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We propose a method for numerical calculation of driving and detuning transverse beam coupling
impedances of an asymmetric cavity. The method relies on eigenmode simulations and can be viewed
as an alternative to time-domain wakefield simulations. A similar procedure is well-established for
symmetric cavities, and this paper extends it to the case of an asymmetric cavity. The method is
benchmarked with time-domain wakefield simulations and its practical implementation is discussed.

I. INTRODUCTION

In particle accelerators, the interaction of the particle
beam with its surrounding is a source of coherent beam
instabilities that may limit the performance of the ma-
chine. This interaction can be described by the wake
function W (t) in the time domain, or, alternatively, by
the impedance function Z(ω) in the frequency domain (t
is the time and ω is the angular frequency). In this paper,
we focus specifically on the transverse impedance Z⊥(ω)
- a function that describes the transverse kick received by
the trailing charge due to the fields excited by the driving
charge. Let us call the transverse direction of interest x
and the transverse impedance of interest Zx(ω).

The total transverse impedance Zx(ω) (measured in Ω)
is a function of both the driving charge offset (xd, yd) and
the trailing charge offset (xt, yt), with y being the second
transverse coordinate. To the first order, the expansion
of the total impedance around a point of interest (x0, y0)
can be written as

Zx(ω, xd, xt, yd, yt) = c1 + (xd − x0)c2

+(xt − x0)c3 + (yd − y0)c4 + (yt − y0)c5,
(1)

with the coefficients of expansion c1−5 first introduced
in [1] and [2]. The coefficients describing the depen-
dencies on the driving charge offset xd and the trailing
charge offset xt are defined as the driving and the detun-
ing impedances (measured in Ω/m), respectively:

Zdrivx (ω, x0) ≡ c2 =
∂

∂xd
Zx(ω, xd, xt)|xd=xt=x0 ,

Zdetx (ω, x0) ≡ c3 =
∂

∂xt
Zx(ω, xd, xt)|xd=xt=x0

.

(2)

where we omit the irrelevant y-dependence.
The driving and the detuning transverse impedances

are also sometimes referred to as the dipolar and the
quadrupolar (as in, for example, [3]). This is due to the
similarity of their effect on the trailing charge to that
of a dipole magnet and of a quadrupole magnet: a con-
stant kick independent of xt, and a kick proportional to
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xt, respectively. This terminology, however, has noth-
ing to do with the concept of dipolar and quadrupolar
RF resonator modes, classified by the number of angular
variations of the fields (see, for example, [4], p.41). To
avoid this confusion, the “driving-detuning” terminology
is used here instead.

We define the sum of Zdriv(ω, x0) and Zdet(ω, x0) as
ZΣ(ω, x0), also referred to as the “generalized term”
in [5]. It describes the dependence of the total impedance
on the transverse offset in the case when xd = xt. In cer-
tain cases, ZΣ(ω, x0) is easier to measure (a single wire
measurement is sufficient [6]) and easier to numerically
calculate (see section III below). However, ZΣ(ω, x0) by
itself is not sufficient to study beam stability, as Zdriv and
Zdet affect the beam in different ways, as was pointed out
in [7] and discussed in ([8] pp.44–47). For example, beam
stability simulations with codes HEADTAIL [9] and Py-
HEADTAIL [10] account for both Zdriv and Zdet, while
the codes like DELPHI [11] and Nested Head-Tail [12]
make use of only the driving impedance. In either case,
Zdriv and Zdet have to be separated.

In the past, a procedure for separate measurements
of Zdriv and Zdet with the wire techniques has been es-
tablished [2, 6]. In parallel, numerical tools have been
developed with the possibility to separately compute the
impedances. One of the most powerful numerical tools
is the time-domain wakefield simulation (e.g. CST wake-
field solver [13]). However, a time-domain calculation
can be time-consuming and often there is a need for
verification with an alternative numerical solver. If an
impedance is of the resistive-wall type, calculations based
on the field-matching technique (code IW2D [14]) or the
transmission line technique (code TLWALL [5]) can serve
as this alternative.

In this paper, we focus not on the impedance of the
resistive-wall type, but on the impedance of the geometric
type, and, in particular, impedance due to electromag-
netic modes trapped in a resonant cavity. In this case, as
well, an alternative to time-domain calculations exists.
Namely, the impedance is found through the sum of the
eigenmode solutions, each one characterized by its angu-
lar frequency ωres, shunt impedance R and quality factor
Q. In this paper, we focus on this eigenmode approach
and extend the range of applicability of the already ex-
isting method to the case of an asymmetric cavity. We
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define the cavity to be asymmetric if it does not possess
the mirror symmetry in the direction of interest (defined
here as x) around the beam trajectory. Note that a cavity
symmetric around a point different from the beam tra-
jectory will be considered asymmetric for our purpose.

