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In this paper we analyze in detail an S3-symmetric three-Higgs-doublet model with a specific vacuum
configuration. This analysis allows us to illustrate important features of models with several Higgs doublets,
such as the possibility of having spontaneous CP violation. We start with a real potential and pick a
particularly interesting complex vacuum configuration, which does not violate CP before adding soft
breaking terms to the potential.We study the role played by different soft symmetry breaking terms. These are
essential for our choice of vacuum in order to remove unwanted massless scalars that arise from the
spontaneous breaking of an accidental continuous symmetry. We list scalar sector and scalar-gauge sector
couplings for the particular case we consider in detail in this work. Results presented in this paper will be
useful for model building, in particular for implementations of models with S3 symmetry and spontaneous
CP violation, extensions of the fermionic sector with realistic Yukawa couplings and for dark matter studies.

DOI: 10.1103/PhysRevD.101.075052

I. INTRODUCTION

In the Standard Model there is only one Higgs doublet,
leading, through the Higgs mechanism [1–4], to the exist-
ence of one Higgs boson. Such a particle was discovered in
2012 at the LHC [5,6]. The question remains of whether
there are additional Higgs bosons in nature. Multi-Higgs
extensions of the Standard Model (SM) are very well
motivated. In particular, a lot of work has been done in
the context of models with two Higgs doublets; for reviews
see [7,8] as well as in the context of models with three or
more Higgs doublets [9]. As the complexity of the Higgs
sector grows, the number of free parameters increases [10].
Symmetries play an important role in controlling

the number of free parameters, therefore increasing the

predictability of such extensions. In these scenarios some
of the problems of the SM, such as the need for new sources
of CP violation, can be addressed. These models have a
rich phenomenology and will be tested at the LHC and
future colliders. An important feature of multi-Higgs
extensions of the SM is the possibility of having sponta-
neous CP violation. It was shown by T. D. Lee [11] that
models with two Higgs doublets can violate CP sponta-
neously. Imposing additional symmetries may eliminate the
possibility of having spontaneous CP violation. On the
other hand, continuous symmetries broken by vacuum
expectation values (VEVs) lead to the existence of massless
scalars [12–14]. These are ruled out by experiment. There
are also strong experimental constraints that have to be
taken into consideration when extending the Higgs sector
of the SM [15].
In this paper, we revisit the different vacuum solutions

for the S3-symmetric potential with three Higgs doublets
which were studied previously in Ref. [16]. The S3-
symmetric scalar sector with three Higgs doublets was
studied in the past by several authors, starting in 1977 by
Pakvasa and Sugawara [17] who worked with irreducible
representations consisting of a doublet and singlet of S3 and
also analyzed couplings to fermions. Derman and Tsao
[18,19] shortly afterwards discussed several properties of
these models in terms of the defining representation of S3.
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In Ref. [16], special attention was paid to the possibility of
having spontaneous CP violation. However, it was also
pointed out that several potentially interesting vacua led to
the existence of massless scalars [16,20]. These massless
states are due to the spontaneous breaking of accidental
continuous symmetries resulting from constraints imposed
on the region of parameters arising from the minimization
conditions, with a few rare exceptions that will be pointed
out in the paper. The identification of such symmetries is of
great relevance and has been dealt with in the context of
general three-Higgs-doublet models (3HDMs) by several
authors [21,22] (see also Ref. [23]).
Here, we work with the irreducible representations,

doublet and singlet, and we introduce soft breaking terms
(terms bilinear in the fields) in the potential, which break
the symmetries leading to massless scalars. First, we
consider all possible forms for the soft breaking terms,
and we separate the vacuum solutions according to whether
they are real or complex. Next, we classify them according
to the number of zero vacuum expectation values and their
positions. The rest of our analysis centers on the study of a
specific vacuum solution of the unbroken S3 symmetry that
suffers from unwanted massless bosons. This we call the
C-III-c solution.
Before introducing soft breaking terms, the C-III-c

vacuum displays very curious properties. It is the only
vacuum allowing for a nontrivial phase, which is not
determined by any of the parameters of the potential and
remains free. However, there is a term in the potential that is
sensitive to this phase, denoted λ7 below. This term accounts
for a coupling between two fields from the S3 doublet and
two fields from the S3 singlet. Since the C-III-c vacuum and
its generalizations when soft breaking terms are included
have a vanishing singlet VEV, this dependence on the phase
will enter the mass-squared matrix for the singlet states.

