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We formulate supersymmetric non-Hermitian quantum field theories with PT symmetry, starting with
free chiral boson/fermion models and then including trilinear superpotential interactions. We consider
models with both Dirac and Majorana fermions, analyzing them in terms of superfields and at the
component level. We also discuss the relation between the equations of motion, the (non)invariance of the
Lagrangian and the (non)conservation of the supercurrents in the two models. We exhibit a similarity
transformation that maps the free-field supersymmetric PT -symmetric Dirac model to a supersymmetric
Hermitian theory, but there is, in general, no corresponding similarity transformation for the Majorana
model. In this model, we find generically a mass splitting between bosons and fermions, even though its
construction is explicitly supersymmetric, offering a novel non-Hermitian mechanism for soft supersym-
metry breaking.
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I. INTRODUCTION

Conventional quantum mechanics and quantum field
theory are formulated using Hermitian Hamiltonians and
Lagrangians, respectively. However, in recent years there
has been increasing interest in extensions to non-Hermitian
quantum theories [1], particularly those with PT symmetry
[2,3], which have real spectra and find applications in many
areas such as optonics [4,5] and phase transitions [6,7]. It
has also been suggested that non-Hermitian quantum field
theory might also have applications in fundamental phys-
ics, e.g., to neutrino physics [8–11], dark matter [12], Higgs
decays [13], and particle mixing [14]. It has been shown
that it is possible to carry over to PT -symmetric non-
Hermitian theories familiar concepts from Hermitian quan-
tum field theory such as the spontaneous breaking of global
symmetries [15–17] and the Englert-Brout-Higgs mecha-
nism in gauge theories [16,18–21], despite the appearance
of subtleties [22,23] in the relationship between current
conservation, Lagrangian symmetries, and Noether’s theo-
rem [24] in non-Hermitian PT -symmetric theories.

Supersymmetry [25] is a very attractive framework
within the conventional Hermitian quantum field theory
paradigm, as it plays a key role in string theory and may
play interesting phenomenological roles by stabilizing the
hierarchies of mass scales [26], providing a candidate for
dark matter [27], aiding the grand unification of gauge
couplings [28], and stabilizing the electroweak vacuum
[29]. Moreover, approximate supersymmetry emerges in a
number of less fundamental physical systems in optonics
[30], condensed-matter physics [31], atomic physics,
and nuclear physics [32]. Hence, it is interesting to explore
whether and how the framework of supersymmetry can
be extended to PT -symmetric non-Hermitian quantum
field theories, as we do here for the first time in 3þ 1
dimensions.1

We start by considering PT -symmetric non-Hermitian
theories with free bosons and fermions, studying whether
they accommodate supersymmetry, as is the case for free
Hermitian theories. We recall that a necessary condition for
supersymmetry is that the fermionic and bosonic mass
spectra coincide. This is not a trivial issue, since a non-
Hermitian fermionic mass term ∝ ψ̄γ5ψ is possible for a
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1See Ref. [33] for a pioneering discussion in 1þ 1 dimensions.
We note also that the appearance of supersymmetry in a PT -
symmetric quantum-mechanical model was discovered in
Refs. [34,35]. Relations between Hermitian theories and PT -
symmetric non-Hermitian theories have been derived in the
framework of supersymmetric quantum mechanics [36], see
Refs. [37,38] and references therein.
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single species of fermion, whereas a non-Hermitian
bosonic squared-mass term is possible only if there are
at least two complex bosons: ∝ ϕ⋆

aϕb − ϕ⋆
bϕa. We discuss

the construction of PT -symmetric supersymmetric theo-
ries with a pair of chiral superfields, using the superfield
representation and an appropriate superpotential, examin-
ing the conditions for the mass spectra to be real and
identical, and discussing the extension to interacting
theories. We present our discussion in two formulations
of the fermionic sector, one in terms of Dirac fermions and
the other in terms of Majorana fermions.
We discuss the model with Dirac fermions in Sec. II,

constructing the PT -symmetric non-Hermitian free-
particle model with Dirac fermions in Sec. II A and
showing in Sec. II B how it can be related by a similarity
transformation [39] to a free-particle Hermitian supersym-
metric model. We then discuss supersymmetry transforma-
tions in Sec. II C, introducing four possible definitions of
the supercurrent and discussing the corresponding (non)
invariance properties of the Lagrangian and the (non)
conservation of the corresponding supercurrents. Non-
Hermitian dimension-3 bosonic interactions are introduced
in Sec. II D. The free-particle model with Majorana
fermions is discussed in Sec. III, initially in its component
representation in Sec. III A and then in its superfield
representation in Sec. III B, after which we discuss the
particle spectrum of the Majorana model in Sec. III C. We
look for a similarity transformation to a Hermitian model in
Sec. III D, finding that it is not possible, in general, to map
the non-Hermitian Majorana model to a supersymmetric
Hermitian one. Supersymmetry transformations and the
supercurrent are discussed in Sec. III E. Finally, in Sec. IV,
we discuss our conclusions and mention some directions
for future work.

