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Abstract: A muon collider represents the ideal machine to reach very high center-of-mass en-
ergies and luminosities by colliding elementary particles. This is the result of the low level of
beamstrahlung and synchrotron radiation compared to linear or circular electron-positron colliders.
In contrast with other lepton machines, the design of a detector for a multi-TeV muon collider re-
quires the knowledge of the interaction region due to the presence of a large amount of background
induced by muon beam decays. The physics reaches can be properly evaluated only when the
detector performance is determined. In this work, the background generated by muon beams of
750 GeV is characterized and the performance of the tracking system and the calorimeter detector
are illustrated. Solutions to minimize the effect of the beam-induced background are discussed and
applied to obtain track and jet reconstruction performance. The µ+µ− → Hνν̄ → bb̄νν̄ process
is fully simulated and reconstructed to demonstrate that physics measurements are possible in this
harsh environment. The precision on Higgs boson coupling to bb̄ is evaluated for

√
s = 1.5, 3, and

10 TeV and compared to other proposed machines.

Keywords: Detector modelling and simulations I (interaction of radiation with matter, interaction
of photons with matter, interaction of hadrons with matter, etc); Large detector systems for particle
and astroparticle physics; Performance of High Energy Physics Detectors.
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1 Introduction

In a multi-TeV muon collider, the effects of the background induced by the muon beam decays need
to be evaluated in detail at the detector level to be able to estimate the physics reach. In fact, the
muon decay products can contaminate the Interaction Region (IR) from a distance that varies with
the beam energy and the collider optics and its superconducting magnets with appropriate protective
elements need to be designed and included in the simulations [1] to have an accurate background
description. Previous studies [2–4] have found that two cone-shaped tungsten shields can be used
to protect the IR and the detector from the extremely high flux of particles. As a consequence, the
exact design of the machine-detector interface (MDI), which includes these shields, is needed to
evaluate the distribution of the induced background at any part of the detector. The beam-induced
background generated by the MAP collaboration [5] with the IR and the MDI optimized for 1.5-TeV
center-of-mass energy [3] are used to study the effect on the tracking system and on the calorimeter
detector. The software framework used for the propagation of the beam-induced background
through the detector is inherited from the MAP collaboration and has been further developed to
obtain the final results. The production and decay of the Higgs boson µ+µ− → Hνν̄ → bb̄νν̄
at
√

s = 1.5 TeV is studied to determine the reconstruction and identification efficiencies, that are
used to evaluate the sensitivity to the bb̄ coupling. Samples of µ+µ− → Hνν̄ → bb̄νν̄ at particle
level are generated also at

√
s = 3, 10 TeV and a conservative calculation of the sensitivities at these

energies is presented.
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2 Beam-induced background characterization

The simulation of the beam-induced background has been performedwith theMARS15 software [6]
and studied for machines with a center of mass energy of

√
s = 1.5 TeV and

√
s = 125 GeV, as

discussed in detail in Refs. [3, 4] and in Ref. [7]. The background particles reaching the detector
are mainly produced by the interactions of the decay products of the muon beams with the machine
elements. Their type, flux, and characteristics strongly depend on the machine lattice and the
interaction point configuration, which in turn depend on the collision energy. The background
particles may be produced tens of meters upstream the interaction point, as can be seen in Figure 1.
Therefore, a detailed layout of the machine and the machine-detector interface must be included in
the simulation. In particular, the opening angle of two shielding cones (“nozzles”), introduced to
mitigate the effects of the beam-induced background inside the detector, must be optimized for a
specific beam energy and it will affect the detector acceptance.

Figure 1. Illustration of the model of the machine and machine-detector interface built for the MARS15
simulation. The shielding nozzles, described in the text, are represented in yellow inside the detector. This
figure has been reproduced from Ref. [8].

