. This is related to the position-space
and momentum-space field operators by Fourier transforms,

™

Golt) = [ a'xempltx) = [ Lo ). (12)

We restrict attention to ¢t > 0 so that we do not have to worry about time ordering, and the resultant dependence
on [t|, for the correlation function. The normalization of Eq. (41) is chosen such that the correlator is unity for
non-interacting limit, coinciding with the conventions chosen in Ref. [86], with the difference that we use Minkowski
time here.

The two-point correlator can be written using the usual spectral representation,

Copt(t) = Y Zne 2P, (43)

where AFE,, = E, — 2m. Since we are only interested in the threshold state, we will explicitly isolate the n = 0 term
within Cop(t), defining

Oth,th(t) = ZoeiiAEot . (44)

As discussed in Ref. [86], one can do this systematically by using the fact that excited state corrections always lead

to a time dependence of the form:exp[—2i(1/m? + (27/L)?n — m)t], with n > 0. In this work we are only interested
in the overlap factor Zy. Following Ref. [86], this can be determined via

(2m)?

576 | (01830 Eo, L[ (45)

Zy = Copin(0) =

In a similar manner, we define the 3-point correlation function

ray (2m)? 2im(t' —t) 22 (4 ~12
Co(t',1) = e (BT OF (V). (46)

where J is a scalar, two-field current

J (@) = gp(x)e(x), (47)

and g is the scalar charge. In defining Csp¢ (¢, t) we have required ¢’ > 0 > ¢t and have set the prefactor to match that
used in the 2-point correlator. The current is renormalized in the same way as the mass-term within the Lagrangian,
equivalently by requiring that g is the single-hadron scalar charge to all orders.

We note here that our general result holds for any scalar current, whereas in this section we restrict attention to the
single term of Eq. (47). This is sufficient for the cross check, since the J(z) induces all g and F terms and therefore
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allows one to check all terms in the general expansion. The generality is lost in this case only in that the perturbative
result obscures the fact that the 1/L expansion, when expressed in terms of g and JFy is universal, i.e. holds for all
scalar currents. This universality is a direct consequence of the general formalism derived in Refs. [1, 2].

Following the procedure for the 2-point correlator, we isolate the threshold term from the spectral decomposition,
giving

2m)? _. ' - -
Cipen(t'£) = I =8Bl =00/ &3(0)| By, L) (o, LI T (0) | Bo. L) (o, LIZS(0)]0) (48)
= Zoe AP =D (B L] 7(0) |Eo, L) . (49)

As with the 2-point correlator, one can unambiguously separate exponentials contributing to excited states, so that
this threshold correlator is straightforward to calculate, order by order in perturbation theory. The matrix element
we are after is then given by the ratio

1
(Eo, LI 7 (0) | Eo, L) = ZCSPt,th(O, 0). (50)

In the following subsections, we calculate Zy = Cap ¢n(0) and L3 Cpy (0, 0) [and thus L3 (Ey, L| J(0) |Eo, L)] through
O(a3,1/L?) in a generic, effective-field-theory expansion.

We remark that the perturbative check of this section differs from the derivation of Refs. [1, 2], even though both
are based in the generic properties of relativistic field theory. The key distinction is that the ground state matrix
element is identified here through terms with time dependence of the form e~*?™¢, corresponding in momentum space
to the lowest lying non-interacting finite-volume pole. Of course, the full correlator has a time dependence dictated by
the interacting spectrum. This corresponds to the interacting pole positions (and the cancellation of non-interacting
poles) that was identified after the all orders summation in Refs. [1, 2].

The distinction leads to important technical differences in the calculation. In particular, in Refs. [1, 2] we found
that diagrams in which the current couples to a final single-particle [see Figs. 3(b1-c2)] did not contribute to the
residue of interacting poles that defined the matrix element of interest. In the present calculation, by contrast, these
diagrams appear at the fixed-order being considered, and turn out to be necessary in recovering Eq. (3).