II. PT -SYMMETRIC NON-HERMITIAN
SUPERSYMMETRIC MODEL
WITH DIRAC FERMIONS

A. Free-particle model construction

The minimal model we consider contains two N ¼ 1
scalar chiral superfieldsΦa∶ a ¼ 1; 2, which can be written
as follows in conventional notation:

Φa ¼ ϕa þ
ffiffiffi
2

p
θχa þ θθFa − iθσνθ†∂νϕa

þ iffiffiffi
2

p θθ∂νχaσ
νθ† −

1

4
θθθ†θ†□ϕa; ð1Þ

where the ϕ1;2 are the complex scalar components of the
superfields, the χ1;2 are two-component Weyl fermions, the
F1;2 are complex auxiliary fields, and θα and θ†_α are
Grassmann variables. Assuming a minimal Kähler poten-
tial, the kinetic part LK of the corresponding free
Lagrangian can be written in the usual way as

LK ¼
Z

d2θ†d2θðjΦ1j2 þ jΦ2j2Þ

¼ ∂νϕ
†
a∂νϕa þ iχ†a; _ασ̄

ν _αβ∂νχa;β þ F†
aFa; ð2Þ

up to surface terms. One can construct a free-field PT -
symmetric model by postulating the following non-
Hermitian combination of superpotential terms:

LW;Dirac ¼
Z

d2θWð1 − ξÞ þ
Z

d2θ† W†ð1þ ξÞ; ð3Þ

where ξ is a real parameter, with

W ¼ mΦ1Φ2; ð4Þ
which yields

LW;Dirac ¼ mð1 − ξÞðϕ1F2 þ F1ϕ2 − χα1χ2;αÞ
þmð1þ ξÞðF†

2ϕ
†
1 þ ϕ†

2F
†
1 − χ†2; _αχ

† _α
1 Þ: ð5Þ

Due to the non-Hermiticity of the Lagrangian,

LDirac ¼ LK þ LW;Dirac; ð6Þ
we have that

∂LDirac

∂F†
a

¼ Fa þmð1þ ξÞϕ†
a ¼ 0

⇔
∂LDirac

∂Fa
¼ F†

a þmð1 − ξÞϕa ¼ 0; ð7Þ

except for trivial solutions, where we use the notation =1≡ 2
and =2≡ 1. It would therefore appear that there is a four-fold
ambiguity in the choice of on-shell condition for the
auxiliary fields F1 and F2. However, as first identified
in Ref. [22], we are, in fact, free to choose any one of the
Euler-Lagrange equations to define the equations of
motion; each choice leads to the same physics. In the
present case, we can readily convince ourselves that any
choice leads to the same Lagrangian for the remaining
scalar and fermionic fields:

LOS
Dirac ¼ ∂νϕ

†
a∂νϕa −m2ð1 − ξ2Þjϕaj2

þ iχ†a; _ασ̄
ν _αβ∂νχa;β −mð1 − ξÞχα1χ2;α

−mð1þ ξÞχ†2; _αχ† _α1 ; ð8Þ

where the superscript “OS” indicates that the auxiliary
fields have been evaluated on-shell. Alternatively, we could
have arrived at Eq. (8) directly and unambiguously via the
path integral by functionally integrating over the auxiliary
field, as shown in the Appendix.
Choosing the equations of motion for the scalar and

fermion fields by varying with respect to ϕ†
a and χ†a,

respectively, we have
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□ϕa þm2ð1 − ξ2Þϕa ¼ 0; ð9aÞ

iσ̄ν _αβ∂νχa;β −mð1þ ξÞχ† _αa ¼ 0; ð9bÞ

along with their Hermitian conjugates.
The pair of two-component Weyl fermions can be

combined into a canonically normalised four-component
Dirac fermion

ψ ¼
�
χ2;α

χ† _α1

�
; ð10Þ

in terms of which the Lagrangian takes the form

LOS
Dirac ¼ ∂νϕ

†
a∂νϕa − ðm2 − μ2Þjϕaj2 þ ψ̄i=∂ψ

−mψ̄ψ − μψ̄γ5ψ ; ð11Þ

where we have defined μ≡mξ and the gamma matrices are
understood in the Weyl basis:

γ0 ¼
�
02 I2
I2 02

�
; γi ¼

�
02 σi

−σi 02

�
; γ5 ¼

�−I2 02

02 I2

�
;

ð12Þ

in which σi (i ¼ 1, 2, 3) are the Pauli matrices. The four
scalar and four fermion degrees of freedom all have the
same squared mass eigenvalues

M2 ¼ m2 − μ2; ð13Þ

manifesting supersymmetry at the level of the mass
spectrum.
Considering only the transformations of the c-number

fields,2 the Lagrangian is PT -symmetric if we take [22]

P∶ ψðt;xÞ → ψ 0ðt;−xÞ ¼ Pψðt;xÞ;
ψ̄ðt;xÞ → ψ̄ 0ðt;−xÞ ¼ ψ̄ðt;xÞP; ð14aÞ

T ∶ ψðt;xÞ → ψ 0ð−t;xÞ ¼ Tψ�ðt;xÞ;
ψ̄ðt;xÞ → ψ̄ 0ð−t;xÞ ¼ ψ̄�ðt;xÞT; ð14bÞ

where P ¼ γ0 and T ¼ iγ1γ3 in 3þ 1 dimensions. The anti-
Hermitian mass term is then odd under both P and T . We
note that the eigenvalues are independent of the sign of μ,
and that the eigenvalues are real when jμj < jmj, in which
case the model is in the unbroken phase of PT symmetry.
Exceptional points occur at μ ¼ �m, corresponding to

ξ ¼ �1. In these cases, the theory becomes massless and
we lose either the left- or the right-chiral Weyl fermion

on-shell [9,10]. We note that, by virtue of the supersym-
metry, the scalar sector inherits the masslessness in spite of
having an entirely Hermitian Lagrangian. In addition,
beyond the exceptional point in the PT -broken phase,
where jξj > 1 and jμj > jmj, both the scalar and fermion
mass eigenspectra become complex. The scalar sector
inherits the PT phase transition from the fermion sector
by virtue of the supersymmetry.