Nevertheless, the flux of particles surviving the shielding is very high. Their main properties
are a relatively low momentum and an arrival time in each sub-detector asynchronous with respect
to the beam crossing. Figure 2 shows the momentum spectra of the electromagnetic (left) and
hadronic (central) components of the beam-induced background for a muon beam of 750 GeV. The
first one is relatively soft (〈pph.〉 = 1.7 MeV and 〈pel.〉 = 6.4 MeV), whereas the second one has
an average momentum of about half a GeV (〈pn〉 = 477 MeV and 〈pch.had.〉 = 481 MeV). The time
of arrival of the particles at the detector entry point with respect to the bunch crossing time for the
different background components is shown on the right of Figure 2. The peaks that are evident
around zero are primarily due to the leakage of photons and electrons around the interaction point,
where the shielding is minimal.

3 Detector performance

The detector model and software framework used for the studies presented in this paper can be found
also in Ref. [8] and in Ref. [7]. Figure 3 presents a schematic view of the detector components, as
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Figure 2. Characteristics of the beam-induced background particles at the detector entry point: the momen-
tum spectra for photons and electrons and for neutrons and charged hadrons are shown in the left and central
panels, respectively; the time of arrival with respect to the beam crossing time is shown on the right.

implemented in the ILCRoot framework [11]. These studies focus on the tracking and calorimeter
systems, a full simulation of the muon detector is not currently available. Both the tracker and the
calorimeter are immersed in a solenoidal magnetic field of 3.57 T.

The tracking system consists of a vertex detector (VTX), an outer silicon tracker (SiT) and a
forward tracker (FTD). The vertex detector, located just outside a 400-µm thick Beryllium beam
pipe of 2.2-cm radius, is 42-cm long with five cylindrical layers at distances from 3 to 12.9 cm in
the transverse plane to the beam axis and four disks on each side. Outside the VTX, a 330-cm
long silicon tracker is comprised of five cylindrical layers at radial distances between 25 and 126
cm and 14 forward disks. The forward tracker consists of three disks on each side of the SiT at
z = ±120, ±155, ±190 cm, which cover the very forward regions and are properly shaped to host
the nozzles. The silicon sensors of all the tracking detectors are based pixel technology. The VTX
sensors have a pixel granularity of 20 × 20 µm2 and a thickness of 75 µm in the barrel and 100 µm
in the disks. The SiT and the FTD feature pixel sensors of 50×50-µm2 pitch and 200-µm thickness.
The full simulation output is digitized, with signals that include electronic noise as well as threshold
and saturation effects.

Despite the mitigation of the beam-induced background provided by the shielding nozzles, a
large particle flux reaches the detector, causing a very high occupancy in the first layers of the
tracking system that impacts the detector performance. New generation 4D silicon sensors, which
provide both spatial and time information, would allow exploitation of the peculiar time distribution
of the background hits and remove a significant fraction of them. An optimized hit selection time
window for each tracking layer was studied in a sample of muons, generated at the IP with a flat
pT spectrum between 0.5 and 100 GeV. The distributions of the arrival times registered by each
sensor with respect to the bunch crossing are shown in Figure 4, where average time resolutions σT
of 50 ps and 100 ps are assumed for the sensors with a thickness of 75 µm/100 µm and 200 µm,
respectively [9]. The contribution to the time resolution due to the time spread of the beam spot
is estimated to be ∼30 ps. Figure 5 shows the reduction in the tracker layer occupancy, when the
hit times are required to be consistent with the arrival time of particles produced at the IP within a
±3σT window.
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Figure 3. Schematic view of the detector, with each component identified by the label
.

Figure 4. Distributions of the tracker hit times with respect to the bunch crossing for 75 µm/100 µm-thick
sensors (left) and 200 µm-thick sensors (right) in a sample of muons with 0.5 < pT < 100 GeV. The tails on
the right are due to the low-momentum muons.

Figure 5. Hit density for each tracker layer before and after the time requirements.
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The calorimeter response is fully simulated for a Dual-Readout Integrally Active and Non
segmented Option (ADRIANO) [10]. The geometry is fully projective covering polar angles down
to 8.4◦. Barrel and end-cap regions are formed by about 23600 towers of 1.4◦ aperture angle of
lead glass with scintillating fibers. Cherenkov and scintillation hits are generated separately and
digitized independently. The full simulation includes photodetector noise, wavelength-dependent
light attenuation and collection efficiency and energy cluster digitization. Beam-induced back-
ground generates an almost flat distribution of noise in each tower, similar to an underlying event
as displayed on the left of Figure 6. Part of this noise is removed by the jet clustering algorithm
as discussed in 3.2. The time of deposited energy in each tower can be exploited further to best
suppress the beam-induced background. On the right of Figure 6 the distribution of arrival time
for all the energy cluster is shown in black compared, in red, with the same distribution for muons
coming from the primary vertex. The late component can be removed by applying a proper time
window, that has to be optimized tower by tower. However the timing information are not used for
the current studies, therefore better results are expected in the future.