A. Two-point correlator

The order-by-order calculation of Zy [through O(a®,1/L°)] is one of the central ingredients in perturbative determi-
nations of the ground state two-particle energy, described in detail in Refs. [86, 88]. As illustrated in detail in Ref. [88],
one of the central complications in the fixed-order calculation is that numerous contribution arise that either cancel
in the final result or else are absorbed in the relation between the bare coupling and the scattering length. To avoid
these complications, here we present a new method, in which Z; is derived through the expansion of finite-volume
correlator expressed via standard identities that arise in the context of finite-volume quantization conditions.

We begin with
dE’ dk{ [ dk /
C2pt(t) 2L6 21mt/ / / 0 / 0 —zE t GL(E/, E, k67 k‘o) , (51)

where

GL(E', E, k), ko) ;/

Ld4xeik'g;/Ld4yei(P’7k/)y/Ld4zefikz/Ldélwefi(Pfk)w <ﬁP(1')S0(y)SDT(Z)SDT('UJ)>L, (52)

with k* = (k°,0), k’* = (k’°,0), P* = (E,0), P'* = (E’,0). We stress here that the four-point function also includes
the disconnected contractions. In addition, we note that G, is proportional to an energy conserving Delta function,
0(E—E).

We next note that, following the Lehmann-Symanzik-Zimmermann reduction formula, the connected part of G,
will contain a quadruple pole of the form [(k? —m?)(k'2 —m?)((P —k)? —m?)((P' —k")? —m?)]~! and, after projecting
to zero spatial momentum, this leads to poles at ko, k{ = £m F ie. Evaluating the ko and k{, integrals by enciricling
these, we find

1 dE _p 1 iMy(E)
H=1-— 2imt D iEt
Coptn(t) 213° §ém or ¢ E2(E—2m+ic?’ (53)
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Figure 2. Expansion of the momentum-space finite-volume two-point correlator, Eq. (52), in terms of the infinite-volume
scattering amplitude M (gray circle) and finite-volume cuts F' (dotted line). The geometric series in M and F' yields M,
given in Eq. (54).

where we have also used the Dirac delta function to evaluate the E’ integral. We define i M, (FE) as the connected
and amputated part of G, evaluated at k{ = ko = m. Two additional comments are in order here: First, the leading
1 arises from the disconnected pieces which exactly cancel the prefactor, by construction. Second, we have neglected
higher singularities in the kg and k{, dependence, as these ultimately lead to excited state exponentials. For this reason
the “th” subscript has also been added at this stage, together with the labels on the integral that indicate only pole
near E = 2m is to be included.

The next step is to substitute the relation

qcot d(q) -
E)=|"—22 4+ F(EL)| 4
Mi(B) = | 2550 ¢ P 1) 64)
together with the definitions
167E 1 1
K(E)= ——— Fo(E, L F'(E, L 55
(E) qcotd(q)’ V(B L) = AmL3 E(E — 2m + ie) +F(BL), (5)
to reach
1 dE .5 1 1 1 1 -t
C t_1_722mt§£ 7_1Et7—’CE_1 F/EL
2. (1) P e  EE— i M) T EE—amye T ED

(56)

The introduction of F'(E, L) is motivated by the fact that this object is analytic near E = 2m whereas Fy,,(E, L)
contains the simple pole that we are displaying explicitly.

Expanding the square-bracketed function in powers of 1/(E — 2m + i€) and evaluating the contour integral leads to
the elegant result

C (t)=1- ie%mt i -1 \" 1 ol [emibt 1 (57)
2pt,th 2L3 4mL3) (n+ 1) QET | E¥n K(E)~1 + F/(E, L) |y,

This provides a powerful tool for identifying terms in the expansion of Z; as well as the corresponding energy. Since
we are only interested in the latter here, we set ¢ = 0 to reach the general result