B. Mapping to a Hermitian theory via
a similarity transformation

The Lagrangian in Eq. (8) can be mapped to that of a
Hermitian theory by the following similarity transforma-
tion [39]:

LOS
Dirac → LOS0

Dirac ¼ SLOS
DiracS

−1; LOS0
Dirac ¼ ðLOS0

DiracÞ†; ð15Þ

with

S ¼ exp

�
−arctanhξ

Z
d3xðχ†1ðt;xÞχ1ðt;xÞ

þ χ†2ðt;xÞχ2ðt;xÞÞ
�
: ð16Þ

Noting that (wherein there is no summation over a and b)Z
d3y½χ†aðt; yÞχaðt; yÞ; χaðt;xÞχbðt;xÞ�

¼ −ð1þ δabÞχaðt;xÞχbðt;xÞ; ð17aÞ
Z

d3y½χ†aðt; yÞχaðt; yÞ; χ†bðt;xÞχ†aðt;xÞ�

¼ ð1þ δabÞχ†bðt;xÞχ†aðt;xÞ; ð17bÞ
Z

d3y½χ†aðt; yÞχaðt; yÞ; χ†bðt;xÞσ̄ · ∂χbðt;xÞ� ¼ 0; ð17cÞ

and using the identities

X∞
n¼0

1

n!
ð�arctanhξÞn ¼ exp ð�arctanhξÞ ¼

�
1� ξ

1 ∓ ξ

�
1=2

;

ð18aÞ

we then find

LOS0
Dirac ¼ ∂νϕ

†
a∂νϕa −m2ð1 − ξ2Þjϕaj2

þ iχ†a; _ασ̄
ν _αβ∂νχa;β −m

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
ðχα1χ2;α þ χ†2; _αχ

† _α
1 Þ;
ð19Þ

which is Hermitian, as required. We note that this
Lagrangian is isospectral to the original non-Hermitian one.

2More generally, the viability of non-Hermitian theories may
rely on the existence of a discrete antilinear symmetry of the
Hamiltonian [40].
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The Lagrangian in Eq. (19) can be expressed (off-shell)
in terms of chiral superfields as

L0
Dirac ¼ LK þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �Z
d2θW þ

Z
d2θ† W†

�
; ð20Þ

and we obtain

L0
Dirac ¼ ∂νϕ

†
a∂νϕa þ iχ†a; _ασ̄

ν _αβ∂νχa;β þ F†
aFa

þm
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
ðϕaFa − χα1χ2;α þ F†

aϕ
†
a − χ†2; _αχ

† _α
1 Þ:
ð21Þ

For the Hermitian Lagrangian, there is no ambiguity in
choosing the on-shell condition for the auxiliary fields,
which are

Fa ¼ −m
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
ϕ†
a; ð22Þ

and we immediately recover the Lagrangian in Eq. (19).

C. Supersymmetry transformations
and supercurrents

Turning to the supersymmetry transformations, we can
readily confirm that the Lagrangian given by Eqs. (2) and
(5) is invariant under the following transformations, up to
total derivatives:

δϕa ¼
ffiffiffi
2

p
ϵαχa;α; δϕ†

a ¼
ffiffiffi
2

p
ϵ†_αχ

† _α
a ; ð23aÞ

δχa;α ¼
ffiffiffi
2

p
ϵαFa −

ffiffiffi
2

p
iðσνϵ†Þα∂νϕa;

δχ†a; _α ¼
ffiffiffi
2

p
ϵ†_αF

†
a þ

ffiffiffi
2

p
iðϵσνÞ _α∂νϕ

†
a; ð23bÞ

δFa ¼ −
ffiffiffi
2

p
iðσνϵ†Þα∂νχa;α; δF†

a ¼ −
ffiffiffi
2

p
iðϵσνÞ _α∂νχ

† _α
a :

ð23cÞ

Specifically, we obtain

δLDirac ¼ −i
ffiffiffi
2

p ∂νfϵασνα_βχ
† _β
a ½Fa þmð1þ ξÞϕ†

a�
þϵ†_α½−iχ† _αa ∂νϕa þmð1 − ξÞσ̄ν _αβχa;βϕa�g: ð24Þ

This is as we would expect, given that Eqs. (2) and (5) are
constructed, respectively, from D and F terms. The corre-
sponding supercurrent is

JνDirac ¼
ffiffiffi
2

p
ϵα½σρ

α_β
σ̄ν_βγχa;γ∂ρϕ

†
a þ imð1þ ξÞσν

α _β
χ†

_β
a ϕ†

a�
þ

ffiffiffi
2

p
ϵ†_α½σ̄ρ _αβσνβ_γχ†_γa ∂ρϕa þ imð1 − ξÞσ̄ν _αβχa;βϕa�:

ð25Þ

This current is not Hermitian, and is not conserved, ex-
cept in the Hermitian limit ξ → 0. Specifically, using the
equations of motion in Eq. (9), we find

∂νJνDirac ¼
ffiffiffi
2

p
ϵα½2m2ξð1þ ξÞχa;αϕ†

a�
þ

ffiffiffi
2

p
ϵ†_α½−2imξσ̄ν _αβχa;β∂νϕa� ≠ 0: ð26Þ

The latter is, however, not unexpected, since we know that
conserved currents are not related to transformations that
leave the Lagrangian invariant in the case of non-Hermitian
theories, see Ref. [22].3