This phase will also enter in trilinear couplings. When soft
breaking terms are introduced, this phase will also have an
impact on other parts of the potential.
This paper is organized as follows. In Sec. II we explain

the general framework together with a brief discussion
of some of the vacuum solutions obtained in [16]. In
Sec. III we discuss the origin of the massless states and
in Sec. IV we review some properties of the C-III-c model.
In Sec. V we list all possible forms for the vacua in terms of
zero VEVs, and we discuss the effects of each allowed soft
breaking term. Next, in Sec. VI we focus our attention on
the discussion of a class of S3-inspired 3HDMs with a
complex vacuum characterized by having zero VEV for the
S3 singlet and with the two other VEVs being arbitrary
complex. Previously, we called this vacuum C-III-c before
introducing soft breaking terms. In Ref. [16] we had shown
that without soft breaking terms this vacuum did not violate
CP spontaneously, despite being complex. We now show
what effect the introduction of the different soft breaking
terms can have on the CP properties of this complex
vacuum. Finally, in the last section, we present our
summary. Results presented in this paper will be important
for model building, in particular for implementations of
models with S3 symmetry and spontaneous CP violation,
extensions of the fermionic sector with realistic Yukawa
couplings and for dark matter studies.

II. FRAMEWORK

The S3 symmetry is a symmetry for the permutation of
three objects, in this case three Higgs doublet fields, ϕ1, ϕ2,
and ϕ3.
The scalar potential expressed in terms of the S3

irreducible representation singlet and doublet fields,
respectively, (hS) and (h1, h2), can be written as

V ¼ V2 þ V4; ð2:1Þ
with [24–26]

V2 ¼ μ20h
†
ShS þ μ21ðh†1h1 þ h†2h2Þ; ð2:2aÞ

V4 ¼ λ1ðh†1h1 þ h†2h2Þ2 þ λ2ðh†1h2 − h†2h1Þ2 þ λ3½ðh†1h1 − h†2h2Þ2 þ ðh†1h2 þ h†2h1Þ2�
þ λ4½ðh†Sh1Þðh†1h2 þ h†2h1Þ þ ðh†Sh2Þðh†1h1 − h†2h2Þ þ H:c:� þ λ5ðh†ShSÞðh†1h1 þ h†2h2Þ
þ λ6½ðh†Sh1Þðh†1hSÞ þ ðh†Sh2Þðh†2hSÞ� þ λ7½ðh†Sh1Þðh†Sh1Þ þ ðh†Sh2Þðh†Sh2Þ þ H:c:� þ λ8ðh†ShSÞ2; ð2:2bÞ

where we are taking all coefficients to be real. Therefore, there is no explicit CP violation.
For the SU(2) doublets we use the notation

hi ¼
�

hþi
ðwi þ ηi þ iχiÞ=

ffiffiffi
2

p
�
; i ¼ 1; 2; hS ¼

�
hþS

ðwS þ ηS þ iχSÞ=
ffiffiffi
2

p
�
: ð2:3Þ

In some cases, it is also convenient to extract an overall phase.
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The irreducible representations can be related to the
defining set of Higgs doublets ϕ1, ϕ2, and ϕ3, by

0
B@

h1
h2
hS

1
CA ¼

0
BBB@

1ffiffi
2

p −1ffiffi
2

p 0

1ffiffi
6

p 1ffiffi
6

p −2ffiffi
6

p

1ffiffi
3

p 1ffiffi
3

p 1ffiffi
3

p

1
CCCA
0
B@

ϕ1

ϕ2

ϕ3

1
CA: ð2:4Þ

Early papers studying this potential were written in terms
of the defining representation [18,19]. Notice that Eq. (2.4)
chooses a particular direction in the space of doublets of the
defining representation. There is no freedom in the direc-
tion of hS, where they all play an equal role. However, for
h1, any permutation of ð1;−1; 0Þ is equally valid, implying
the corresponding changes in the definition of h2. There is
no physics content in any of these arbitrary choices, but
they translate differently in terms of consistency conditions
when going from the defining representation to the irre-
ducible representation. This should be clear from the
discussion in Sec. 4 of Ref. [16]. Further comments will
be presented below.
A full classification of all possible vacua, together with