Figure 6. Left: Energy distribution in the calorimeter of the beam-induced background. Right: Distribution
of the arrival time at a given calorimetry position of particles generated by beam radiation and of muons
coming from primary vertex. The particles arrival time is measured with respect to t0, defined as the arrival
time in the given position of a photon produced in the primary vertex at the collision time

.

3.1 Tracks reconstruction performance

Hits surviving the selection discussed in Section 3 are used as an input to a parallel Kalman filter,
as implemented in the ILCRoot framework. Pattern recognition and track finding are performed
simultaneously with an iterative procedure with increasing search windows for hits in the following
tracker layers at each iteration. This method guarantees high tracking efficiency, but requires signif-
icant computing resources and long processing times. With the available code, only four iterations
were feasible for events with beam-induced background. Figure 7 shows the tracking efficiency
evaluated in a sample of muons as a function of transverse momentum (pT) and pseudorapidity (η)
for different numbers of iterations. The tracking efficiency is defined as the fraction of generated
particles in the tracker geometrical acceptance that are matched to a good-quality reconstructed
track. The effect of fewer iterations in the track finding procedure is a drop in efficiency for low-pT
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and high-η particles. Four iterations represented a good trade-off between an acceptable reconstruc-
tion efficiency and a practical processing time. As an example, the tracking of one beam-induced
background event, ∼60000 tracks with pT > 0.5 GeV, takes approximately one hour on an Intel
Xeon CPU E5-2665 2.40GHz with 32GB RAM in the case of four iterations with a CPU time that
increases non-linearly with the number of iterations.

Figure 7. Tracking efficiency for different numbers of iterations as a function of the transverse momentum
pT (left) and the psudorapidity η (right) in a sample of muons.

The track reconstruction performance is assessed in samples of single muons generated at
different momenta and pseudorapidities. In the left panel of Figure 8 is shown the tracking
efficiency as a function of the transverse momentum for three representative values of |η |: the
tracker central region, the forward region and the crack between the two. As expected, there is a
loss of efficiency at low momentum, which is more evident on the right panel, where the efficiency
is plotted as a function of |η | for three different momentum values. Low efficiency at high η is
expected both due to the lower performance of the reconstruction algorithm and the limited coverage
of the detector because of the shielding nozzles. The relative transverse momentum resolution of
the reconstructed tracks is reported in Figure 9 for samples of single muons. The left panel shows
the track pT resolution as a function of pT in different |η | regions. In the central and forward regions
the pT resolution is lower than 5 × 10−4 GeV−1 for pT > 10 GeV, while tracks reconstructed in the
crack between the central layers and the forward disks present a degraded resolution. The right
panel shows the pT resolution as a function of pseudorapidity for muons with p = 1, 10, 100 GeV.
The resolution degrades visibly for tracks of low momentum and high |η |.

3.2 Jet reconstruction and identification performance

Jet reconstruction was not part of the ILCRoot package and a simple dedicated algorithm that
takes into account the high yield of particles coming from the beam-induced background has
been developed. Jet reconstruction is performed using the calorimeter clusters, which are selected
according to the following algorithm:
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Figure 8. Muon tracking efficiency as a function of pT for three representative |η | values (left) and as a
function of |η | for three different momenta (right).

Figure 9. Track pT resolution as a function of pT (left) for three representative values of |η | and as a function
of |η | (right) for three ranges of muon momenta. Each bin has been calculated as the width of the distribution
∆pT /p2

T , where ∆pT is the difference between the generated muon pT and the pT of the corresponding
reconstructed track.