We have seen already that there is a four-fold freedom in
choosing the on-shell condition for the auxiliary fields Fa.
While each choice leads to the same Lagrangian, it is clear
from Eq. (23) that these choices lead to distinct supersym-
metry transformations. In general, and as we will show,
there are 16 possible sets of supersymmetry transforma-
tions, which we summarize as follows by introducing the
independent parameters sa; s̄a ¼ �1 for a ¼ 1; 2:

δϕa ¼
ffiffiffi
2

p
ϵαχa;α; δϕ†

a ¼
ffiffiffi
2

p
ϵ†_αχ

† _α
a ; ð27aÞ

δχa;α ¼ −
ffiffiffi
2

p
½ϵαmð1þ saξÞϕ†

a þ iðσνϵ†Þα∂νϕa�;
δχ†a; _α ¼ −

ffiffiffi
2

p
½ϵ†_αmð1þ s̄aξÞϕa − iðϵσνÞ _α∂νϕ

†
a�: ð27bÞ

The variation of the Lagrangian under these transforma-
tions is

δLOS
Dirac ¼

ffiffiffi
2

p
ϵαf−imξð1 − saÞσνα _βχ

† _β
a ∂νϕ

†
a

−m2ξð1 − ξÞð1 − saÞχa;αϕ†
ag

þ
ffiffiffi
2

p
ϵ†_αf∂ν½χ† _αa ∂νϕa − imσ̄ν _αβχa;βϕa�

þ imξσ̄ν _αβ½χa;βð∂νϕaÞ − s̄að∂νχa;βÞϕa�
þm2ξð1þ ξÞð1þ s̄aÞχ† _αa ϕag: ð28Þ

We see that this reduces to a total derivative: (i) in the
Hermitian limit ξ → 0 and (ii) for sa ¼ þ1 and s̄a ¼ −1.
The latter case corresponds to making the following
replacements in the off-shell transformations in Eq. (23):

Fa → hFai ¼ −mð1þ ξÞϕ†
a; ð29aÞ

F†
a → hF†

ai ¼ −mð1 − ξÞϕa; ð29bÞ

where we reiterate that hFai ≠ hF†
ai�, see the Appendix.

3We remark that we are working here with the field variables
and not their expectation values; since, as illustrated in the
Appendix, we have that hOi ≠ hO†i� in general for non-
Hermitian theories, the divergence of the expectation value of
the current may still vanish. We leave further study of this, and the
subtleties of the classical limit/background-field method for non-
Hermitian quantum field theories, to future work.
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D. Extension to include interactions

It is possible to extend the non-Hermitian superpotential
(3) to include interactions by adding trilinear terms:

ΔLW;Dirac ¼
Z

d2θWI þ
Z

d2θ†W†
I ; ð30Þ

where WI is an arbitrary third-order polynomial function
of Φ1;2, and we have assumed for simplicity that ΔLW;Dirac

is Hermitian, which is not necessarily the case in general.
With this modification, Eq. (5) acquires extra terms:

ΔLW;Dirac ¼
∂wI

∂ϕa
Fa −

∂2wI

∂ϕa∂ϕb
χαaχb;α þ H:c:; ð31Þ

where wI is the same arbitrary third-order polynomial
function of the complex scalar fields ϕ1;2, and summations
over the indices a; b are to be understood. The two
equivalent extremum conditions for the auxiliary fields
become

∂L
∂F†

a
¼ Fa þmð1� ξÞϕ†

a þ
∂w†

I

∂ϕ†
a
¼ 0; ð32Þ

leading to the following on-shell Lagrangian:

LOS
Dirac

¼ ∂νϕ
†
a∂νϕa −m2ð1 − ξ2Þjϕaj2

þ iχ†a; _ασ̄
ν _αβ∂νχa;β −mð1 − ξÞχα1χ2;α −mð1þ ξÞχ†2; _αχ† _α1

−mð1 − ξÞ ∂w
†
I

∂ϕ†
a

ϕa −mð1þ ξÞϕ†
a
∂wI

∂ϕa
−
���� ∂w†

I

∂ϕ†
a

∂wI

∂ϕa

����
−

∂2wI

∂ϕa∂ϕb
χαaχb;α −

∂2w†
I

∂ϕ†
a∂ϕ†

b

χ†a _;αχ
† _α
b : ð33Þ

We make two key observations: first, the interacting
Lagrangian remains independent of the choice of extremum
condition for the auxiliary fields, as in the free case;
and second, the non-Hermiticity of the free part of the
Lagrangian has metastasized into the interactions.4

Specifically, the Lagrangian (33) contains non-Hermitian
bosonic interactions of dimension 3, whereas the dimen-
sion-4 bosonic interactions are Hermitian, as are the
dimension-4 fermion-boson Yukawa interactions in
Eq. (31), by virtue of the assumption that ΔLW;Dirac (30)
is Hermitian. We expect that the renormalization properties
of this softly-non-Hermitian model are similar to those
of a Hermitian supersymmetric model, i.e., the Lagrangian

parameters undergo wave-function renormalization only. In
this case, the non-Hermitian parameters could be naturally
small, by analogy with soft supersymmetry-breaking
parameters in a Hermitian supersymmetric model.
Finally, we remark that the similarity transformation in

Sec. II B does not map this theory to a Hermitian one. The
reasons are two-fold: first, we have that

Sχα1χ2;αS
−1 →

�
1þ ξ

1 − ξ

�
1=2

χα1χ2;α; ð34aÞ

Sχ†2; _αχ
† _α
1 S−1 →

�
1 − ξ

1þ ξ

�
1=2

χ†2; _αχ
† _α
1 ; ð34bÞ

which leaves the Yukawa interactions non-Hermitian; and
second, this similarity transformation acts only on the
fermion fields and therefore leaves the dimension-3
bosonic interactions non-Hermitian. Any similarity trans-
formation of the interacting theory to a Hermitian one
would depend on the specific form of the interactions,5 and
we leave further investigation to future work.

