Search for Higgs boson decays to BSM light bosons in four-lepton events with ATLAS

Diallo BOYE

International Conference on Neutrinos and Dark Matter (NDM-2020) On the behalf of the ATLAS Collaboration

January 14, 2020

Outline

- Context and Objectives
- Analysis overview Run2
- Event Selection Run2
- [Background e](#page-2-0)stimates and uncertainties
- [Run1 Results](#page-2-0)
- [Run2 Results](#page-2-0)

Context and Objectives

• Standard Model (SM) deficiencies

- Many free parameters, (anti)matter paradox, hierarchy problem, strong CP problem, no gravity, no DE or DM...
- Explanation of astrophysical observations of positron excesses

Context and Objectives

Standard Model (SM) deficiencies

- Many free parameters, (anti)matter paradox, hierarchy problem, strong CP problem, no gravity, no DE or DM...
- Explanation of astrophysical observations of positron excesses

• 2 BSM Bench mark models considered

- \rightarrow 2HDM+S Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al Phys.Rev.D88.1(2013)015022
	- \bullet It predicts the decay of the Higgs boson to 1 or 2 pseudo-scalar a.
	- Only $a \to \mu\mu$ is considered and it's determined by Yukawa couplings of a to fermions.

Context and Objectives

- **HAHM** (Hidden Abelian Higgs Model) \rightarrow Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al Phys.Rev.D88.1(2013)015022
	- \bullet introduce an additional U(1) dark gauge symmetry mediated by a dark gauge boson Z_d
	- \bullet Z_d interacts with the SM through kinetic mixing with the hypercharge gauge boson (\rightarrow kinetic mixing parameter ϵ)
	- Dark Higgs mechanism could spontaneously break the U(1) dark gauge symmetry $(\rightarrow \text{mixing between SM Higgs and dark Higgs } \rightarrow$ [mixing parame](Phys. Rev. D 90, 075004 (2014).)ter κ)
	- [Mass-mixing b](Phys.Rev. D 88.1 (2013) 015022)etween the SM Z boson and Z_d through mass mixing parameter δ

Context and objectives

Figure 1: Constraint on ϵ , m_{Z_d} for pure kinematic mixing for $\bar{m}_{Z_d} \sim MeV-10\,GeV$

Figure 2: BR of a singlet-like pseudoscalar in the $2HDM + S$ for T II Yukawa couplings.

Curtin et al. (Phys.Rev.D90,075004(2014).), H. Davoudiasl et al Phys.Rev.D88.1(2013)015022, H. Davoudiasl et al Phys.Rev.D85(2012)115019, S. Gopalakrishna, S. Jung and J. D. Wells, Phys.Rev.D78(2008)055002

Analysis overview in Run 2

3 analyses are covered: $X = Z_d/a$

3 analyses are covered: $X = Z_d/a$

Labeling (same as Run 1)

 m_{12} is the invariant mass of the dilepton that is closer to the (SM) Z boson mass, and m_{34} is the invariant mass of the other dilepton in the quadruplet.

In the case of quadruplets formed from 4e or 4μ , alternate pairings of same-flavour opposite-sign (SFOS) leptons can be formed, they are denoted m_{14} and m_{23}

Event Selection in Run 2

Signal Generation in Run2

- Same as Run 1 for high mass and ZX channel
- For low mass: Higgs boson was produced using PowHEG- Box and CT10 NLO PDFs then replaced by a Higgs boson for 2HDM+S model

Backgrounds estimates and uncertainties

Dominant background

- \bullet $H \rightarrow ZZ^* \rightarrow 4l$
- Non resonant $\rm SM$ $Z\tilde{Z}^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and $Z+$ Jet (cross check by data driven method, for high mass)
- heavy flavor (for low mass region)
- For high and low mass region: most of them are cross checked in regions orthogonal to the signal region
- For $H \to ZX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Backgrounds estimates and uncertainties