the necessary constraints on the parameters of the potential
coming from the minimization conditions, was given in
Ref. [16]. In Appendix Awe present a summary of some of
their properties. There are 11 vacua with all VEVs real
(Table VI), which were denoted R followed by a further
specification, and 17 vacua with at least one complex VEV
(Table VII), for which the letter C is used. Each vacuum is
labeled by R or C followed by a Roman number and
possibly another alphabetic index. The Roman number
indicates how many constraints on the parameters are
required by the minimization conditions. The additional
alphabetic index is used to distinguish different (real or
complex) vacua with the same number of constraints.
It is instructive to summarize some properties of the

possible vacua of the S3-symmetric potential. Table VI in
Appendix A lists all possible real vacuum solutions, with λa
defined by

λa ¼ λ5 þ λ6 þ 2λ7; ð2:5aÞ
λb ¼ λ5 þ λ6 − 2λ7 ð2:5bÞ

(the quantity λb is to be used in the discussion of the
complex vacua).
All real vacuum solutions other than R-0 and R-I-1 vio-

late the S3 symmetry spontaneously. For these solutions, the
residual symmetrieswere discussed byDerman andTsao [19].
The constraints given in Table VI come from the

stationary-point conditions1

2μ20wS þ λ4ð3w2
1 − w2

2Þw2 þ λaðw2
1 þ w2

2ÞwS þ 2λ8w3
S ¼ 0;

ð2:6aÞ

½2μ21 þ 2ðλ1 þ λ3Þðw2
1 þ w2

2Þ þ 6λ4w2wS þ λaw2
S�w1 ¼ 0;

ð2:6bÞ

2μ21w2 þ 2ðλ1 þ λ3Þðw2
1 þ w2

2Þw2 þ 3λ4ðw2
1 − w2

2ÞwS

þ λaw2w2
S ¼ 0; ð2:6cÞ

which were discussed in Ref. [16]. We see that in order to
classify all possible solutions to these equations, one must
consider all configurations of the vacuum parameters wi, in
particular, all possible situations where two of the VEVs
vanish as well as all the possible situations where only one
VEV vanishes, and finally the situation where none of the
VEVs vanishes (R-III). For each configuration of vacuum
parameters, we determine the resulting constraints on the
parameters of the potential, in each case solving for μ20 and
μ21 (if possible). In particular, since both Eqs. (2.6b) and
(2.6c) contain μ21, in order to solve them simultaneously we
will get an additional constraint either on the parameters
of the VEVs or on the parameters of the potential. For
all vacua other than R-III, this translates into restrictions
on the parameter space as well as restrictions on the
allowed VEVs.
For w1 ¼ 0, the derivative given by Eq. (2.6b) is

automatically zero and there is no clash. Otherwise, the
terms proportional to λ4 in Eqs. (2.6b) and (2.6c) must be
restricted, requiring

λ4ð3w2
2 − w2

1ÞwS ¼ 0: ð2:7Þ

This can be achieved by having λ4 ¼ 0 or w1 ¼ � ffiffiffi
3

p
w2 or

wS ¼ 0. For wS ¼ 0, an additional condition arises from
Eq. (2.6a),

λ4ð3w2
1 − w2

2Þw2 ¼ 0; ð2:8Þ

which implies that either λ4 ¼ 0 or w2 ¼ � ffiffiffi
3

p
w1 or

else w2 ¼ 0.
The cases R-I-2 satisfy both Eqs. (2.7) and (2.8) without

requiring λ4 ¼ 0. In terms of the defining representation
they are obviously equivalent. In terms of the irreducible
representation they obey Eq. (2.8) by having w2 ¼ 0 in case
a, w2 ¼

ffiffiffi
3

p
w1 in case b, and w2 ¼ −

ffiffiffi
3

p
w1 in case c. This

difference is the result of having chosen a particular
direction for h1, as pointed out above. In this case, the
residual symmetry is S2. Another interesting set of cases
with residual symmetry S2 are the R-II-1 vacua, which are
also equivalent in terms of the defining representation and
obey the consistency conditions with w1 ¼ 0 in case a,
w1 ¼ −

ffiffiffi
3

p
w2 in case b, and w1 ¼

ffiffiffi
3

p
w2 in case c. The

vacua R-II-2, R-II-3, and R-III all require λ4 ¼ 0.

