

Heavy-flavour jet tagging in ATLAS

... and how we use Machine Learning

Philipp Windischhofer

University of Oxford philipp.windischhofer@cern.ch

on behalf of the ATLAS Collaboration

ML4Jets, January 15-17, 2020, NYU

1

quarks:

"elementary"

Quantum numbers:

symmetries

momentum

charge, flavour, ... σ

Philipp Windischhofer

symmetries

momentum

 p^{μ}

charge, flavour, ... O

Philipp Windischhofer

What can you expect?

By the end of this talk, you will know ...

- ... how flavour tagging helps ATLAS
- ... how the ATLAS flavour tagging tools work
- ... how machine learning helped to improve them
- ... what their performance is on data and simulation

https://gitlab.cern.ch/phwindis/arxivscraper

MV2

https://gitlab.cern.ch/phwindis/arxivscraper

MV2, DL1, DL1r

https://gitlab.cern.ch/phwindis/arxivscraper

The ATLAS strategy for b-tagging

The ATLAS strategy for b-tagging

Low-level taggers

Physics-based feature extraction

Detector-specific

High-level taggers

Likelihood ratio estimation

$$D \sim \log \frac{p(d_i | b - \text{jet})}{p(d_i | \neg b - \text{jet})}$$

Detector agnostic

Fast turnaround

The ATLAS strategy for b-tagging

- MV2 vs. DL1: different architecture, same inputs
- DL1r: also add RNNIP

The ATLAS strategy for b-tagging

Focus on taggers with strong ML component:

- MV2 vs. DL1: different architecture, same inputs
- DL1r: also add RNNIP

RNNIP

- LSTM vs. Naive Bayes: correlations are important!
 - ... but hard to model and exploit

Tracks contain a lot of information:

- Jet flavour discrimination:
 - Impact parameter, track momentum, ...
- Track quality:
 - Number of (shared) pixel hits

(more information in backup)

Provides higher light (and charm-) rejection compared to other low-level taggers!

RNNIP now part of officially recommended taggers:

- Ensure that data/simulation scale factors can be reliably measured
 - Transform tagger to have same light-rejection, worse b-efficiency
 - Calibrate transformed tagger, then extrapolate to original tagger

- Fully connected (deep) neural network
- Estimate likelihood ratio of low-level tagger outputs

$$D_{\rm DL1}^{b-{\rm tag}} \sim \log \frac{p_b}{p_c + p_u}$$

• Supports *b*- and *c*-tagging

Separate trainings for both supported jet collections:

- Particle-flow jets: new ATLAS baseline
- Variable-radius track jets: invaluable for boosted decays

Training dataset: "hybrid" sample

- simulated $t\bar{t}$ for $p_T < 250 \,\text{GeV}$
- $Z' \rightarrow q\bar{q}$ for $p_T > 250 \,\text{GeV}$

Taggers well-behaved even for multi-TeV jets!

- Models implemented in Keras + Tensorflow
- More efficient training and optimisation pipeline, heavily containerised

Tagger performance in simulation

- MV2 → DL1: very similar performance
- DL1 → DL1r: adding RNNIP (+ optimising network architecture) significantly improves light-and charm rejection

Tagger performance on data

- Good modelling is essential for training
- Scale factor determination very complex
 - Measure efficiency in data for b, c, light jets
 - b-SF: precision top measurement!!

(more plots in backup)

Summary

Two-stage approach:

- Robust, physics-driven low-level taggers
- Detector-agnostic, ML-based high-level taggers

Significant performance gain compared to Run-2 baseline tagger

The future

https://gitlab.cern.ch/phwindis/arxivscraper

References

- (1) Comparison of Monte Carlo generator predictions for bottom and charm hadrons in the decays of top quarks and the fragmentation of high pT jets, <u>ATL-</u> <u>PHYS-PUB-2014-008</u>
- (2) Expected performance of the ATLAS b-tagging algorithms in Run-2, <u>ATL-</u> <u>PHYS-PUB-2015-022</u>
- (3) ATLAS b-jet identification performance and efficiency measurement with ttbar events in pp collisions at 13 TeV, <u>Eur. Phys. J. C 79 (2019) 970</u>
- (4) Expected performance of the 2019 ATLAS b-taggers, ATL-FTAG-2019-005
- (5) ATLAS flavour-tagging calibration results with 139 ifb, <u>ATL-FTAG-2019-004</u>
- (6) Hyper-parameter scan with the Deep Learning heavy-flavour tagger (DL1), <u>ATL-</u> <u>FTAG-2019-001</u>
- (7) Machine learning algorithms for *b*-jet tagging at the ATLAS experiment, <u>ATL-</u> <u>PHYS-PROC-2017-211</u>

Improvement from high-level taggers

Tagger performance in simulation

- MV2 → DL1: very similar performance
- DL1 → DL1r: adding RNNIP (+ optimising network architecture) significantly improves light-and charm rejection

IP sign convention

Lifetime sign convention

interaction point

Tagger performance in data

Tagger performance in data

- light-SF measured in Z + jets
- Calibrate "flipped" tagger, then extrapolate to nominal tagger

Tagger performance in data

• charm-SF measured in semileptonic ttbar

RNNIP

RNNIPFlip

• RNNIP leads to significant enhancement of light-jet rejection

How to measure light-jet rejection in data?

- Flavour composition after tagging dominated by heavy-flavour jets
- Cannot establish pure enough sample of light jets to perform calibration

Instead:

- Define another tagger "RNNIPFlip", with the same light rejection, but much worse b-efficiency
- Easy to calibrate in data, then extrapolate to actual RNNIP

RNNIPFlip

RNNIP network architecture

- LSTM with 50 hidden units
- Dense layer with 10 hidden units before softmax

Old RNNIP architecture

RNNIP training details

Training technicalities:

- Train on same "hybrid" sample as DL1, DL1r
- Sort delta-R associated tracks by transverse IP sig.
- Use first 15 tracks for training, zero-pad if shorter

Track features:

- 4 continuous features per track:
 - Transverse & longitudinal IP sig.
 - $\Delta R(\text{track}, \text{jet})$
 - $p_{T, \text{track}}/p_{T, \text{jet}}$
- Additional track quality features:
 - Number of (shared) hits in (innermost pixel layer | pixel | Si-strip tracker)

RNNIP training details

What does the network "learn"?

- The track multiplicity of the B-hadron decay, large impact parameters for these tracks
- Tracks with large IPs tend to be *harder* and *wider* for b-jets