Search for Higgs boson decays to BSM light bosons in four-lepton events with ATLAS

Diallo BOYE

International Conference on Neutrinos and Dark Matter (NDM-2020) On the behalf of the ATLAS Collaboration

January 14, 2020

Outline

- 1 Context and Objectives
- 2 Analysis overview Run2
- 3 Event Selection Run2
- 4 Background estimates and uncertainties
- 5 Run1 Results
- 6 Run2 Results
- 7 Conclusion

Context and Objectives

• Standard Model (SM) deficiencies

- Many free parameters, (anti)matter paradox, hierarchy problem, strong CP problem, no gravity, no DE or DM...
- Explanation of astrophysical observations of positron excesses

Context and Objectives

• Standard Model (SM) deficiencies

- Many free parameters, (anti)matter paradox, hierarchy problem, strong CP problem, no gravity, no DE or DM...
- Explanation of astrophysical observations of positron excesses

• 2 BSM Bench mark models considered

- $\rightarrow 2HDM+S \text{ Curtin et al. (Phys.Rev.D90,075004(2014).), H.} \\ Davoudiasl et al Phys.Rev.D88.1(2013)015022$
 - It predicts the decay of the Higgs boson to 1 or 2 pseudo-scalar a.
 - Only $a \to \mu \mu$ is considered and it's determined by Yukawa couplings of a to fermions.

Context and Objectives

- HAHM (Hidden Abelian Higgs Model) → Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al Phys.Rev.D88.1(2013)015022
 - introduce an additional U(1) dark gauge symmetry mediated by a dark gauge boson Z_d
 - Z_d interacts with the SM through kinetic mixing with the hypercharge gauge boson (\rightarrow kinetic mixing parameter ϵ)
 - Dark Higgs mechanism could spontaneously break the U(1) dark gauge symmetry (\rightarrow mixing between SM Higgs and dark Higgs \rightarrow mixing parameter κ)
 - Mass-mixing between the SM Z boson and Z_d through mass mixing parameter δ

Context and objectives

Figure 1: Constraint on ϵ , m_{Z_d} for pure kinematic mixing for $m_{Z_d} \sim MeV - 10 \, GeV$ Figure 2: BR of *a* singlet-like pseudoscalar in the 2HDM+S for 7 II Yukawa couplings.

Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al Phys.Rev.D88.1(2013)015022, H. Davoudiasl et al Phys.Rev.D85(2012)115019, S. Gopalakrishna, S. Jung and J. D. Wells, Phys.Rev.D78(2008)055002

Analysis overview in Run 2

3 analyses are covered: $X = Z_d/a$

channels of the analysis			
channels	decay mode	X range in GeV	final state
high mass	$H \to XX \to 4l$	[15, 60]	$4e, 4\mu, 2e2\mu$
ZX	$H \to ZX \to 4l$	[15, 55]	$4e,4\mu,2e2\mu,2\mu 2e$
low mass	$H \to XX \to 4l$	[1, 15]	4μ

3 analyses are covered: $X = Z_d/a$

channels of the analysis			
channels	decay mode	X range in GeV	final state
high mass	$H \to XX \to 4l$	[15, 60]	$4e, 4\mu, 2e2\mu$
ZX	$H \to ZX \to 4l$	[15, 55]	$4e, 4\mu, 2e2\mu, 2\mu 2e$
low mass	$H \to XX \to 4l$	[1, 15]	4μ

Labeling (same as Run 1)

 m_{12} is the invariant mass of the dilepton that is closer to the (SM) Z boson mass, and m_{34} is the invariant mass of the other dilepton in the quadruplet.