Dominant background

- \bullet $H \rightarrow ZZ^* \rightarrow 4l$
- Non resonant \overline{SM} \overline{ZZ}^*

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and $Z+$ Jet (cross check by data driven method, for high mass)
- heavy flavor (for low mass region)
- For high and low mass region: most of them are cross checked in regions orthogonal to the signal region
- For $H \to ZX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Uncertainties

- Data driven bkg uncertainty is \rightarrow up to 65%
- Statistical uncertainty
- Systematic uncertainties from: detector, theory \rightarrow up to 10%

$H \to ZX \to 4l$ Run 1 results

Figure 3: m_{34} distribution. Figure 4: upper limits on δ vs m_{Zd}

Table 1: Expected and observed of events at $20.1fb^{-1}$, The uncertainties are statistical and systematic respectively.

$H \to XX \to 4l$ Run 1 results

Process	4e	4μ	$2e2\mu$
$H \to ZZ^* \to 4\ell$	$(1.5 \pm 0.3 \pm 0.2) \times 10^{-2}$	$(1.0 \pm 0.3 \pm 0.3) \times 10^{-2}$	$(2.9 \pm 1.0 \pm 2.0) \times 10^{-3}$
$ZZ^* \to 4\ell$	$(7.1 \pm 3.6 \pm 0.5) \times 10^{-4}$	$(8.4 \pm 3.8 \pm 0.5) \times 10^{-3}$	$(9.1 \pm 3.6 \pm 0.6) \times 10^{-3}$
WW, WZ	$< 0.7 \times 10^{-2}$	$< 0.7 \times 10^{-2}$	$< 0.7 \times 10^{-2}$
	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$	$< 3.0 \times 10^{-2}$
$Zbb, Z + jets$	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$	$< 0.2 \times 10^{-2}$
ZJ/Ψ , $Z\Upsilon$	$< 2.3 \times 10^{-2}$	$< 2.3 \times 10^{-2}$	$< 2.3 \times 10^{-2}$
Total background	$< 5.6 \times 10^{-2}$	$< 5.9 \times 10^{-2}$	$< 5.3 \times 10^{-2}$
Data			

Table 2: Expected and observed events for mass $m_{Zd} = 25 \text{ GeV}$

Table 3: Expected and observed events for mass $m_{Zd} = 20.5 \text{ GeV}$

Diallo BOYE 10 / 27

$H \to XX \to 4l$ Run1 results

Figure 5: upper limits on κ vs m_{Zd}

$$
\kappa^2 = \Gamma(H \to Z_d Z_d) \frac{32\pi m_h^5}{v^2 [(m_h^2 - 2m_{Z_d}^2)^2 - 8(m_h^2 - m_{Z_d}^2)m_{Z_d}^2]} \frac{1}{\sqrt{1 - \frac{4m_{Z_d}^2}{m_h^2}}}
$$

$$
\kappa' = \kappa \times \frac{m_H^2}{\ln^2 m_{Z_d}^2}
$$

Diallo BOYE 11 / 27

 $|m_H^2-m_S^2|$

$H \to ZX/XX \to 4l$ analysis Run1 \to Run2

Factors that are expected to lead to an improvement in the Run 2 result

- The Higgs production cross section in Run 2 (13 TeV) $>$ Run 1 (8) TeV) 43.92 pb vs 19.3 pb
- The Luminosity in Run 2 (36.1 fb^{-1}) > Run 1 (20.3 fb^{-1})
- Improvement in the Analysis code, at various levels
- Optimization of the signal region cut.
- Exploration of the low mass region $(m_X < 15 \text{ GeV})$.
- Improvement expected in the limit setting.

$H \to ZX \to 4l$ Run2 results

Figure 6: m_{34} in the mass range m4 ℓ in [115,130] GeV.

Figure 7: upper limits on δ vs m_{Zd}

• Some excesses are observed but not statistically significant

Table 4: Expected and observed of events at $36.1fb^{-1}$

Diallo BOYE 13 / 27

$H \to XX \to 4l$ high mass Run2 results

Figure 8: m_{34} in the mass range m4 ℓ
in [115,130] GeV.