In the symmetric case, Zdriv and Zdet are clearly sep-
arated, because each mode can have either driving or
detuning non-zero impedance (a proof of this will be
given in section III). The modes thus can be classified
into “driving modes” and “detuning modes”. In both
cases, the impedance of a given mode can be found with
the transverse resonator formula ([3], p.72):

Zsym resonator
x (ω, x0) =

ωres
ω

(ωres/c)Rx(x0)

1 + iQ
(

ω
ωres
− ωres

ω

)
=

c

2ω

R′′||(x0)

1 + iQ
(

ω
ωres
− ωres

ω

) (3)

where Zsym resonator
x ≡ Zdrivx if the mode is driving,

Zsym resonator
x ≡ Zdetx if the mode is detuning, ωres is

the angular resonance frequency, c is the speed of light,
Rx and R|| are the transverse and the longitudinal shunt
impedances defined here according to the “circuit defini-
tion” ([4], p.47), both measured in Ω:(

R

Q

)
||

(x) =
|V||(x)|2

2ωresU
,

(
R

Q

)
x

(x) =
|Vx(x)|2

2ωresU
. (4)

Here Q is the quality factor of the resonant mode, V||,x(x)
is the complex longitudinal and transverse voltages in the
cavity at the offset x, and U is the energy stored in the
mode. An additional factor of (ωres/c) was inserted by
the authors in Eq. (3) since the original formula in refer-
ence [3] assumes a different definition for the transverse
shunt impedance (measured in Ω/m). The transition
from Rx to R′′|| in Eq. (3) is made using the Panofsky-

Wenzel theorem (see section II for details).
The validity of the classification into driving modes

and detuning modes disappears in the case of an asym-
metric cavity, where each mode can possess both Zdriv

and Zdet, with any ratio between the two. As will be
shown below, Eq. (3) no longer gives Zdriv or Zdet, but
instead gives ZΣ. To the best knowledge of the authors,
no rigorously derived expressions for Zdriv and Zdet ex-
isted for asymmetric cavities. This paper aims to fill in
this gap, thus enabling the use of the eigenmode method
as an alternative to the time-domain method. Despite
the time required for the postprocessing of the eigen-
mode data, the eigenmode method in many cases can be
advantageous to the time-domain calculation. The prob-
lems of the time-domain method include resonant modes
of very high Q-factors that take too long to decay, nu-
merical noise due to the beam injection scheme and the
field integration, and mesh constraints for most codes.
Even in the cases when the time-domain method can be
applied, the eigenmode method still serves as a valuable
independent benchmarking tool.

II. DERIVATION

In this section, we will derive an analogue of the trans-
verse resonator formula (Eq. 3) that would work for the
case of an asymmetric cavity. In fact, Eq. (3) will be re-
placed with two formulas (one for Zdriv and one for Zdet),
as in the asymmetric case a mode can possess both the
driving and the detuning impedances. To do so, we will
start (perhaps, counter-intuitively) with the longitudinal
resonator formula that is valid regardless of the symme-
try of the cavity. For our purpose, we will expand the
longitudinal resonator formula to the case of unequal off-
sets of the driving and the trailing charges. Doing so will
allow us to obtain the transverse driving and detuning
impedances by applying the Panofsky-Wenzel theorem.

The longitudinal resonator formula that works for the
case xd = xt, is given by ([3], p. 72)

Zresonator|| (ω, xd = xt = x0) =

=
R||(x0)

1 + iQ
(

ω
ωres
− ωres

ω

) ≡ f(x0)g(ω), (5)

where we have separated the dependences on the offset
and the frequency in the functions

f(x) ≡
(
R

Q

)
||

(x),

g(ω) ≡ Q

1 + iQ
(

ω
ωres
− ωres

ω

) . (6)

We now expand Eq. (5) to the more general case when
the trailing charge does not necessarily follow the exact
path of the driving charge. In using Eq. (5) we have
made an assumption that the electromagnetic fields in
the cavity are given by the single resonant mode. The
time-behavior of the fields is dictated by the frequency
and the Q-factor of the mode, and is, therefore, the same
everywhere in the cavity. This means that the choice
of the integration line xt does not affect the frequency
response g(ω), but only changes the amplitude of the
response. The amplitude depends now on both xd and
xt through some function F :