In the case of quadruplets formed from 4e or 4μ , alternate pairings of same-flavour opposite-sign (SFOS) leptons can be formed, they are denoted m_{14} and m_{23}

Event Selection in Run 2

	$H ightarrow ZX ightarrow 4\ell \ (15GeV < m_X < 55GeV)$	$\begin{array}{c} H \rightarrow XX \rightarrow 4\ell \\ (15 GeV < m_X < 60 GeV) \end{array}$	$ \begin{array}{c} H \rightarrow XX \rightarrow 4\mu \\ (1 GeV < m_X < 15 GeV) \end{array} $
4l se- lection	 Require at least one SFOS quadru Three leading-pt leptons satisfying 3μ required to be reconstructed by 	The plet $g \ pt > 20 \ GeV, 15 \ GeV, 10 \ GeV$ y combining ID and MS tracks	
	- The best quadruplet is	each lepton should fire at least	1 trigger.
	required to have:	In the case of multi-lepton trigger	rs, all leptons of
		the trigger must match to leptons	in the quadruplet
	$-50GeV < m_{12} < 106GeV$		
	$-12 GeV < m_{34} < 115 GeV$		
	$-m_{12,34,14,32} > 5 \text{ GeV}$		
	$\Delta R(l, l') > 0.10 \ (0.20)$ for same	-flavour	-
	(different-flavour) leptons in the q	luadruplet	
41 1	Select first surviving	Select quadruplet with sma	$\Delta \mathbf{m}_{\ell\ell} = \mathbf{m_{12}} - \mathbf{m_{34}} $
41 rank-	quadruplet from channels, in		
mg	the order: 4μ , $2e2\mu$, $2\mu 2e$, $4e$		
Event	$115{ m GeV} < { m m}$	$1_{4\ell} < 130{ m GeV}$	$ 120{ m GeV} < m_{4\ell} < 130{ m GeV}$
selection		m_{34}/m_1	$_{2} > 0.85$
		Reject	event if:
		$(m_{J/\Psi} - 0.25 GeV) < m_{12,34}$	$_{,14,32} < (m_{\Psi(2S)} + 0.30 GeV), \text{ or}$
		$(m_{\Upsilon(1S)} - 0.70 GeV) < m_{12}$	$m_{34,14,32} < (m_{\Upsilon(3S)} + 0.75 GeV)$
		$10 GeV < m_{12,34} < 64 GeV$	$0.88 GeV < m_{12,34} < 20 {\rm GeV}$
		$4e$ and 4μ channels:	No restriction on alternative
		$ 5 GeV < m_{14,32} < 75 GeV$	pairing

Signal Generation in Run2

- Same as Run 1 for high mass and ZX channel
- For low mass: Higgs boson was produced using PowHeg-Box and CT10 NLO PDFs then replaced by a Higgs boson for 2HDM+S model

Backgrounds estimates and uncertainties

Dominant background

- $H \to ZZ^* \to 4l$
- Non resonant $SM ZZ^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and Z+ Jet (cross check by data driven method, for high mass)
- heavy flavor (for low mass region)
- For high and low mass region: most of them are cross checked in regions orthogonal to the signal region
- For $H \to ZX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Backgrounds estimates and uncertainties

Dominant background

- $H \to ZZ^* \to 4l$
- Non resonant $SM ZZ^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and Z+ Jet (cross check by data driven method, for high mass)
- heavy flavor (for low mass region)
- For high and low mass region: most of them are cross checked in regions orthogonal to the signal region
- For $H \to ZX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Uncertainties

- Data driven bkg uncertainty is \rightarrow up to 65%
- Statistical uncertainty
- Systematic uncertainties from: detector, theory \rightarrow up to 10%

$H \rightarrow ZX \rightarrow 4l$ Run 1 results

Figure 3: m_{34} distribution.

10⁻² 95% CL upper limit on $\delta^2 BR(Z_d \rightarrow 2I)$ ATLAS Observed Expected s=8 TeV. 20.7 fb 10-±1σ $\pm 2\sigma$ 10-4 10⁻⁵ 10⁻⁶ 15 20 25 30 35 m_Z [GeV]