1. the calorimeter detector is divided in several pseudorapidity regions of equal width;

2. in each region the mean 〈E〉 and the standard deviation σE of the calorimeter cluster energies
are calculated;

3. calorimeter clusters with an energy E higher than 〈E〉 + 2 · σE are selected;

4. the energy of the selected clusters is corrected by subtracting the mean value 〈E〉 of the
corresponding region.

This selection algorithm is designed to remove, at least in part, the beam-induced background which
is diffused in the calorimeter as shown in Figure 6. In this way, signals originated by particles
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coming from the primary interaction, are identified as energy deposition significantly above the
mean background energy.

Selected calorimeter clusters are then used as inputs to the jet clustering algorithm: a cone
algorithm [15] with a radius parameter of R = 0.5 is employed, where R is the distance in the
pseudorapidity (η) and azimuthal angle (φ) plane between the jet axis and each cluster. Calorimeter
clusters with an energy greater than 2 GeV are considered as seeds. The raw jet energy is obtained
as the sum of the energies of the clusters belonging to the jet.

In order to evaluate the jet energy corrections needed to assess the jet algorithm performance, a
simulated sample of µ+µ− → H(→ bb̄)νν̄ events at

√
s = 1.5 TeV is used. This physics process has

been generated at particle level with Pythia 8 [14] and the full simulation with the beam-induced
background is employed to obtain the detector response. Truth-level jets are clustered by using
truth-level stable particles as inputs to the cone algorithm. Then a reconstructed, detector-level jet
is matched with a truth-level jet if the distance in the (η, φ) space between their axes is less than 0.5.
Reconstructed jets that fulfill this requirement are indicated as truth-matched jets in the text.

The truth-level jet transverse momentum (pT) is shown in Figure 10 as a function of the
average jet raw pT. It is evident that the truth-level jet pT is strongly correlated with the raw jet pT

Figure 10. Truth-level jet pT as a function of the raw pT of reconstructed jets.

demonstrating the correctness of the reconstruction. A polynomial fit to the graph is performed in
order to obtain the jet energy correction function, which is applied to the reconstructed-level jets to
determine the nominal jet energy starting from the raw jet energy.

The jet transverse momentum resolution ∆pT
pT

is defined as the difference between the jet pT

and the matched truth-level jet pT, divided by the truth-level jet pT. The average ∆pT
pT

as a function
of the jet transverse momentum is shown in Figure 11 (left) for simulated b-jets . The resolution
varies from 30% to 40% depending on the jet pT.

The jet reconstruction efficiency, the number of reconstructed jets matched with truth-level
jets divided by the total number of truth-level jets is shown, as a function of the jet transverse
momentum, on the right of Figure 11. The efficiency is around 50% for low-pT jets and around
70% for pT > 60 GeV.
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Figure 11. Left: average jet transverse momentum resolution as a function of the jet transverse momentum.
Right: jet reconstruction efficiency as a function of the jet transverse momentum.

.

The rate of fake jets is not really meaningful: the algorithm is not optimized and a better
jet reconstruction will be achievable in the future by implementing a Particle Flow algorithm that
considers both tracks and calorimeter clusters as inputs. In order to give an idea of the performance
on the current reconstruction, the number of reconstructed jets not matched with a truth-level jet
divided by the total number of reconstructed jets is evaluated. The fake-rate, is found to be the order
of 25% for jets with pT > 40 GeV.

4 Reconstruction of Higgs boson decay to b-jets

The H → bb̄ final state is identified in two steps: the identification of b−jets and the selection of
the bb̄ resonance among physics background events.

4.1 b-jet identification algorithm and performance

A b-jet tagging algorithm has been developed to reduce the background coming from light quark
and gluon jets and from fake jets originated by several background sources in particular the beam-
induced background. The algorithm is inspired by the one employed by the LHCb collaboration
[12] and uses tracks inside the jet cone to identify decay vertices compatible with b-hadron decays.
The algorithm has the following steps:

1. for a given reconstructed jet, tracks inside the jet cone are selected, requiring for each track a
pT greater than 500 GeV and an impact parameter with respect to the µ+µ− interaction point
greater than 0.04 cm. Only good quality tracks are selected by requiring a minimum number
of hits;

2. 2-track vertices are formed by imposing the distance of closest approach between the tracks
to be less than 0.02 cm. The total pT of the two tracks must be greater than 2 GeV;

3. 3-track vertices are formed by linking two 2-track vertices that share one track;

4. if at least one 3-tracks vertex is found, then the jet is tagged as a b-jet.
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This algorithm is very simple and cut-based. Presently higher performance methods are available
which exploit machine learning techniques. In the future the most suitable algorithm, tuned for the
process under study will be applied.