Figure 9: upper limits on κ vs m_{Zd}

• Some excesses are observed but not statistically significant

Table 5: Expected and observed of events at $36.1 fb^-1$ Diallo BOYE 14 / 27

$H \to XX \to 4l$ low mass Run2 results

Figure 10: m_{34} in the mass range m4 ℓ in [120,130] GeV.

Figure 11: upper limits on BR vs m_{Zd}

• No excess is observed for the low mass region

Process	Yield
ZZ^*	$0.10 + 0.01$
$H \rightarrow ZZ^* \rightarrow 4l$	$0.1 + 0.1$
VVV/VBS	$0.06 + 0.03$
Heavy flavour	$0.07 + 0.04$
Total	0.4 ± 0.1
Data.	

Table 6: Expected and observed events at $36.1 fb^{-1}$

Diallo BOYE 15 $/27$

Conclusion

Conclusion

Conclusion

¹ Summary

- Search for light BSM boson in 4l channel is performed.
- Data is mostly consistent with expected background.
- Upper limits on branching ratio (benchmark model) is set at 95% CL.
- Run1 paper https://arxiv.org/abs/1505.07645
- Run2 paper https://arxiv.org/abs/1802.03388

Conclusion

¹ Summary

- Search for light BSM boson in 4l channel is performed.
- Data is mostly consistent with expected background.
- Upper limits on branching ratio (benchmark model) is set at 95% CL.
- Run1 paper https://arxiv.org/abs/1505.07645
- Run2 paper https://arxiv.org/abs/1802.03388

Plan

- Rese[arch to heavier progenitor](https://arxiv.org/abs/1505.07645) scalar
- Making use of a more sensitive variable
- Improving background estimation
- exploring 4τ channel in low mass region

BACKUP

Backup

Interpretation: fiducial cross-section

Figure 12: Upper limits at 95% CL on fiducial cross-sections for the $H \to XX \to 4l$ process

Figure 13: Upper limit at 95% CL on the fiducial cross-sections for the $H \to ZX$ process.

55

Interpretation: κ and ϵ parameter

Figure 14: Upper limits at 95% CL on fiducial cross-sections for the $H \to ZX \to 4l$ process

Figure 15: Upper limit at 95% CL on the branching ratio for the $H \to ZZ_d$ process.

$$
\kappa^2 = \Gamma(H \to Z_d Z_d) \frac{32\pi m_h^5}{v^2 [(m_h^2 - 2m_{Z_d}^2)^2 - 8(m_h^2 - m_{Z_d}^2)m_{Z_d}^2]} \frac{1}{\sqrt{1 - \frac{4m_{Z_d}^2}{m_h^2}}}
$$