Figure 4: upper limits on δ vs m_{Zd}

channel	$ $ ZZ^*	$ t\bar{t} + Z + jets$	Sum	Observed	$H \to 4l$
4μ	$3.1 \pm 0.02 \pm 04$	$0.6 \pm 0.04 \pm 0.2$	$3.7 \pm 0.04 \pm 0.6$	12	$8.3 \pm 0.04 \pm 0.6$
4e	$1.3 \pm 0.02 \pm 0.5$	$0.8 \pm 0.07 \pm 0.4$	$2.1 \pm 0.07 \pm 0.9$	9	$6.9 \pm 0.07 \pm 0.9$
$2\mu 2e$	$1.4 \pm 0.01 \pm 0.3$	$1.2 \pm 0.10 \pm 0.4$	$2.6 \pm 0.10 \pm 0.6$	7	$4.4 \pm 0.10 \pm 0.6$
$2e2\mu$	$2.1 \pm 0.02 \pm 0.3$	$0.6 \pm 0.04 \pm 0.2$	$2.7 \pm 0.10 \pm 0.5$	8	$5.3 \pm 0.04 \pm 0.5$
all	$7.8 \pm 0.04 \pm 1.2$	$3.2 \pm 0.1 \pm 1.0$	$11.1 \pm 0.1 \pm 1.8$	36	$24.9 \pm 0.1 \pm 1.8$

Table 1: Expected and observed of events at $20.1 fb^{-1}$, The uncertainties are statistical and systematic respectively.

$H \rightarrow XX \rightarrow 4l$ Run 1 results

Process	4e	4μ	$2e2\mu$
$H \to ZZ^* \to 4\ell$	$(1.5 \pm 0.3 \pm 0.2) \times 10^{-2}$	$(1.0 \pm 0.3 \pm 0.3) \times 10^{-2}$	$(2.9 \pm 1.0 \pm 2.0) \times 10^{-3}$
$ZZ^* \to 4\ell$	$(7.1 \pm 3.6 \pm 0.5) \times 10^{-4}$	$(8.4 \pm 3.8 \pm 0.5) \times 10^{-3}$	$(9.1 \pm 3.6 \pm 0.6) \times 10^{-3}$
WW, WZ	$< 0.7 \times 10^{-2}$	$< 0.7 \times 10^{-2}$	$< 0.7 imes 10^{-2}$
$tar{t}$	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$
Zbb, Z + jets	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$
$ZJ/\Psi,Z\Upsilon$	$< 2.3 \times 10^{-2}$	$< 2.3 \times 10^{-2}$	$< 2.3 imes 10^{-2}$
Total background	$< 5.6 \times 10^{-2}$	$< 5.9 \times 10^{-2}$	$< 5.3 \times 10^{-2}$
Data	1	0	0

Table 2: Expected and observed events for mass $m_{Zd} = 25 \, GeV$

Process	4e	$ $ 4μ	$2e2\mu$
$H \to Z Z^* \to 4\ell$	$(1.2 \pm 0.3 \pm 0.2) \times 10^{-2}$	$(5.8 \pm 2.0 \pm 2.0) \times 10^{-3}$	$(2.6 \pm 1.0 \pm .2) \times 10^{-3}$
$ZZ^* \to 4\ell$	$(3.5 \pm 2.0 \pm 0.2) \times 10^{-3}$	$(4.1 \pm 2.7 \pm 0.2) \times 10^{-3}$	$(2.0 \pm 0.6 \pm 0.1) \times 10^{-3}$
WW, WZ	$< 0.7 \times 10^{-2}$	$< 0.7 \times 10^{-2}$	$< 0.7 \times 10^{-2}$
$tar{t}$	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$
Zbb, Z + jets	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$
$ZJ/\Psi, Z\Upsilon$	$< 2.3 \times 10^{-2}$	$< 2.3 \times 10^{-2}$	$< 2.3 imes 10^{-2}$
Total background	$< 5.3 \times 10^{-2}$	$< 5.1 \times 10^{-2}$	$< 6.4 \times 10^{-2}$
Data	1	0	0