The limitations on the tracks reconstruction explained in 3.1, prevent application of the b−jet
tagging algorithm to the full event, µ+µ− → H(→ bb̄)νν̄ with beam-induced background overlay.
The performance for each is evaluated separately and then applied to theHiggs boson reconstruction.
In Figure 12 the two most discriminating observables related to secondary vertex (SV) in truth-
matched b-jets are compared with those related to SVs found in background events, in this particular
case the beam-induced background. The two observables are the invariant mass of the tracks
belonging to the SV and the pseudo-lifetime, defined as t̃ =

m
B0 ·d
p , where mB0 is the nominal B0

mass, d is the secondary vertex distance from the interaction point and p is the overall momentum
of the tracks associated to the SV. It is evident that it will be well within the performance of any
algorithm to efficiently select b−jets.

Figure 12. Left: invariant mass of tracks associated to SV for truth-matched b-jets from Higgs decay events
(red) and for beam-induced background events (green). Right: pseudo-lifetime for truth-matched b-jets from
Higgs decay events (red) and for beam-induced background (green). A negative pseudo-lifetime is assigned
if d projection with respect to the jet axis is negative.

The b-tagging efficiency is defined as the number of tagged and reconstructed b-jets divided
by the total number of reconstructed b-jets. The b-tagging efficiency as a function of the jet pT is
presented in Figure 13. It can be seen that the it varies from about 40% to about 60% at high jet pT.
These values are very close to what is currently obtained in analyses of the LHC experiments. The
misidentification rate is evaluated on a statistical basis since it is not possible to determine it directly
by using beam-induced background events due to tracking limitations. The (η, φ) space is divided
in cone regions with R = 0.5, in each cone SVs are reconstructed with the b-tagging algorithm.
The ratio between the number of cones with at least one fake SV and the total number of cones is
taken as the misidentification rate. It varies between 1% and 3% depending on the requirements on
the tracks. This way the effect of the beam induced background on the Higgs boson identification
is included through the b-tagging efficiency.

4.2 H → bb̄ selection

µ+µ− → H(→ bb̄)νν̄ events generated at
√

s = 1.5 TeV are reconstructed by using a simple
procedure. The fiducial region is defined by two jets with pT > 40 GeV and pseudorapidity in the
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Figure 13. b-tagging efficiency as a function of the jet pT.

range −2.5 < η < 2.5. Therefore, the first requirement is to have two reconstructed and b-tagged
jets in the fiducial region. The acceptance, A, is defined as the number of events with two b-jets
from Higgs boson decay in the fiducial region divided by the number of generated H → bb̄ events.
At
√

s = 1.5 TeV the acceptance is found to be A = 0.35. The selection efficiency (ε) is defined
as the number of fully reconstructed H → bb̄ events divided by the number of events with two
truth-level b-jets from Higgs boson decay in the fiducial region, and it is found to be ε = 15%. The
reconstructed di-jet invariant mass of truth-matched b-jets in H → bb̄ events is shown in Figure 14.
The presence of the beam-induced background could have jeopardized this distribution making the
Higgs boson identification very difficult. Instead the Higgs boson peak is clearly visible in the di-jet
invariant mass.

Figure 14. The di-jet invariant mass of truth-matched b-jets in H → bb̄ full-simulated events at
√

s = 1.5
TeV.
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5 Higgs Boson couplings to b−quark

In addition to demonstrating that one of the most critical decay channels, H → bb̄, is reconstructed
efficiently at a muon collider, the achievable sensitivity on the couplings is evaluated for three
different center-of-mass energies.