$$
\kappa' = \kappa \times \frac{m_H^2}{\ln^2 m_{Z_d}^2}
$$

 $|m_H^2-m_S^2|$

$H \to ZZ_d \to 4\ell$ Strategy

- Sample of selected 4 ℓ events is used, with $115 < m_{4\ell} < 130 \text{ GeV}$
- The $H \to 4\ell$ yield denoted $n(H \to 4\ell)$ is determined by subtracting the relevant backgrounds from the 4ℓ sample: $n(H \to 4\ell) = n(4\ell) - n(ZZ^*) - n(t\bar{t}) - n(Z + jets).$
- A template fit of the m_{34} distribution, using histogram-based templates of the $H \to ZZ_d \to 4\ell$ signal and backgrounds.
- \bullet m_{34} mass spectrum is extracted to test for a local excess consistent with the decay of a narrow Zd resonance.
- In the absence of any significant local excess, the search can be used to constrain a relative branching ratio R_B , defined as: $R_B = \frac{BR(H \rightarrow ZZ_d \rightarrow 4\ell)}{BR(H \rightarrow 4\ell)}$ $\frac{B R (H \to Z Z_d \to 4 \ell)}{B R (H \to 4 \ell)} = \frac{B R (H \to Z Z_d \to 4 \ell)}{B R (H \to Z Z_d \to 4 \ell) + B R (H \to 4 \ell)}$ $BR(H \rightarrow ZZ_d \rightarrow 4\ell) + BR(H \rightarrow ZZ^* \rightarrow 4\ell)$
- A likelihood function is defined as: $\mathcal{L}(\rho, \mu_H, \nu)$ = $\prod_{i=1}^{N_{bins}}{\cal P}(n_i^{obs}$ $\frac{obs}{i} | n^{exp}_i$ $\hat{e}^{exp}_{i}) = \prod_{i=1}^{N_{bins}} \mathcal{P}(n_{i}^{obs})$ i^{obs} $|\mu_H \times (n_i^{Z^*})$ i^{Z^*} + $\rho \times n_i^{Z_d}$ $\binom{2d}{i} + b_i(\nu)$ $R_B = \frac{\rho}{\rho +}$ $\rho + C$

ATLAS Detector

muor spectrometer neutrino hadronic calorimeter proton neutron the dashed tracks
are invisible to electromagneti the detector calorimeter solenoid magnet trackin

- muon system
	- \rightarrow designed to identify and reconstruct muons
- trigger system
	- \rightarrow choose either to keep or not events
- hadronic calorimeters
	- measure hadronic energy deposited by hadronic system
- Detector surrounded by Magnetic

• Tracking System

- reconstruct charged particles trajectories
- Thin superconducting solenoid
	- \rightarrow to compute particles impulsion
- electromagnetic calorimeter
	- \rightarrow measure electromagnetic energy deposited by e^- and γ

Analysis overview in Run1

2 channels are covered: $X = Z_d$

Analysis overview in Run1

2 channels are covered: $X = Z_d$

Labeling

 m_{12} is the invariant mass of the dilepton that is closer to the (SM) Z boson mass, and m_{34} is the invariant mass of the other dilepton in the quadruplet.

In the case of quadruplets formed from 4e or 4μ , alternate pairings of same-flavour opposite-sign (SFOS) leptons can be formed, they are denoted m_{14} and m_{23}

Event Selection in Run1

Signal generation

$H \to ZX \to 4l$ and $H \to XX \to 4l$ (high mass)

- Higgs boson is produced in gluon-gluon fusion mode (ggF) using HAHM model, with $M_H = 125 \text{ GeV}$
- M_{AD}G_{RAPH}5_AMC@NLO and NNPDF23 are used as event generator
- Pythia8 was used for modeling of the parton shower, hadronisation and underlying event.
- The model parameters ϵ and κ were adjusted so that only $H \to ZX \to 4l$ $(\epsilon \gg \kappa)$ or $H \to XX \to 4l$ ($\epsilon \ll \kappa$) decays were generated

Backgrounds estimates and uncertainties

Dominant background

- \bullet $H \rightarrow ZZ^* \rightarrow 4l$
- Non resonant $\text{SM } \tilde{Z} \tilde{Z}^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and $Z+$ Jet (cross check by data driven method, for ZX channel)
- For $H \to XX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Backgrounds estimates and uncertainties

Dominant background

- \bullet $H \rightarrow ZZ^* \rightarrow 4l$
- Non resonant $\text{SM } \tilde{Z} \tilde{Z}^*$

Sub-dominant background

- WZ, ZZ dibosons processes
- J/ψ and Υ
- $t\bar{t}$ and $Z+$ Jet (cross check by data driven method, for ZX channel)
- For $H \to XX \to 4l$: estimation is done from simulation and normalised with the theoretical calculations of their cross-section

Uncertainties

- Data driven bkg uncertainty is \rightarrow up to 65%
- Statistical uncertainty
- Systematic uncertainties from: detector, theory \rightarrow up to 10%

P value for High mass result

Figure 16: Observed local p-values under the background-only hypothesis