1While all consistent solutions correspond to local minima of
the potential, it is not yet known whether they all correspond to
global minima. This issue has been addressed in the context of
2HDMs [27,28], whereas for 3HDMs [29] it is not yet fully
analyzed. Such results would give an important contribution to
the understanding of 3HDMs.
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A particularly interesting vacuum is the one identified as
case C-III-c,

ðw1; w2; wSÞ ¼ ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ; ð2:9Þ

with ŵ1 and ŵ2 real and positive. The three stationary-point
constraints are

μ21 ¼ −ðλ1 þ λ3Þðŵ2
1 þ ŵ2

2Þ; ð2:10aÞ

λ2 þ λ3 ¼ 0; ð2:10bÞ

λ4 ¼ 0: ð2:10cÞ

In this solution, λ4 is required to be zero. It should be
pointed out that λ4 plays a very important role in this
potential. Whenever λ4 ≠ 0, the only independent Higgs-
family symmetries of the potential are the global U(1)
symmetry and the symmetry under which h1 changes sign.
The combination of these two symmetries also yields a
potential that is symmetric under the simultaneous change
of sign of both h2 and hS. On the other hand, whenever
λ4 ¼ 0, the potential acquires an additional (continuous)
independent O(2) symmetry between the fields h1 and h2.
Combining this symmetry with the two symmetries that
were already present without a vanishing λ4, one finds that
now, with λ4 ¼ 0, the potential is also symmetric under the
independent sign changes of either h2 or hS.
This O(2) symmetry allows for the rotation between h1

and h2 in such a way that, together with an appropriate
overall rephasing, this vacuum can be transformed into [30]

ðw1; w2; wSÞ ¼ ðŵeiσ=2; ŵe−iσ=2; 0Þ; ð2:11Þ

so that it can easily be shown [30,31] that it does not violate
CP spontaneously.
The continuous O(2) symmetry is spontaneously broken

by the C-III-c vacuum, giving rise to a massless neutral
scalar field. However, we have one more massless neutral
scalar for which there is no explanation in terms of a

spontaneously broken continuous symmetry. We shall
comment on its origin below. In all, for the C-III-c case,
we have two massless neutral scalars that need to be
removed in order to construct a physical model. One
way to achieve this is by adding one or more terms that
break the S3 symmetry softly.

III. GOLDSTONE BOSONS

Several of the possible vacuum solutions of the
S3-symmetric potential have massless scalars. These result
from the spontaneous breakdown of accidental continuous
symmetries that arise when we impose the constraints
required for these solutions. In Tables I and II we list the
number of massless scalars for each case, together with
whether λ4 is required to be zero.
For λ4 ¼ 0 the potential acquires an additional O(2)

symmetry between the two members of the S3 doublet.
When this symmetry is broken by the vacuum, one
massless scalar state appears. In some cases, λ7 is also
required to be zero, together with λ4 ¼ 0, and the potential
acquires an additional U(1) symmetry that we denote by
Uð1Þhs . This corresponds to the freedom of rephasing hS
independently from h1 and h2. Once again, an additional
massless scalar state appears when this symmetry is
spontaneously broken. In the C-III-c case, the condition
λ4 ¼ 0 is accompanied by λ2 þ λ3 ¼ 0. This last condition
does not increase the symmetry, and therefore it may not be
exactly preserved at all energy scales.2 However, there are
two massless states in the C-III-c case, as discussed in
Sec. IV. Note that there is no vacuum that requires λ2 þ
λ3 ¼ 0 or λ7 ¼ 0 without also having λ4 ¼ 0.
In the C-V case, all of these are required to be zero, in

this case we can independently rephase any of the doublets
h1, h2, and hS, and therefore there are three U(1) sym-
metries which we denote by Uð1Þh1, Uð1Þh2 , and Uð1ÞhS .
The spontaneous breakdown of the resulting symmetry

TABLE I. Real vacua, for the unbroken S3 case, with massless states and degeneracies indicated. The first entry in
the parentheses refers to the charged sector, and the second one to the neutral sector.