III. PT -SYMMETRIC NON-HERMITIAN
SUPERSYMMETRIC MODEL WITH

MAJORANA FERMIONS

A. Component representation

We consider first a minimal free-particle model contain-
ing two complex scalar fields ϕ1;ϕ2 and two Majorana
fermions ψ1;ψ2, with mass terms that include both
Hermitian and anti-Hermitian mixing [9,10,39,43].
Notice that this amounts to four bosonic and four fermionic
degrees of freedom.
The PT -symmetric, non-Hermitian free-boson

Lagrangian is (a ¼ 1; 2)

Lscal ¼ ∂νϕ
†
a∂νϕa −

�
ϕ†
1 ϕ†

2

��
m2

1 μ2s

−μ2s m2
2

��
ϕ1

ϕ2

�
;

ð35Þ

where m2
1, m

2
2 and μ2s are real. The eigenvalues of the mass

matrix are

M2
s;� ¼ 1

2
ðm2

1 þm2
2Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

1 −m2
2Þ2 − 4μ4s

q
; ð36Þ

and these are real as long as

ðm2
1 −m2

2Þ2 ≥ 4μ4s : ð37Þ

4The corollary of this observation is that, unlike the case of a
purely scalar field theory, where non-Hermiticity may be re-
stricted to dimension-2 mass terms, non-Hermiticity in such a
supersymmetric field theory cannot be limited to mass terms
alone, but must include also dimension-3 terms.

5For a discussion of similarity transformations linking quan-
tum mechanical systems with different physical properties, see,
e.g., Refs. [41,42].
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The scalar Lagrangian is PT symmetric with respect to
transformations of the c-number fields, if these transform
as [22]

P∶ ϕ1ðt;xÞ → ϕ1
0ðt;−xÞ ¼ þϕ1ðt;xÞ;

ϕ2ðt;xÞ → ϕ2
0ðt;−xÞ ¼ −ϕ2ðt;xÞ; ð38aÞ

T ∶ ϕ1ðt;xÞ → ϕ1
0ð−t;xÞ ¼ þϕ�

1ðt;xÞ;
ϕ2ðt;xÞ → ϕ2

0ð−t;xÞ ¼ þϕ�
2ðt;xÞ; ð38bÞ

i.e., if one of the fields transforms as a scalar and the other
as a pseudoscalar.
The spin-zero bilinear combinations of the Majorana

fermions have the following Hermiticity properties:

ψ̄aψb ¼ ψ̄bψa ¼ ðψ̄aψbÞ† ⟶ Hermitian;

ψ̄aγ
5ψb ¼ ψ̄bγ

5ψa ¼ −ðψ̄aγ
5ψbÞ† ⟶ anti-Hemitian;

ð39Þ

and the PT -symmetric, non-Hermitian free-fermion
Lagrangian is

Lferm ¼ 1

2
ψ̄ai=∂ψa −

1

2
maaψ̄aψa −

1

2
μfψ̄1γ

5ψ2

−
1

2
μfψ̄2γ

5ψ1: ð40Þ

The corresponding c-number Lagrangian is PT symmetric
with respect to the transformations in Eq. (14). The fermion
mass terms can be written in terms of the conjugate
variables ψa;ψ

†
a as

−
1

2
ðψ†

1 ψ†
2
Þ
 

m11γ
0 μfγ

0γ5

μfγ
0γ5 m22γ

0

!�
ψ1

ψ2

�
; ð41Þ

and the mass eigenvalues are

Mf;� ¼ 1

2
ðm11 þm22Þ �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm11 −m22Þ2 − 4μ2f

q
; ð42Þ

up to an overall minus sign. These are real as long as

ðm11 −m22Þ2 ≥ 4μ2f: ð43Þ

B. Superfield representation

We use the same two N ¼ 1 scalar chiral superfields
(Φa ¼ 1; 2) as in the Dirac model. In order to incorporate
mass terms for the fields in the Majorana model, we
introduce the following two superpotentials:

W� ¼ 1

2
m11Φ2

1 ∓ 1

2
ðm12 þm21ÞΦ1Φ2 þ

1

2
m22Φ2

2; ð44Þ

where mab are real and symmetric, and we consider the
following non-Hermitian Lagrangian:

LMaj ¼ LK þ
Z

d2θWþ þ
Z

d2θ† W†
−: ð45Þ

The scalar sector derived from the expressions (2)
and (45) is

Lscal ¼ ∂νϕ
†
a∂νϕa þ F†

aFa þmaaðϕaFa þ ϕ†
aF

†
aÞ

−maaðϕaFa − F†
aϕ

†
aÞ; ð46Þ

and the fermion sector derived from the same is given by

Lferm ¼ iχ†a; _ασ̄
ν _αβ∂νχa;β −

1

2
maaðχαaχa;α þ χ†a; _αχ

† _α
a Þ

þm12ðχα1χ2;α − χ†2; _αχ
† _α
1 Þ: ð47Þ

As in the case of the Dirac model, we have a four-fold
freedom in choosing the on-shell conditions for the
auxiliary fields, e.g., we might take