5.1 Higgs Boson coupling to b−quark at
√

s = 1.5 TeV

In this section the sensitivity of the measurement of the Higgs boson coupling to b quarks (gHbb)
in µµ collisions at

√
s = 1.5 TeV is studied. Since the Higgs boson production at

√
s = 1.5 TeV

is dominated by WW fusion [7] the H → bb̄ production cross section (σ) is related to the Higgs
boson couplings as follows:

σ = σ(ννH) · BR(H → bb̄) =
g2
HWWg2

Hbb

ΓH
, (5.1)

where gHWW is the coupling of the Higgs boson to the W boson and ΓH is the Higgs boson width.
The uncertainty on g2

Hbb
is, therefore, related to the measured cross section.

The number of observed H → bb̄ events (N) is given by:

N = A · ε · σ · L · t, (5.2)

where A is the acceptance, ε is the selection efficiency, L is the instantaneous luminosity and t is the
data-taking time. By using a sample of events generated with Pythia 8, which are fully simulated
and reconstructed following the procedure described above, the H → bb̄ cross section at

√
s = 1.5

TeV is found to be σ = 203 fb. Therefore, with an instantaneous luminosity of L = 1.25 · 1034

cm−2s−1 in a data taking period of four Snowmass years (t = 4 · 107 s) the number of observed
Higgs boson events decaying to bb̄ is N = 5500.

The uncertainty on the cross section determination is calculated by assuming A, ε , L, t known
with a good precision, and it is given, approximately, by the number of events after all the selections:

∆σ

σ
'
√

N + B
N

, (5.3)

where B is the expected number of background events. In principle, with a combined fit to the
di-jet invariant mass and discriminating kinematic variables, it should be possible to disentangle
the signal from the background, thus reducing the uncertainty on the cross section. In this study, a
conservative estimate based on equation 5.3 is used to evaluate the uncertainty on the cross section.

The contribution to the background events comes from two sources: physics processes and
uncorrelated background. The first contribution is evaluated with Monte Carlo simulation. The
Standard Model processes considered as possible background are listed in Table 1. The number
of background events with bb̄ final states have been estimated by applying reconstruction and b-
tagging efficiencies to generator-level samples produced with Pythia 8. The contribution of light
quark events, for example those with two b−tags in the final state, due mainly to beam-induced
background, has been calculated applying the same procedure used for physics processes. In this
case, however, the tagging mis-identification rate is used instead of the b-tagging efficiency. The
fake-jet contribution, after the b-tagging requirements, is considered negligible. The number of
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Process
µ+µ− → γ∗/Z → qq̄

µ+µ− → γ∗/Zγ∗/Z → qq̄ +X
µ+µ− → γ∗/Zγ → qq̄γ

Table 1. List of Standard Model processes considered in the background estimation for the H → bb̄ cross
section measurement. q indicates a generic quark.

expected background events after considering all the contributions, is B = 6700. At this point it is
possible to evaluate the uncertainty on the cross section by using equation 5.3, ∆σσ = 2.0%.

According to equation 5.1, it is necessary to also know gHWW and ΓH in order to determine
gHbb. Knowledge of the H → bb̄ cross section is not enough. In the following, it is assumed that
gHWW and ΓH can be measured with the same level of precision expected by CLIC at

√
s = 1.4

TeV [13]. This is justified by the fact that the selection of muonic final states at a muon collider is
analogous to that of electron-positron accelerators, since the beam-induced background stops at the
calorimeters and it is not expected in muon detectors. Therefore the uncertainty on the coupling
can be obtained with:

∆gHbb

gHbb
=

1
2

√√√√√√(
∆σ

σ

)2
+

©«
∆

g2
HWW

ΓH

g2
HWW

ΓH

ª®¬
2

, (5.4)

where the uncertainty on g2
HWW

ΓH
has been extracted from the CLIC study [13] and scaled for the

lower integrated luminosity assumed for the muon collider at
√

s = 1.5 TeV. The expected sensitivity
on the Higgs coupling to b quark at

√
s = 1.5 TeV is then found to be ∆gHbb

gHbb
= 1.9%.

5.2 Higgs Boson coupling to b quarks at
√

s = 3 TeV and
√

s = 10 TeV

The procedure used in 5.1 is also applied to evaluate the sensitivity to the gHbb coupling when it is
measured in muon collisions at

√
s = 3.0 TeV and

√
s = 10 TeV. This approach is very conservative.