Zresonator|| (ω, xd, xt) = F (xd, xt)g(ω). (7)

To find the function F , we examine the longitudinal
voltage kick received by the trailing charge ∆V (t). This
kick can be written as ∆V (t) = −qW|| by the definition
of the wake function, which for the resonator impedance
is given by ([3], p.72)

W||(t) = ωresF (xd, xt)e
−αt

×
(

cos(ω̄rest)−
α

ω̄res
sin(ω̄rest)

)
,

(8)

where ω̄res = ωres
√

1− 1
4Q2 , α = ωres

2Q , and
(
R
Q

)
||

has

been replaced with F (xd, xt). For us, the only important



3

part of this wake function is the coefficient ωresF (xd, xt)
in front of the time-structure. The time-structure is ir-
relevant for the purpose of this derivation and can be
ignored by considering the voltage kick at a time much
lower than the resonant period T = 2πωres

∆V (t� T ) = −qωresF (xd, xt). (9)

This kick can also be written using the concept of the
shunt impedance of the cavity. Immediately after the
passage of the driving charge, the cavity voltage is in the
decelerating phase (see [4], p.333), giving ∆V (t � T ) =
−|V|||. The cavity voltage is related to the energy stored
in the mode U through the shunt impedance at the posi-
tion of the trailing charge xt as |V||| =

√
f(xt)× 2ωresU .

In turn, U is determined by the energy initially deposited
in the cavity by the driving charge U = kq2, where
k = ωresf(xd)/2 is the loss factor ([15], p.9) at the po-
sition of the driving charge xd. This gives

∆V (t� T ) = −qωres
√
f(xd)f(xt) (10)

By comparing Eq. (9) to Eq. (10), the unknown function

F is found as F (xd, xt) =
√
f(xd)f(xt). Finally, the

generalized longitudinal resonator formula is

Zresonator|| (ω, xd, xt) =
√
f(xd)f(xt)g(ω). (11)

We now apply Panofsky-Wenzel theorem (in the same
way as in [15], p 23) to Eq. (11) to get the total transverse
impedance Zx(ω, xd, xt)

Zx(ω, xd, xt) =
c

ω

∂

∂xt
Z||(ω, xd, xt)

=
cg(ω)

2ω

√
f(xd)

f(xt)
f ′(xt)

(12)

We then find the driving and detuning impedances using
their definitions (2) to get the final expressions

Zdrivx (ω, x0) =
cg(ω)

4ω

f ′(x0)
2

f(x0)

Zdetx (ω, x0) =
cg(ω)

4ω

(
−f
′(x0)

2

f(x0)
+ 2f ′′(x0)

)
.

(13)

III. DISCUSSION

First, it is interesting to notice that that the sum of
the two equations (13) gives

ZΣ
x (ω, x0) =

cg(ω)

2ω
f ′′(x0), (14)

which matches the symmetric cavity expression Eq. (3).
This means that Eq. (3) when applied to the case of an
asymmetric cavity, gives neither Zdriv nor Zdet, but their
sum. As was stated in the introduction, finding ZΣ

x is

easier as it only requires the first polynomial coefficient
of the parabolic fit, and is not sensitive to the errors in
f and f ′ (see below).

Second, the general Eq. (13) can be applied to a com-
pletely symmetric cavity as a particular case. One can
infer from Eq. (13) that the modes in a symmetric cav-
ity are either purely detuning or purely driving. This
distinction comes naturally as the two following cases:
non-zero longitudinal impedance f(x0) 6= 0, and zero
longitudinal impedance f(x0) = 0. To show this, we
first note that f ′(x0) = 0 due to the symmetry. It
means that in the case f(x0) 6= 0 the driving impedance
is equal to zero, and the detuning impedance becomes

Zdetx (ω, x0) = cg(ω)
2ω f ′′(x0) confirming Eq. (3). In the

other case f(x0) = 0 we have a 0/0-type fraction, hence
the limit has to be taken when approaching the point
of symmetry x0. The 0/0-type fraction is resolved by
Taylor-expanding the function f around x = x0 as

f(x) = f ′′(x0)
2 (x − x0)2 + O((x − x0)3). The two terms

in the second equation of (13) cancel out, giving zero
detuning impedance. The driving impedance becomes

Zdrivx (ω, x0) = cg(ω)
2ω f ′′(x0), again confirming Eq. (3). To

sum up, in a symmetric cavity, a mode with non-zero lon-
gitudinal impedance has no driving contribution, while a
mode with zero longitudinal impedance has no detuning
contribution.