∂LMaj

∂F†
a

¼ Fa þmaaϕ
†
a þmaaϕ

†
a ¼ 0: ð48Þ

However, the result of integrating out the auxiliary fields is
unique, and, whichever choice we make, we arrive at the
following Lagrangian for the scalar sector:

Lscal ¼ ∂νϕ
†
a∂νϕa −m2

aϕ
†
aϕa − μ2sðϕ†

1ϕ2 − ϕ1ϕ
†
2Þ; ð49Þ

where

m2
a ¼ m2

aa −m2
aa; ð50aÞ

μ2s ¼ m12ðm22 −m11Þ: ð50bÞ

Choosing the equations of motion for the scalar and
fermion fields by varying with respect to ϕ†

a and χ†a,
respectively, we have

□ϕ1 þm2
1ϕ1 þ μ2sϕ2 ¼ 0; ð51aÞ

□ϕ2 þm2
2ϕ2 − μ2sϕ1 ¼ 0; ð51bÞ

iσ̄ν _αβ∂νχ1;β −m11χ
† _α
1 −m12χ

† _α
2 ¼ 0; ð51cÞ

iσ̄ν _αβ∂νχ2;β −m22χ
† _α
2 −m12χ

† _α
1 ¼ 0; ð51dÞ

along with their Hermitian conjugates.
The fermion Lagrangian can be recast in terms of two

Majorana fermions
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ψa ≡
�
χa;α

χc _αa

�
ða ¼ 1; 2Þ; ð52Þ

where the charge-conjugate spinor is χca ≡ −iσ2χ⋆a and σ2

is the second Pauli matrix. Making use of the follow-
ing dictionary between the Weyl and Majorana fermion
bilinears:

χαaχb;α ¼
1

2
ðψ̄aψb − ψ̄aγ

5ψ̄bÞ; ð53aÞ

χ†a; _αχ
† _α
b ¼ 1

2
ðψ̄aψb þ ψ̄aγ

5ψbÞ; ð53bÞ

we obtain

Lferm¼ 1

2
ψ̄ai=∂ψa−

1

2
maaψ̄aψa−

1

2
m12ðψ̄1γ

5ψ2þ ψ̄2γ
5ψ1Þ;
ð54Þ

and identifying the latter expression with the fermionic
mass terms in the Lagrangian (40), we associate

μf ¼ m12: ð55Þ

C. (Non)supersymmetric spectrum

Given the expressions (50) for the scalar mass param-
eters and (55) for the fermion mass parameter, one can
check that the eigenvalues (36) and (42) can be written as

M2
s;� ¼ 1

2
ðm2

11 þm2
22Þ −m2

12

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11 −m2
22Þ2 − 4m2

12ðm11 −m22Þ2
q

; ð56Þ

and

M2
f;� ¼ 1

2
ðm2

11 þm2
22Þ −m2

12

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11 −m2
22Þ2 − 4m2

12ðm11 þm22Þ2
q

:

We see immediately that

M2
s;�ðm11;−m22Þ ¼ M2

s;�ð−m11; m22Þ ¼ M2
f;�ðm11; m22Þ:

ð57Þ

Hence, although the non-Hermitian Lagrangian itself was
written entirely in terms of chiral superfields, the spectrum
is not supersymmetric, except in the limiting casesm11 ¼ 0
or m22 ¼ 0 (or the Hermitian limit m12 ¼ 0).
This nonsupersymmetric spectrum was to be expected,

in view of the different signs in the superpotentials (44).
Indeed, mass terms mix coefficients appearing in the

superpotentials Wþ and W†
−: the equation of motion for

the auxiliary fields Fa are obtained from taking functional
derivatives with respect to F†

a, and therefore involve
coefficients from W†

−. The resulting expression for Fa is
then inserted in terms arising from Wþ, hence mixing
coefficients from Wþ and W†

−, and so failing to ensure a
supersymmetric spectrum whenWþ ≠ W−. However, if we
assume that one of the diagonal mass terms vanishes, say
m22 ¼ 0, we can understand why a supersymmetric spec-
trum is recovered. For a quadratic superpotential, the mass
terms do not depend on the overall sign of the super-
potential, and physical quantities do not depend on the
sign of m12. As a consequence all of the combinations
ðm11; m12Þ; ðm11;−m12Þ; ð−m11; m12Þ and ð−m11;−m12Þ
lead to the same spectrum, and Eq. (57) shows that we
recover identical scalar and fermionic masses. If one
switches on the mass termm22 though, the above properties
are still valid but we are left with an additional relative
physical sign betweenm11 andm22, and we cannot expect a
supersymmetric spectrum anymore.
In order to give another interpretation of the non-

supersymmetric spectrum, we can make the supersymmetry
breaking explicit by implementing a phase rotation of the
fermion sector via the unitary transformation