Vacuum Name λ4 Symmetry Number of massless states Degeneracies

R00x R-I-1 ✓ None (1, 2)
R0x0 R-II-2 0 O(2) (None, 1) None
Rx00 R-I-2a ✓ None None
R0xy R-II-1a ✓ None None
Rx0y 0 O(2) (None, 1) None
Rxy0 R-I-2b,2c ✓ None None
Rxy0 R-II-3 0 O(2) (None, 1) None
Rxyz R-II-1b,1c ✓ None None
Rxyz R-III 0 O(2) (None, 1) None

2We thank Pedro Ferreira for illustrating this feature in a
private discussion.
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Oð2Þ ⊗ Uð1Þh1 ⊗ Uð1Þh2 ⊗ Uð1ÞhS is responsible for the
three massless states that appear in addition to the would-be
Goldstone boson. Note that with an overall phase rotation
of the three doublets one can always reduce an independent
rephasing of the three doublets to an independent rephasing
of any two of them. Additional U(1) symmetries only arise
in cases with λ4 ¼ 0.
Tables I and II illustrate the fact that there are several

vacua of the same generic form, when expressed, for
instance, in terms of VEVs of the irreducible representa-
tions, as specified in the first column, which have different
physical implications. This is due to the fact that the same
generic solution can be obtained for different regions of
parameters. Different regions may also lead to different
accidental symmetries.

IV. THE C-III-c MODEL WITHOUT SOFT
BREAKING TERMS

The C-III-c model (based on the “σ vacuum”) has some
peculiar properties. As mentioned above, it has two
massless states in the neutral sector (apart from the
would-be Goldstone boson). Removing them is the main
purpose of introducing soft S3-breaking terms. This will be
done in the next section. As pointed out before, in the C-III-
c case the condition λ4 ¼ 0 is accompanied by λ2 þ λ3 ¼ 0.
This last condition does not increase the symmetry. If, in
addition, we were to have λ7 ¼ 0, then new continuous
symmetries of the potential would exist just as in case C-V.

One may wonder then why, in this case, one has two
massless scalars rather then only one. The reason has to do
with the fact that there is no λ7 term in the mass terms of the
scalar fields coming from the S3 doublet. This fact is
accidental; it results from this vacuum configuration having
ŵS ¼ 0. The mass terms for these fields of the S3 doublet
mimic the existence of a larger symmetry under which h1
and h2 may be independently rephased, since we have
λ2 þ λ3 ¼ 0 and λ4 ¼ 0. The vacuum is not invariant under
this rephasing of h1 and h2. However, rephasing of hS
independently from the other doublets leaves the vacuum
invariant. Invariance under an overall rephasing of the three
scalars implies that only one of these former two U(1)
transformations is independent.
The technique proposed in Ref. [21] is a useful tool to

search for symmetries, in the context of three-Higgs-
doublet models, that are not explicit. That method applied
to this case confirms the nonexistence of an additional
continuous symmetry. In Secs. IVA and IV C we shall be
confronted with the fact that the mass splitting of the
neutral scalars in the S3 singlet sector and some trilinear
couplings will depend on σ, the relative phase of the two
VEVs, which seems to be unrelated to the coefficients of
the potential. This apparent paradox is addressed in
Sec. IV D.
Examples of the connection between symmetries and

mass degeneracies in two- and three-Higgs-doublet models
with vanishing VEVs can be found in Ref. [32].

TABLE II. Complex vacua, for the unbroken S3 case, with massless states and degeneracies indicated, not taking
into account would-be Goldstone bosons. The first entry in the parentheses refers to the charged sector, the second
one to the neutral sector. Degeneracies only refer to massive pairs. In the footnotes below, L indicates that a linear
expression in its arguments vanishes.