Third, a practical implementation of Eq. (13) deserves
a separate discussion. If f ′ and f ′′ are calculated by nu-
merical differentiation, even a small numerical error in f
will result in significant uncertainties. A more practical
solution is to do a parabolic fit to the data in some win-
dow w around the point of interest x0 (see Fig. 1), and
determine f ′ and f ′′ from the corresponding coefficients.
In section IV, the two ways will be compared by apply-
ing them to a simple cavity with and without artificially
added computational noise. Special attention should be
taken when the method is applied to a symmetric or to a
slightly asymmetric cavity (e.g. the only source of asym-
metry is an HOM coupler). In that case, driving modes
have vanishingly low f(x0) and f ′(x0), and blindly ap-
plying Eq. (13) will result in diverging results for both
Zdrivx and Zdetx due to the term f ′2/f . The problem
only applies to driving modes, as for detuning modes the
term in question simply goes to zero since f ′(x0) = 0 and
f(x0) 6= 0.

One way to avoid this problem is to constrain the
fitting parabola to go through zero (the “tangent con-
straint”), thus resolving the f ′2/f ratio. This constraint
can be triggered when the value of f falls below the er-
ror bar of the eigenmode simulation within the fitting
window, as shown in Fig. 1. The constraint is imple-
mented by looking for the fit not in the general form
f = ax2 + bx+ c, but in the form f = a(x−x∗)2 with x∗

somewhere in the window (x0−w/2) ≤ x∗ ≤ (x0 +w/2).
This solution allows to correctly determine Zdrivx , how-
ever at the expense of losing the small non-zero value
of Zdetx (plugging f = a(x − x∗)2 in Eq. (13) yields ex-
actly zero detuning impedance). If in fact there is a need
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to determine the low level of Zdetx , the fitting window w
should be adjusted not to cover the tangent point x∗,
with the step between the sampling points scaled down
accordingly.

Offset x

x
0
 - w/2 x* x

0
x

0
 + w/2

f
(x
)
≡

(R
/
Q
) |
|

0

Eigenmode data

Parabolic fit

FIG. 1. An illustrative example of eigenmode data for a
slightly asymmetric cavity. The fit window around the point
of interest x0 contains 7 data points (the purple line with the
error bars). The value of f falls below its error bar inside
the fit window, and the tangent constraint is enforced to the
fitting parabola (the blue line).

IV. CHECK FOR A SIMPLE CAVITY

As an example, we consider a TM210 mode at the fre-
quency of 2.5 GHz excited in a rectangular resonator
shown in Fig. 2 (top). If the beamline is put in the center
x0 = 0, it corresponds to the case of a symmetric cavity,
while a shifted beamline with x0 6= 0 corresponds to the
asymmetric case.

Let us first examine the validity of Eq. (13) with no
regard of numerical errors in the calculation of the shunt
impedance. For that, the simplicity of the considered
geometry allows for an analytical derivation of (R/Q)||.
The electric field in the selected mode is given by

Ez(x, y, z, t) = Asin

(
2πx

a
+ π

)
×sin

(πy
b

+
π

2

)
eiωrest

(15)

where A is a constant, a and b are the dimensions of
the cavity as shown in Fig. 2, and ωres is the angular
resonant frequency of the mode. The voltage and the
stored energy in the mode are computed as

V|| =

∫ L

0

dzEz(z, t = z/c),

U = L

∫ a/2

−a/2
dx

∫ b/2

−b/2
dy

1

2
ε0E

2
z (t = 0),

(16)

Horizontal coordinate x [mm]
-50 0 50

f
(x
)
≡

(R
/
Q
) |
|
[Ω

]

0

2

4

6

8

10

12
Analytical

Eigenmode simulation

FIG. 2. Top: The considered example of a simple cavity
(the vacuum region is shown in blue). The electric field of
the chosen mode (TM210) is shown with arrows. Bottom:
f(x) ≡ (R/Q)|| of the selected mode as a function of the
horizontal coordinate x, with the black line given by the ana-
lytical formula and the purple crosses given by the eigenmode
simulation.

where L is the length of the cavity and ε0 is the vacuum
permittivity. Fixing the vertical coordinate y to zero
leads to the following expression for f(x) = (R/Q)||

f(x) = Msin2

(
2πx

a

)
, M =

4c2|eiωresL/c − 1|2

ω3
resLε0ab

(17)

which is shown in Fig. 2 (bottom) as the solid black line.
Given Eq. (13), the driving and the detuning impedances
for some offset x0 become

Zdrivx (ω, x0) =
cg(ω)

4ω
× 16π2

a2
Mcos2

(
2πx0

a

)
,

Zdetx (ω, x0) = −cg(ω)

4ω
× 16π2

a2
Msin2

(
2πx0

a

)
.