Table 3: Expected and observed events for mass $m_{Zd} = 20.5 \, GeV$

$H \to XX \to 4l$ Run1 results

Figure 5: upper limits on κ vs m_{Zd}

$$\kappa^{2} = \Gamma(H \to Z_{d}Z_{d}) \frac{32\pi m_{h}^{5}}{v^{2}[(m_{h}^{2} - 2m_{Z_{d}}^{2})^{2} - 8(m_{h}^{2} - m_{Z_{d}}^{2})m_{Z_{d}}^{2}]} \frac{1}{\sqrt{1 - \frac{4m_{Z_{d}}^{2}}{m_{h}^{2}}}}$$
$$\kappa' = \kappa \times \frac{m_{H}^{2}}{|m_{H}^{2} - m_{S}^{2}|}$$

Diallo BOYE

11 / 27

$H \to ZX/XX \to 4l$ analysis Run1 \to Run2

Factors that are expected to lead to an improvement in the Run 2 result

- The Higgs production cross section in Run 2 (13 TeV) > Run 1 (8 TeV) 43.92 pb vs 19.3 pb
- The Luminosity in Run 2 (36.1 fb^{-1}) > Run 1 (20.3 fb^{-1})
- Improvement in the Analysis code, at various levels
- Optimization of the signal region cut.
- Exploration of the low mass region $(m_X < 15 \text{ GeV})$.
- Improvement expected in the limit setting.

$H \rightarrow ZX \rightarrow 4l \text{ Run2 results}$

Figure 6: m_{34} in the mass range m4 ℓ in [115,130] GeV.

Figure 7: upper limits on δ vs m_{Zd}

• Some excesses are observed but not statistically significant

Process	$2\ell 2\mu$	$2\ell 2e$	Total
$H \to ZZ^* \to 4\ell$	34.3 ± 3.6	21.4 ± 3.0	55.7 ± 6.3
$ZZ^* \to 4\ell$	16.9 ± 1.2	9.0 ± 1.1	25.9 ± 2.0
Reducible background	2.1 ± 0.6	2.7 ± 0.7	4.8 ± 1.1
$VVV, t\bar{t} + V$	0.20 ± 0.05	0.20 ± 0.04	0.40 ± 0.06
Total expected	53.5 ± 4.3	33.3 ± 3.4	86.8 ± 7.5
Observed	65	37	102

Table 4: Expected and observed of events at $36.1 fb^{-1}$ Diallo BOYE13 / 27

$H \to XX \to 4l$ high mass Run2 results

Figure 8: m_{34} in the mass range m4 ℓ in [115,130] GeV.

Figure 9: upper limits on κ vs m_{Zd}

• Some excesses are observed but not statistically significant

Process	Yield
$ZZ^* \rightarrow 4l$	0.8 ± 0.1
$H \to ZZ * \to 4l$	2.6 ± 0.3
VVV/VBS	0.51 ± 0.18
$Z + (t\bar{t}/J/\Psi) \to 4\ell$	0.004 ± 0.004
Other Reducible Background	Negligible
Total	3.9 ± 0.3
Data	6

Table 5: Expected and observed of events at $36.1 fb^{-1}$ Diallo BOYE 14 / 27

$H \to XX \to 4l$ low mass Run2 results

Figure 10: m_{34} in the mass range m4 ℓ in [120,130] GeV.

Figure 11: upper limits on BR vs m_{Zd}

• No excess is observed for the low mass region

Process	Yield
$ZZ^* \rightarrow 4l$	0.10 ± 0.01
$H \to ZZ * \to 4l$	0.1 ± 0.1
VVV/VBS	0.06 ± 0.03
Heavy flavour	0.07 ± 0.04
Total	0.4 ± 0.1
Data	0

Table 6: Expected and observed events at $36.1 fb^{-1}$

Diallo BOYE

Conclusion

Conclusion

Conclusion

O Summary

- Search for light BSM boson in 4l channel is performed.
- Data is mostly consistent with expected background.
- Upper limits on branching ratio (benchmark model) is set at 95% CL.
- Run1 paper https://arxiv.org/abs/1505.07645
- Run2 paper https://arxiv.org/abs/1802.03388