"ol ontl 1 1
Zy = 573 § 3 1 2 -1 / ’ (58)
2L 4mL (n+ )V OEnTL | B2t K(E)~* 4+ F'(E,L) | p_s,,
The final step is to substitute the effective range expansion as well as the large L expansions of F”:
! 1 3
= 1
F'(2m, L) 327r2mLI +0(1/L%), (59)
0 L
9 pE,L ‘ - 1/L
oF ( ) B=2m 1287 4J+O( /L), (60)
0? mL
(B, L ‘ - 1
OFE? ( ) E—2m 2567 6’C+O( ) (61)
Substituting in Eq. (58) and then re-expanding in 1/L, we conclude
a \2 274 9 a \3 a \3 _4
20_1—(5) j—m(l—mar)(ﬁ) —2(/C—Ij)(—L) +OL™). (62)

The first sub-leading correction at O(L~3) is due to the leading-order amphtude Fig. 2 (b), whereas the correction at
O(L~2) arises from volume enhancements in the one-loop diagram, Fig. 2 (c).
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B. Three-point correlator

We now turn to the three-point correlator, which can be written as

Co(t1) = Germe=n [GF [5F [ [t o0 — a1 TP = )30 (69

where all four-momenta have a vanishing spatial component. As in the preceding section, we express the momentum-
space correlator on the right-hand side of Eq. (63) order by order in Feynman diagrams, and then calculate the
contribution of each to Cspy n(0,0), defined in Eq. (48).

The LO contribution arises from diagrams (al) and (a2) of Fig. 3, with each diagram having a multiplicity x2 to
account for the current coupling to either particle. This leads to

2m)? g dE’ i i
c© 0,0y = 4x L3 §£ §1§ 64
3pt,in(0,0) 216 ( " om ) -~ 21 E'(E' —2m +ic) E(E — 2m + ie) (64)
g
" mL3’ (65)

where the upstairs factor of L3 comes from the momentum-conserving delta function associated with the disconnected
propagator. Alternatively, this same result is reached using propagators in the time-momentum representation

2m)2 ) , e—imt' g eimt e—im(t’—t) g
O(O Y1) = ( 2im(t' —t) 4l 13 I (13 I3 — i 66
3pt,in(* ) 2L © 2m ) LS 2m 2m mL3’ (66)

where in this case the current is rewritten as J(0) = [g/L"] D kp #(0,k)@"(0,p), leading to the volume factor as
shown. The complete leading-order calculation also includes a term in which the current is disconnected from both
propagators. However this term, like every other contribution with the current fully disconnected, is cancelled by
a counterterm, chosen to enforce g as the physical value of the scalar charge. For this reason we omit current-
disconnected diagrams throughout.

The contribution at NLO is given by the diagrams in Figs. 3 (bl) and (b2), where the current couples to a single
hadron in the final state. As mentioned above, these do not contribute to the all orders derivation of Ref. [1, 2] but
must be included in this fixed-order calculation. The two diagrams give the same contribution to the threshold matrix
element and we find

Cipnan(#+1) = —4ig Man (27;;226 (2m 55 a 727,, 21 E2(E — 2m +_ze];tE+’(]Z’ mtig OV
= “digMzm %zlfgi%t (2;) §ém o1 E2(E —2E7; +ie)2 (0%
gt CL e LD )
where My 1, = —32mma is the threshold scattering amplitude. Setting t = ¢’ = 0 then yields
0.0 =25 5 () (70

As with the leading-order result, this can also be reproduced using time-momentum perturbation theory.
It is instructive to already collect the results for Cspg 11 (0,0) and Zy, through O(a). We find

19y 27t (a)3
Cspt,tn(0,0) g B m2a? \rL
Eo, L| J(0) |Ey, L) = =202 — frd o
(Eo, L] T (0) | Eo, L) Zo ml3 o2t (a)3 *

7L

(a?). (71)

m2a?