(18)

These quantities can be checked against time-domain
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wakefield simulations, for which the CST wakefield
solver [13] was used. For this, the cavity was enclosed
in the walls of lossy metal (conductivity σ = 105 S/m)
giving the considered mode the quality factor Q = 146.
For each of the few selected offsets x0, a small opening
was made in the walls around x0 to allow for the passage
of the beam. The real part of the transverse impedance
was observed for both the beam line and the integra-
tion line at x0, and for small displacements of either line.
The variation of the height of the resonance impedance
peak with the displacement of the beamline gave Zdrivx ,
and the variation with the displacement of the integra-
tion line gave Zdetx . These quantities are plotted in Fig. 3
together with the analytical result (Eq. (18)). A gener-
ally good agreement is achieved for all offsets x0 includ-
ing the case of a completely symmetric cavity (x0 = 0),
which confirms the validity of the derived theory. Note
specifically that the point x0 = 0 corresponds to the case
f(x0) = 0, f ′(x0) = 0, and the point x0 = 37.5 mm
corresponds to the case f(x0) 6= 0, f ′(x0) = 0 (Fig. 2,
bottom). The absence of the detuning impedance or the
driving impedance at these points confirms the statement
made in section III.

Offset x0 [mm]
-50 0 50

R
e(
Z

d
ri
v
,
d
et

x
)
at

ω
=

ω
re
s
[Ω

/m
]

×10
4

-5

0

5
Z

x

driv
, analytical

Z
x

det
, analytical

Z
x

driv
, CST wakefield

Z
x

det
, CST wakefield

FIG. 3. Driving and detuning impedances obtained by the
CST wakefield simulations, compared to the derived analyti-
cal expressions.

So far we only showed that the derived theory gives
correct results when we take the analytical expression
for f(x) as an input. Another interesting question is how
accurate would the results be if instead we took actual
eigenmode simulations as an input. To check this, we
used an eigenmode solver (Ansys HFSS [16] or CST Mi-
crowave Studio [17]) to find the values of f at a series of
offsets spaced by 3 mm (crosses in Fig. 2, bottom). As
expected for such a simple cavity, the data is in a very
good agreement with the analytical result. We then ap-
ply the two methods discussed in section III to find f ′

and f ′′ from the data.
The first method is to numerically differentiate f(x)

after spline-interpolating the data points to define the
function everywhere between the points. Since the eigen-
mode data for such a simple cavity is very precise, the
resulting Zdriv and Zdet match nicely with the analytical
result (crosses in Fig. 4, top). As was mentioned in sec-
tion III, for a completely symmetric cavity the numerical
differentiation gives a diverging result, hence the missing
crosses at x0 = 0.

The second method is the parabolic fit. For this, a
window of w = 12 mm was used when fitting the points,
meaning that the fits are based on the values of f at the
point of interest, plus two additional points on each side.
The obtained Zdriv and Zdet are shown in Fig. 4 (top)
as circles. The tangent constraint was enforced for the
parabolic fits that contain the central point (x = 0) in
the fitting window. This allowed for a correct estimation
of Zdriv even for the completely symmetric case (red cir-
cle at x0 = 0), but at the expense of giving Zdet = 0 for
the 5 central points, as was discussed in section III. The
agreement of Zdriv and Zdet with the analytical result
is not as good for the parabolic fit as it was for the nu-
merical differentiation (circles vs crosses in Fig. 4, top).
However, since the shape of the fitting function is con-
strained to be a parabola, this method is more robust
when applied to eigenmode data with larger error bars.
To illustrate this, we artificially added random errors of
relatively small amplitude (0.025 Ω) to the data points in
Fig. 2 (bottom). We then applied both methods to the
new “noisy” data, and obtained the impedances shown in
Fig. 4 (bottom). The results of the parabolic fit are less
distorted by the added noise, and this method is therefore
preferred for complex geometries.