Conclusion

O Summary

- Search for light BSM boson in 4l channel is performed.
- Data is mostly consistent with expected background.
- Upper limits on branching ratio (benchmark model) is set at 95% CL.
- Run1 paper https://arxiv.org/abs/1505.07645
- Run2 paper https://arxiv.org/abs/1802.03388

2 Plan

- Research to heavier progenitor scalar
- Making use of a more sensitive variable
- Improving background estimation
- exploring 4τ channel in low mass region

BACKUP

Backup

Interpretation: fiducial cross-section

Figure 12: Upper limits at 95% CL on fiducial cross-sections for the $H \rightarrow XX \rightarrow 4l$ process

Figure 13: Upper limit at 95% CL on the fiducial cross-sections for the $H \rightarrow ZX$ process.

Interpretation: κ and ϵ parameter

Figure 14: Upper limits at 95% CL on fiducial cross-sections for the $H \rightarrow ZX \rightarrow 4l$ process

Figure 15: Upper limit at 95% CL on the branching ratio for the $H \rightarrow ZZ_d$ process.

$$\kappa^{2} = \Gamma(H \to Z_{d} Z_{d}) \frac{32\pi m_{h}^{5}}{v^{2} [(m_{h}^{2} - 2m_{Z_{d}}^{2})^{2} - 8(m_{h}^{2} - m_{Z_{d}}^{2})m_{Z_{d}}^{2}]} \frac{1}{\sqrt{1 - \frac{4m_{Z_{d}}^{2}}{m_{h}^{2}}}}$$
$$\kappa' = \kappa \times \frac{m_{H}^{2}}{|m_{H}^{2} - m_{S}^{2}|}$$

$H \to ZZ_d \to 4\ell$ Strategy

- Sample of selected 4ℓ events is used, with $115 < m_{4\ell} < 130 \text{ GeV}$
- The $H \to 4\ell$ yield denoted $n(H \to 4\ell)$ is determined by subtracting the relevant backgrounds from the 4ℓ sample: $n(H \to 4\ell) = n(4\ell) - n(ZZ^*) - n(t\bar{t}) - n(Z + jets).$
- A template fit of the m_{34} distribution, using histogram-based templates of the $H \to ZZ_d \to 4\ell$ signal and backgrounds.
- m_{34} mass spectrum is extracted to test for a local excess consistent with the decay of a narrow Zd resonance.
- In the absence of any significant local excess, the search can be used to constrain a relative branching ratio R_B , defined as: $R_B = \frac{BR(H \to ZZ_d \to 4\ell)}{BR(H \to 4\ell)} = \frac{BR(H \to ZZ_d \to 4\ell)}{BR(H \to ZZ_d \to 4\ell) + BR(H \to ZZ^* \to 4\ell)}$
- A likelihood function is defined as: $\mathcal{L}(\rho, \mu_H, \nu) = \prod_{i=1}^{N_{bins}} \mathcal{P}(n_i^{obs} | n_i^{exp}) = \prod_{i=1}^{N_{bins}} \mathcal{P}(n_i^{obs} | \mu_H \times (n_i^{Z^*} + \rho \times n_i^{Z_d}) + b_i(\nu))$ • $R_B = \frac{\rho}{\rho + C}$

ATLAS Detector

nuon sectioneter hadronic calorimeter celectromagnetic celectromagnetic solection tracking tr

- muon system
 - \rightarrow designed to identify and reconstruct muons
- trigger system
 - \rightarrow choose either to keep or not events
- hadronic calorimeters
 - \rightarrow measure hadronic energy deposited by hadronic system
- Detector surrounded by Magnetic

• Tracking System

- \rightarrow reconstruct charged particles trajectories
- Thin superconducting solenoid
 - \rightarrow to compute particles impulsion
- electromagnetic calorimeter
 - \rightarrow measure electromagnetic energy deposited by e^- and γ

Analysis overview in Run1

2 channels are covered: $X = Z_d$

channels of the analysis			
channels	decay mode	X range in GeV	final state
high mass	$H \to XX \to 4l$	[15, 60]	$4e, 4\mu, 2e2\mu$
ZX	$H \to ZX \to 4l$	[15, 55]	$4e, 4\mu, 2e2\mu, 2\mu 2e$