Note that the factor of 2 in the numerator spoils the cancellation, so that an O(a/L3) term does contribute to the
final result. This may seem surprising since all contributions considered so far involve the current coming to one of
the external legs. Thus for each term in Csp 11 (0, 0) one expects a closely related contribution to Zy. The key point is
that the relative combinatoric factors differ between the LO and NLO terms and this leads to an NLO term surviving
in the matrix element.
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We now turn to contributions scaling as a? / L?. As with the NLO contributions, here the contribution to Cspt,t1(0,0)
with the current on the external leg does not cancel the analogous contribution to Zy. However, an additional term
with the current on an internal leg, does cancel against the remainder so that no 1/L? behavior enters the final
matrix element. The relevant expressions arise from evaluating the next-to-next-to-leading-order (N2LO) diagrams
of Figs. 3(cl), (c2) and (d). The first two of these give

9

2,
C?Eptc,zh(o’o) = - mL3

(%)2 J+00/L%), (72)

and thus follow the pattern of the NLO diagram, including the factor of 2 that spoils the complete cancellation.
The diagram of Fig. 3(d) contributes a similar term as can be seen from rewriting the expression as

dE’ E"G(E',E,LYM(E)
/ /271— E/ /—2m+Z€)E(E—2m—|—ie)+O(1/L3)' (73)

2.d
C?Ept,t)h(()? 0) = - 2L6 2m

Here we have introduced G(E’, E, L) in the perturbative expansion by rewriting the summed loop as an integral plus
a sum-integral difference. The latter contributes at 1/L3 and is thus dropped to illustrate the leading behavior first.
We can further simplify this by dividing G(E’, E, L) into real and imaginary parts and splitting the real part into the
double pole at threshold (~ 1/[(E — 2m)(E’ — 2m)]), together with the sum over k # 0, denoted by G'(E’, E, L). As
with F'(E, L), this term is regular near E = E’ = 2m and the resulting contribution comes from encircling the poles
shown explicitly in Eq. (73). Substituting

G'(2m,2m, L) = 128-0m —J+0(1/L), (74)
together with the threshold scattering amplitude then gives
2,d g a \2
Chitn(0.0) = = () T +0(1/LY). (75)

Alternatively, this same result can be derived in time-momentum perturbation theory. In this case one finds that the
relevant time-dependence arises only for k # 0. This gives
2L6 L3 = (2m)* (2w )3 2wy — 2m)?

OS2 (0,0) = g M3 2o (76)

which is equivalent to Eq. (75) above. Combining C?()itczh(() 0) and Céitdt)h(o 0) gives the same 1/L? dependence as
in Zy, such that these terms perfectly cancel in the ratio. This is our final confirmation that 1/L? scaling is absent
from the matrix element: L3 (Eg, L| J(0)|Eo, L).

To conclude the perturbative check, we have evaluated Csp ¢n(0,0) to one higher order in both ¢ and 1/L. This
follows the same pattern of the calculation so far, but induces Fy and r dependent contributions as well as various

geometric constants. One finds

a 47t

T Camn(0,0) =1~ (TL)Z J = —5—(1—maT) (%)3 — 2k -1J) (%)3 O, (77)

mL3

Combining this with Eq. (62) gives an expansion through 1/L? that is completely consistent with the result of Eq. (3).
Figure 4 shows the leading 1/L scaling for each diagram contributing to the matrix element.

We speculate that the disagreement with Ref. [89] arises from the earlier work omitting the 1/L corrections to Zj
and also dropping contributions to Csp, n (0, 0) with the current attached to an external leg. Equivalently, the earlier
work may have been based in the assumption that the two sets of terms cancel, as they would if it were not for the
leading-order discrepancy, summarized in Eq. (71). Indeed, we find that if we drop diagrams where the current probes
the external legs [(b), (c), and (e) of Fig. 3], and also drop Zj, then we exactly recover the 1/L expansion of Ref. [89].
We stress however that there is no theory nor limiting case where this result holds and, in particular, the absence of
the 1/L? is a universal result inherited from the ground-state energy.