V. CHECK FOR A REALISTIC CAVITY

As an example of an asymmetric cavity with complex
geometry, we chose the roman pot structure shown in
Fig. 5 (top). The roman pot is an experimental tech-
nique for the detection of forward protons from elastic or
diffractive scattering. Detectors are placed inside a sec-
ondary vacuum vessel, called pot, and moved into the
primary vacuum of the machine through vacuum bel-
lows [18]. For this example, we set the pot to be 20 mm
away from the beam, resulting in a strongly asymmet-
ric geometry in the vertical direction y. The following
analysis was therefore done for the vertical impedance
Zy.

First, a traditional time-domain calculation was done
using the CST wakefield solver in the same way as
in section IV, with the resulting driving and detuning
impedances plotted in Fig. 6 (top). For comparison with
an eigenmode analysis we chose the mode at the fre-
quency of 360 MHz, corresponding to the most promi-
nent peak in the impedance spectrum. The impedances
at this resonant frequency are listed in Table I. The cho-
sen mode is primarily excited in the bellows region (see
Fig. 5, top). The mode is coupled to the beam through
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, analytical

Z
x

det
, analytical

Z
x

driv
, parabolic fit

Z
x

det
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Z
x

driv
, spline fit

Z
x

det
, spline fit

FIG. 4. Driving and detuning impedances obtained by the
eigenmode method, compared to the analytical expressions.
Top: the original eigenmode data is taken without added
noise. Bottom: random errors of the amplitude of 0.025 Ω
were added to the eigenmode data.

the narrow gap between the pot and the outer walls. The
narrow gap requires sophisticated meshing and makes the
mode a good candidate to test the eigenmode method.

Then, we performed the eigenmode analysis for the
integration line offsets ranging from −5 to 5 mm with a
step of 1 mm. The longitudinal shunt impedance and the
parabolic fit are shown in Fig. 5 (bottom). The resulting
driving and detuning impedances are listed in Table I
together with the resonant frequency and the Q-factor
estimated with the eigenmode solver. The corresponding
resonant peak is also plotted against the wakefield data in
Fig. 6 (bottom). Since the resonant frequencies obtained
by the two methods are 10 MHz off (an error due to
the complex geometry and the different mesh types), the
eigenmode peak appears shifted but otherwise resembles
the wakefield one for both Zdrivy and Zdety .

In the absolute values, the two methods agree within

Vertical coordinate y [mm]
-5 0 5

f
(y
)
≡

(R
/Q

) |
|
[Ω

]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6 Eigenmode data

Parabolic fit

FIG. 5. Top: The considered roman pot cavity (coutesy:
Nicola Minafra). The vacuum region is shown in grey. No
ferrite absorbers are considered. The electric field of the cho-
sen mode is shown with arrows. Bottom: f(y) ≡ (R/Q)|| of
the selected mode as a function of the vertical coordinate y.

TABLE I. The driving and the detuning impedances of the
roman pot cavity, calculated with the eigenmode method and
with the time-domain wakefield simulations.

fres Q Re(Zdriv
y (fres)) Re(Zdet

y (fres))
Eigenmode 370 MHz 462 6.43 × 104 Ω/m 3.71 × 104 Ω/m
T. domain 360 MHz 405 5.54 × 104 Ω/m 3.14 × 104 Ω/m

15%. Most of this difference can be explained by the
different Q-factors in the eigenmode and the wakefield
solvers. Indeed, in the wakefield solver, the Q-factor de-
duced from the width of the resonance peak is lower than
the eigenmode value (Table I). This source of error can
be canceled out if we use the Q-factor from the wakefield
solver in the eigenmode formula. Then, the difference
between the two methods decreases to only 4%. As a
conclusion, in this case of a realistic structure, the de-
veloped method provides the correct decomposition of
detuning and driving impedances of the main resonant
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FIG. 6. Top: Wakefield calculation of the vertical transverse
impedance in the roman pot structure. Bottom: A zoom-in on
the most prominent peak, and a comparison to the eigenmode
simulation.

mode.

VI. CONCLUSIONS

We developed a method to separately compute the
driving (dipolar) and the detuning (quadrupolar) geo-
metrical transverse impedances of an asymmetric cav-
ity. As an input, the method takes eigenmode data for
a chosen cavity mode: the longitudinal shunt impedance
(R/Q)|| for several transverse offsets, and the mode’s fre-
quency and Q-factor. The method was benchmarked for
the case of a simple cavity (displaced rectangular res-
onator) and a realistic cavity (roman pot), showing a
good agreement with time-domain calculations in both
cases. For practical implementation of the method, we
also investigated how numerical noise in the input eigen-
mode data affects the end results. It was concluded that
a parabolic fit of the data is preferred when the method
is applied to realistic cavities.
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