χ2 → χ̃2 ¼ −iχ2; χ†2 → χ̃†2 ¼ þiχ†2; ð58Þ

which gives the fermionic Lagrangian

L̃ferm ¼ iχ†a; _ασ̄
ν _αβ∂νχa;β −

1

2
m11ðχα1χ1;α þ χ†1; _αχ

† _α
1 Þ

þ 1

2
m22ðχα2χ2;α þ χ†2; _αχ

† _α
2 Þ

− im12ðχα1χ2;α þ χ†2; _αχ
† _α
1 Þ

¼ 1

2
ψ̄ai=∂ψa −

1

2
m11ψ̄1ψ1 þ

1

2
m22ψ̄2ψ2

−
1

2
m12ðψ̄1iγ5ψ2 þ ψ̄2iγ5ψ1Þ: ð59Þ

Putting back the scalar sector, the spectrum is now super-
symmetric, but the Lagrangian itself can no longer be
written entirely in terms of chiral superfields.
This supersymmetry breaking is entirely a consequence

of the non-Hermiticity. In contrast, the supersymmetry
remains unbroken in spite of the non-Hermiticity in the
1þ 1 dimensional model of Ref. [33]. Had we taken a
model with an analogous Hermitian mass mixing, arising
from either of the superpotentials,6 i.e., taking

LMaj;Herm ¼ LK þ
Z

d2θW� þ
Z

d2θ† W†
�; ð60Þ

6The sign of m12 is irrelevant.
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we would have found that the spectrum was fully super-
symmetric, with squared masses given by

M2
Herm;� ¼ 1

2
ðm2

11 þm2
22Þ þm2

12

� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

11 −m2
22Þ2 þ 4m2

12ðm11 þm22Þ2
q

;

ð61Þ
cf. Eqs. (36) and (42). We note that the mass spectrum
remains sensitive to the relative sign of the diagonal
fermion mass terms also for the Hermitian mass mixing,
such that the fermion phase rotation in Eq. (58) again leads
to a nonsupersymmetric model, but where this is manifest
in both the Lagrangian and the spectrum.

D. Similarity transformation

The scalar part of the Lagrangian can be mapped to that
of a Hermitian theory via the following similarity trans-
formation [16]:

Lscal → L0
scal ¼ SϕLscalS−1ϕ ; ð62Þ

with

Sϕ ¼ exp

�
π

2

Z
d3x ðπ2ðt;xÞϕ2ðt;xÞ þ π†2ðt;xÞϕ†

2ðt;xÞÞ
�
;

ð63Þ

where π2ðt;xÞ ¼ _ϕ†
2ðt;xÞ is the conjugate momentum

operator. This transforms

ϕ2 → −iϕ2 and ϕ†
2 → −iϕ†

2; ð64Þ

leading to

L0
scal ¼ ∂νϕ

†
1∂νϕ1 −m2

1jϕ1j2 − ∂νϕ
†
2∂νϕ2 þm2

2jϕ2j2
þ iμ2sðϕ†

1ϕ2 − ϕ†
2ϕ1Þ: ð65Þ

This Lagrangian can be obtained from

L0
scal ¼ ∂νϕ

†
1∂νϕ1 þ F†

1F1 − ∂νϕ
†
2∂νϕ2 − F†

2F2

þm11ðϕ1F1 þ F†
1ϕ

†
1Þ −m22ðϕ2F2 þ F†

2ϕ
†
2Þ

þ im12ðϕ1F2 þ ϕ2F1 − F†
2ϕ

†
1 − F†

1ϕ
†
2Þ; ð66Þ

which itself arises from the supersymmetric Lagrangian
with the Kähler potential

L0
K ¼

Z
d2θ†d2θ ðjΦ1j2 − jΦ2j2Þ ð67Þ

and the superpotential

LW;Maj
0 ¼
Z

d2θW0 þ
Z

d2θ† W0†; ð68Þ

where

W0 ¼ 1

2
m11Φ2

1 þ
1

2
iðm12 þm21ÞΦ1Φ2 −

1

2
m22Φ2

2: ð69Þ

However, the resulting fermionic Lagrangian is

L0
ferm ¼ iχ†1; _ασ̄

ν _αβ∂νχ1;β − iχ†2; _ασ̄
ν _αβ∂νχ2;β

−m11ðχα1χ1;α þ χ†1; _αχ
† _α
1 Þ þm22ðχα2χ2;α þ χ†2; _αχ

† _α
2 Þ

− im12ðχα1χ2;α − χ†2; _αχ
† _α
1 Þ; ð70Þ

which cannot be reached by a similarity transformation of
the non-Hermitian Lagrangian in Eq. (47).
Before concluding this section, we remark on the wrong

sign of the kinetic term in Eq. (67). While in the context of
Hermitian quantization this would lead to negative-norm
modes, the presence ofPT symmetry is sufficient to ensure
that one can always construct a positive-definite inner
product consistent with unitary evolution [1].

E. Supersymmetry transformations
and supercurrents

We can readily confirm that the Lagrangian composed of
Eqs. (46) and (47) is invariant under the supersymmetry
transformations given in Eq. (23) up to total derivatives.
Specifically, we find

δLMaj ¼
ffiffiffi
2

p
ϵαf−i∂ν½σνα _βχ

† _β
a ðFa þmaaϕ

†
a þmaaϕ

†
aÞ�g

þ
ffiffiffi
2

p
ϵ†_αf∂ν½χ† _αa ∂νϕa

− iσ̄ν _αβχa;βðmaaϕa −maaϕaÞ�g: ð71Þ
Analogously to the Dirac model, the on-shell Lagrangian is
invariant under the transformations in Eq. (23), again up to
total derivatives, as long as we make the replacement