Analysis overview in Run1

2 channels are covered: $X = Z_d$

channels of the analysis			
channels	decay mode	X range in GeV	final state
high mass	$H \to XX \to 4l$	[15, 60]	$4e, 4\mu, 2e2\mu$
ZX	$H \to ZX \to 4l$	[15, 55]	$4e, 4\mu, 2e2\mu, 2\mu 2e$

Labeling

 m_{12} is the invariant mass of the dilepton that is closer to the (SM) Z boson mass, and m_{34} is the invariant mass of the other dilepton in the quadruplet.

In the case of quadruplets formed from 4e or 4μ , alternate pairings of same-flavour opposite-sign (SFOS) leptons can be formed, they are denoted m_{14} and m_{23}

Event Selection in Run1

	$H \rightarrow ZX \rightarrow 4\ell \ (15 GeV < m_X < 55 GeV)$	$ \begin{array}{c} H \rightarrow XX \rightarrow 4\ell \\ (15 GeV < m_X < 60 GeV) \end{array} $
41	- Require at least one SFOS quadru	iplet
selection	- Three leading-pt leptons satisfyin	g pt > 20 GeV, 15 GeV, 10 GeV
	-3μ required to be reconstructed b	y combining ID and MS tracks
	- The best quadruplet is required	each lepton should fire at least 1 trigger.
	to have:	In the case of multi-lepton triggers, all leptons of
		the trigger must match to leptons in the quadruplet
	$-50GeV < m_{12} < 106GeV$	
	$-12 GeV < m_{34} < 115 GeV$	
	- $m_{12,34,14,32} > 5 \text{ GeV}$	
	$\Delta R(l, l') > 0.10 \ (0.20)$	for same-flavour (different-flavour) leptons in the quadruplet
4l rank-	Select first surviving quadruplet	Select quadruplet with smallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $
ing	from channels, in the order: 4μ ,	
	$2e2\mu, 2\mu 2e, 4e$	
Event	(Higg	s window cut) $115 GeV < m_{4\ell} < 130 GeV$
selection		$ (Z \text{ veto cut}) m_{12,34} - m_Z < 10 GeV$
		(Loose SR cut) $m_{12} < m_H/2$ and $m_{34} < m_H/2$ GeV
		Reject event if:
		m_{12} and $m_{34} < 12$ GeV (suppress J/Ψ and Υ)
		(Tight SR cut) $ m_{Zd} - m_{12} < \delta m$ and $ m_{Zd} - m_{34} < \delta m$
		$\delta m = 5/3/4.5$ for $4e/4\mu/2e2\mu$

$H \to ZX \to 4l \text{ and } H \to XX \to 4l \text{ (high mass)}$

- Higgs boson is produced in gluon-gluon fusion mode (ggF) using HAHM model, with $M_H = 125 \, GeV$
- MadGraph5_aMC@NLO and NNPDF23 are used as event generator
- Pythia8 was used for modeling of the parton shower, hadronisation and underlying event.
- The model parameters ϵ and κ were adjusted so that only $H \to ZX \to 4l$ $(\epsilon >> \kappa)$ or $H \to XX \to 4l$ $(\epsilon << \kappa)$ decays were generated

Backgrounds estimates and uncertainties

Dominant background

- $H \to ZZ^* \to 4l$
- Non resonant $SM ZZ^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and Z+ Jet (cross check by data driven method, for ZX channel)
- For $H \to XX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Backgrounds estimates and uncertainties

Dominant background

- $H \to ZZ^* \to 4l$
- Non resonant $SM ZZ^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and Z+ Jet (cross check by data driven method, for ZX channel)
- For $H \to XX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Uncertainties

- Data driven bkg uncertainty is \rightarrow up to 65%
- Statistical uncertainty
- Systematic uncertainties from: detector, theory \rightarrow up to 10%

P value for High mass result

Figure 16: Observed local p-values under the background-only hypothesis