Vacuum Name λ4 Symmetry Number of massless states Degeneracies

C0xy C-III-a ✓ None None
Cx0y C-III-b 0 O(2) (None, 1) None

Cx0y C-IV-a 0a Oð2Þ ⊗ Uð1ÞhS (None, 2) None
Cxy0 C-I-a ✓ None (None, 2)

Cxy0 C-III-c 0b O(2) (None, 2) None
Cxyz C-III-d,e ✓ None None

Cxyz C-III-f,g 0 O(2) (None, 1) None
Cxyz C-III-h,i ✓ None None

Cxyz C-IV-b 0 O(2) (None, 1) None
Cxyz C-IV-c c � � � (None, 1) None
Cxyz C-IV-d 0a Oð2Þ ⊗ Uð1ÞhS (None, 2) None

Cxyz C-IV-e 0 O(2) (None, 1) None
Cxyz C-IV-f c � � � (None, 1) None

Cxyz C-V 0a,b Oð2Þ ⊗ Uð1Þh1 ⊗ Uð1Þh2 ⊗ Uð1ÞhS (None, 3) None
aAlso λ7 ¼ 0.
bAlso λ2 þ λ3 ¼ 0.
cLðλ2 þ λ3; λ4Þ, Lðλ2 þ λ3; λ7Þ.

CLASS OF S3-INSPIRED THREE-HIGGS-DOUBLET … PHYS. REV. D 101, 075052 (2020)

075052-5



A. Masses

Since λ4 ¼ 0 and ŵS ¼ 0, the S3 doublet and the S3
singlet do not mix in the mass terms. In the charged sector,
we have

m2
H� ¼ 2λ2v2; ð4:1Þ

m2
S� ¼ μ20 þ

1

2
λ5v2; ð4:2Þ

where v2 ¼ ŵ2
1 þ ŵ2

2 and H� and S� refer to the charged
states of the doublet and singlet sector, respectively.
In the neutral sector of the S3 doublet, there is only one

massive (CP-even) state,

m2
h ¼ 2ðλ1 − λ2Þv2; ð4:3Þ

which would have to be identified with the SM-like Higgs,
since it appears in the doublet where the would-be
Goldstone bosons are. There is no further mixing with
the other fields. The S3 singlet sector has two massive states
(S1 and S2),

m2
S1
¼ μ20 þ

1

2
ðλ5 þ λ6Þv2 − λ7 cos σv2; ð4:4aÞ

m2
S2
¼ μ20 þ

1

2
ðλ5 þ λ6Þv2 þ λ7 cos σv2: ð4:4bÞ

Thus, the phase σ, which is left undetermined by the
potential, is related to the mass splitting of the neutral
scalars in the S3 singlet sector.

B. Gauge couplings

For the different couplings, we should define the
degenerate fields carefully. Thus, rather than adopting
the decomposition (2.3), we take

h1 ¼ eiσ=2
 

hþ1
ðŵþ η1 þ iχ1Þ=

ffiffiffi
2

p
!
;

h2 ¼ e−iσ=2
 

hþ2
ðŵþ η2 þ iχ2Þ=

ffiffiffi
2

p
!
; ð4:5Þ

and

hS ¼
�

Sþ

ðS1 þ iS2Þ=
ffiffiffi
2

p
�
; ð4:6Þ

with ŵ2 ¼ v2=2. Since the S3 singlet has a vanishing VEV,
it is straightforward to transform to the Higgs basis [33,34].
A convenient choice is to leave the singlet fields as they are
and take

h�1 ¼ ðG� −H�Þ=
ffiffiffi
2

p
; h�2 ¼ ðG� þH�Þ=

ffiffiffi
2

p
; ð4:7Þ

η1 ¼ ðh −HÞ=
ffiffiffi
2

p
; η2 ¼ ðhþHÞ=

ffiffiffi
2

p
; ð4:8Þ

χ1 ¼ ðG0 − AÞ=
ffiffiffi
2

p
; χ2 ¼ ðG0 þ AÞ=

ffiffiffi
2

p
: ð4:9Þ

This choice fixes the definitions of the degenerate,
massless bosons H and A (any orthogonal basis would
be equally good).
The covariant derivatives induce gauge couplings, and

those linear in the gauge fields are

LVHH ¼ ieAμ½ðHþ∂↔μH−Þ þ ðSþ∂↔μS−Þ� −
g

2 cos θW
ZμfðH∂↔μAÞ þ ðS1∂

↔

μS2Þ − i cos 2θW ½ðHþ∂↔μH−Þ þ ðSþ∂↔μS−Þ�g

þ ig
2
fWμ½ðH∂↔μH−Þ þ iðA∂↔μH−Þ þ ðS1∂

↔

μS−Þ þ iðS2∂
↔

μS−Þ� − H:c:g; ð4:10Þ

where θW is the weak mixing angle. Furthermore, H and A denote the CP-even and -odd massless states. Next, the terms
bilinear in gauge fields are