Fa → hFai ¼ −maaϕ
†
a −maaϕ

†
a; ð72aÞ

F†
a → hF†

ai ¼ −maaϕa þmaaϕa: ð72bÞ

The corresponding supercurrent is

JνMaj

¼
ffiffiffi
2

p
ϵα½σρ

α_β
σ̄ν_βγχa;γ∂ρϕ

†
a þ iσν

α _β
χ†

_β
a ðmaaϕ

†
a þmaaϕ

†
aÞ�

þ
ffiffiffi
2

p
ϵ†_α½σ̄ρ _αβσνβ_γχ†_γa ∂ρϕa þ iσ̄ν _αβχa;βðmaaϕa −maaϕaÞ�;

ð73Þ
which is again neither Hermitian nor conserved. Using the
equations of motion in Eq. (51), along with their Hermitian
conjugates, we find that the divergence of the current is
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∂νJνMaj ¼
ffiffiffi
2

p
ϵα½2m12χa;αðmaaϕ

†
a þmaaϕ

†
aÞ�

þ
ffiffiffi
2

p
ϵ†_α½−2im12σ̄

ν _αβχa;β∂νϕa�; ð74Þ

which vanishes, as it should, in the Hermitian limit
m12 → 0.

IV. CONCLUSIONS

In this paper, we have constructed PT -symmetric
N ¼ 1 supersymmetric quantum field theories for the first
time in 3þ 1 dimensions. We have presented models
incorporating a pair of chiral supermultiplets and either
Dirac or Majorana fermions. We have shown that the free-
field supersymmetric Dirac model is equivalent via a
similarity transformation to a Hermitian supersymmetric
model, but we have found that there is no such equivalence
in the general Majorana case. As we have described in both
models, there is an ambiguity in the definition of the
supercurrent, and we have discussed the (non)invariance
of the Lagrangian and the (non)conservation of the Noether
current, which are analogous to the corresponding
properties of PT -symmetric models with purely bosonic
symmetries [22]. We have also extended the Dirac
model to include Hermitian trilinear superpotential
interactions,7 in which case the model contains non-
Hermitian trilinear bosonic interactions as well as non-
Hermitian bilinear terms, whereas the dimension-4
interactions are Hermitian.
This work is only a first step towards the exploration of

PT -symmetric supersymmetric quantum field theories.
One interesting topic to explore will be the general structure
of PT -symmetric quantum field theories with N ¼ 1
supersymmetry, extending models containing only chiral
superfields to models including vector superfields. Another
interesting topic will be the study of possible generalization
of models with rigid N ¼ 1 supersymmetry to those with
local N ¼ 1 supersymmetry, i.e., supergravity theories.
Extensions to N > 1 supersymmetric models also warrant
attention.
The construction of PT -symmetric supersymmetric

quantum field theories is all well and good, but do they
have any practical applications? As was mentioned in the
Introduction, nonsupersymmetric PT -symmetric quantum
field theories have found many applications in nonfunda-
mental areas such as optonics [4,5], and approximate
supersymmetry also emerges in many nonfundamental
areas such as optonics, condensed-matter physics, atomic
and nuclear physics [30–32]. Might it be possible to find
applications of PT -symmetric supersymmetric quantum
field theories in nonfundamental areas such as optonics?

A more ambitious, longer-term hope is that these theories
may find applications in fundamental physics.
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APPENDIX: DIRECT INTEGRATION

Let us take the Dirac model as an example. Assuming
constant field configurations, the contribution to the
Euclidean path integral from each of the auxiliary fields
is (no summation over a implied)

I ¼
Z

DFaDF�
a exp½−VðF�

aFa þmð1 − ξÞϕaFa

þmð1þ ξÞϕ�
aF�

aÞ�; ðA1Þ

where V is the volume ofR4. This is integrable, and we find

I ¼ N
π2

V2
exp ½−Vm2ð1 − ξ2Þjϕaj2�; ðA2Þ

where N is an irrelevant constant that depends on the
normalization of the functional measure. We can also
obtain Eq. (A2) by expanding around/setting

Fa ¼ −mð1þ ξÞϕ�
a or Fa ¼ −mð1 − ξÞϕ�

a; ðA3Þ

corresponding to setting the variation of the exponent with
respect to F�

a to zero or the variation of the exponent with
respect to Fa to zero, respectively.
In addition, we can calculate the expectation values of Fa

and F�
a:

hFai ¼
1

I

Z
DFaDF�

aFa exp½−VðF�
aFa þmð1 − ξÞϕaFa

þmð1þ ξÞϕ�
aF�

aÞ�
¼ −mð1þ ξÞϕ�

a; ðA4aÞ

hF�
ai ¼

1

I

Z
DFaDF�

aF�
a exp½−VðF�

aFa þmð1 − ξÞϕaFa

þmð1þ ξÞϕ�
aF�

aÞ�
¼ −mð1 − ξÞϕa: ðA4bÞ

We see immediately that

hFai ≠ hF�
ai�; ðA5Þ

7The Majorana model may be extended in a similar way, which
we leave for further work.
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that is, the vacuum state is not invariant under complex
conjugation, i.e.,

hFai ¼ hΩjFajΩi ≠ hΩjF�
ajΩi� ¼ hΩ�jFajΩ�i: ðA6Þ

In this way, choosing the on-shell condition for Fa is
equivalent to choosing whether we work with the vacuum
Ω or Ω�, that is whether we choose

hFai≡ hΩjFajΩi ¼ −mð1þ ξÞϕ�
a or

hFai≡ hΩ�jFajΩ�i ¼ −mð1 − ξÞϕ�
a: ðA7Þ

Since these differ only in the sign of the non-
Hermitian terms, this choice is irrelevant, as we have seen
previously.
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