IV. SUMMARY

Understanding the structure of strongly interacting resonances and bound states requires knowledge of two-hadron
electroweak transition amplitudes. With this in mind, a framework was presented in Refs. [1, 2] to relate finite-volume
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Figure 3. Expansion of the momentum-space finite-volume three-point correlator in terms of the infinite-volume scattering
amplitude M, finite-volume cuts F', and the G function (double dotted line). Since the particles are identical, diagrams (a-c),
and (e) contain a multiplicity X2 to account for the current probing both the upper and lower legs. Triangle diagrams in (d)
and (f) do not include a multiplicity as there is only a single contribution for identical particles.

Figure 4. Leading finite-volume scaling for diagrams contributing to the matrix element from the three-point correlator.
Diagrams on the left have identical scaling to those of the corresponding two-point correlator of the same topology, i.e. with
the external current removed.

matrix elements, which can be computed using lattice QCD, to infinite-volume 2 4+ J — 2 transition amplitudes. To
gain confidence in this formalism, we have performed a series of consistency checks, presented in Ref. [79] together with
the present article. While Ref. [79] is concerned with the volume-independence of the charge and the the finite-volume
effects on bound-state matrix elements, this work is dedicated to the 1/L expansion of the lowest-lying two-hadron
scattering state.

Specifically, in Sec. II B we have derived the 1/L expansion of L3(Ey, L|J (0)|Eo, L) through O(1/L?), with the main
result is summarized in Eq. (3). We have confirmed that the expression matches expectations from the Feynman-
Hellmann theorem, which can be used to draw a correspondence to the 1/L expansion of Ey(L), and also agrees
with an independent perturbative check. We have also compared to Ref. [89], in which the authors consider the 1/L
expansion of n + J — n finite-volume matrix elements, through O(1/L*), in the context of non-relativistic quantum
mechanics. For n = 2, the results are expected to agree, since relativistic effects first appear at O(1/L%). However, we
find clear disagreement with the earlier publication, both in the scaling of the leading 1/L correction (1/L? in Ref. [89]
and 1/L? in this study) and the coefficients for the sub-leading terms. In the perturbative calculation presented in
Sec. ITI, we have identified classes of corrections that, if omitted, lead to the expressions found in Ref. [89].
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Appendix A: Imaginary part of triangle diagram

In this appendix we demonstrate that G(F, E, L) has a simple imaginary part, given by Eq. (22) of the main text.
The imaginary part arises only from the integral part of G(E, E, L), and thus, the quantity we are after is given by
APkl 1
(27)3 2wy E2(E — 2wy + i€)?

ImG(E,E,L) = fIm/ (A1)

Here we have included the hard cutoff, A, since the real part of the integral has an ultraviolet divergence that cancels
with that of the sum in G(E, E, L). As we will see, the imaginary part is ultraviolet-finite and therefore also universal.
Next it is convenient to expand the integrand about the douple pole at ¢> = k%, where ¢*> = E?/4—m? and k? =

1 1 1 (B + 2wy)? 1 1 2 2\0
— = = k2 — . A2
2wk E2(E — 2wy +1i€)? 2wy (4E)?(q? — k? +i€)?2  4E (¢% — k? + ie)? +0 {( v) ] (A2)

This is useful because the sub-leading terms only contribute to the real part of the integral. We reach

I E. E L) A
m G( 87T2E/ (q? —kz-l-ze)z’ (A3)

where we have also used that the singular piece gives a convergent integral so that we can send A — oco. To identify
the imaginary part, we rewrite Eq. (A3) as a contour integral,

/Oodkkz_l/oodkkz_1§gdk K (A4)
o (2 —Kk2+ie)2 2 ) o (¢2—Kk2+ie)2 2 (k—q—ie)2(k + q +i€)?’

where, for concreteness, we envision closing the contour in the upper-half plane. Evaluating the integral, we pick up
the residue at the pole, k = ¢ + ¢,

k2 d kK

dk : S P N (A5)
?g (k—q—ie)?(k+ q+ ie)? dk (k4 q)?|,_

and thereby conclude the desired result

1

hnG(E,E,L):-—32TEq.
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