The efficiencies obtained with the full simulation at
√

s = 1.5 TeV are used for the higher center-
of-mass energy cases, with the proper scaling to take into account the different kinematic region.
At higher

√
s the tracking and the calorimeter detector are expected to perform significantly better

since the yield of the beam-induced background decreases with
√

s as demonstrated in [7]. The
uncertainty on g2

HWW

ΓH
at
√

s = 3.0 TeV is taken from the CLIC study at the same center-of-mass
energy [13]. At

√
s = 10 TeV this uncertainty is assumed equal to the one at

√
s = 3.0 TeV, for

the moment this is the only estimated number and, following the conservative approach that drives
this work, it is used as it is. It is reasonable to imagine that when the full Higgs boson couplings
analysis will be done at

√
s = 10 TeV it will improve.

The instantaneous luminosity,L, at different
√

s are taken from [16]. The integrated luminosity
Lint , is calculated by using the standard four Snowmass years. The acceptances, A, the number
of signal events, N , and background,B ,are determined with simulation. The uncertainties on σ
and gHbb are calculated and summarized in Table 2 with all relevant inputs. The resulting relative
uncertainty on the coupling is 1.0% at

√
s = 3.0 TeV and 0.91% at

√
s = 10 TeV. It has to be noted
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that the result at
√

s = 10 TeV is dominated by the error on g2
HWW

ΓH
, which is assumed equal to the

one used at
√

s = 3 TeV.
√

s A ε L Lint σ N B ∆σ
σ

∆gHbb

gHbb

[TeV] [%] [%] [cm−2s−1] [ab−1] [fb] [%] [%]
1.5 35 15 1.25 · 1034 0.5 203 5500 6700 2.0 1.9
3.0 37 15 4.4 · 1034 1.3 324 33000 7700 0.60 1.0
10 39 16 2 · 1035 8.0 549 270000 4400 0.20 0.91

Table 2. Summary of the parameters used as inputs for the determination of the Higgs coupling to b quarks.
The data taking time is assumed of 4 · 107 s. The parameter definitions are given in the text.

6 Comparison to other future machines

The direct comparison of the results obtained on ∆gHbb

gHbb
at muon collider with other colliders, as

done in [17], is not available yet. In order to have an idea of the potential of an experiment at a
muon collider, these results are compared to those published by CLIC [13]. CLIC numbers are
obtained with a model-independent multi-parameters fit. In addition, the fit is performed in three
stages, taking the statistical uncertainties obtainable at the three considered energy successively into
account. This means that each new stage includes all measurements of the previous stages and is
represented in Table 3 with a "+" in the integrated luminosity.

The muon collider results are not complete, since not all the necessary parameters are deter-
mined. They are based on assumptions that are very conservative, as discussed in the previous
sections. Data sample at the three center-of-mass energies are treated as independent, and not taken
successively into account. This means that at

√
s = 3 TeV the precision achieved by the experiment

at muon collider uses 4 data-taking years while the CLIC number includes also the 4 years at√
s = 350 GeV.

√
s [TeV] Lint [ab−1] ∆gHbb

gHbb
[%]

Muon Collider
1.5 0.5 1.9
3.0 1.3 1.0
10 8.0 0.91

CLIC
0.35 0.5 3.0
1.4 +1.5 1.0
3.0 +2.0 0.9

Table 3. Relative precision on Higgs boson coupling to b−quark at muon collider and at CLIC. The
difference on how the numbers are obtained by the two experiments is described in the text.

7 Summary and Conclusion

A detailed study of the Higgs boson decay to b−jets at
√

s = 1.5 TeV is presented, based on full
simulation of the physics process and the beam-induced background. Physics performance of the
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tracking and calorimeter detectors are discussed together with new ideas to mitigate the effect
of the background. The Higgs boson decay to b−jets is efficiently reconstructed demonstrating
that the beam-induced background does not jeopardize physics performance of an experiment at
muon collider. The Higgs boson coupling to b−quark is determined under several assumptions and
compared to the results obtained by CLIC in similar conditions showing the potential of the muon
collider. It has to be noted that CLIC has quoted the best precision on gHbb [17].
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