LVVH ¼ g2v
4 cos2 θW

ZμZμhþ g2v
2

W†
μWμh; ð4:11Þ

and

LVVHH ¼
��

eAþ g cos 2θW
2 cos θW

Z

�
μ

�
eAþ g cos 2θW

2 cos θW
Z

�
μ

þ g2

2
W†

μWμ

�
ðH−Hþ þ S−SþÞ

þ
�

g2

8cos2θW
ZμZμ þ g2

4
W†

μWμ

�
ðh2 þH2 þ A2 þ S21 þ S22Þ

þ eg
2
fAμWμ½H−ðH þ iAÞ þ S−ðS1 þ iS2Þ� þ H:c:g

−
g2sin2θW
2 cos θW

fZμWμ½H−ðH þ iAÞ þ S−ðS1 þ iS2Þ� þ H:c:g: ð4:12Þ

KUNČINAS, OSLAND, OGREID, and REBELO PHYS. REV. D 101, 075052 (2020)

075052-6



Note that LVVH contains no term linear in the singlet fields
since it has a vanishing VEV.

C. Trilinear couplings

The nonzero trilinear couplings are (as coefficients of the
potential)

hhh∶ vðλ1 − λ2Þ; ð4:13aÞ
hAA∶ vðλ1 − λ2Þ; ð4:13bÞ
hHH∶ vðλ1 − λ2Þ; ð4:13cÞ

hHþH−∶ 2vðλ1 þ λ2Þ; ð4:13dÞ

hSþS−∶ vλ5; ð4:13eÞ

hS1S1∶
v
2
½λ5 þ λ6 þ 2 cos σλ7�; ð4:13fÞ

hS2S2∶
v
2
½λ5 þ λ6 − 2 cos σλ7�; ð4:13gÞ

AS1S1∶ v sin σλ7; ð4:13hÞ

AS2S2∶ − v sin σλ7; ð4:13iÞ

HS1S2∶ − 2v sin σλ7; ð4:13jÞ

HþS−S1∶ − iv sin σλ7; ð4:13kÞ

HþS−S2∶ − v sin σλ7: ð4:13lÞ

We have left out here couplings involving the would-be
Goldstone bosons. Couplings involvingH−Sþ are obtained
from those involving HþS− by complex conjugation. The
AAA, HHH, hhA, hhH, AAH, HþH−A, HþH−H, SþS−A,
and SþS−H couplings all vanish. The dependence on the
phase σ only appears in couplings involving λ7 and two
fields from the S3 singlet sector.

D. The phase σ

The phase σ governs the mass splitting between the two
neutral fields coming from the S3 singlet Higgs doublet,
and it also appears in some of the trilinear couplings. This
phase is always associated with λ7 since in the C-III-c case
this is the only coupling in the potential that is sensitive to a
phase. Since the minimization conditions do not constrain
this phase, and this phase was also not included in the
Lagrangian, it looks as if there are physical quantities that
depend on parameters that are not physical. This apparent
paradox can be solved by noticing that σ can be promoted
to a parameter of the potential by just rephasing the fields
h1 and h2 in such a way that their VEVs become real. What
is special in this case is that there is a parameter that can
appear either in the scalar potential or in the specification of

the vacuum, depending on the choice of scalar basis. This
parameter has physical implications and, in particular,
contributes to the mass splitting of some scalars. This
corresponds to the transformation given by Eqs. (4.5). The
C-III-c vacuum differs from all other complex S3 vacua,
since in those cases the phases appear in the minimization
conditions and therefore cannot be considered as free
parameters [16].
As mentioned above, in a basis where ŵ1 ¼ ŵ2, it is

convenient to define σ ≡ σ1 − σ2. We recall that this phase
σ is not determined by the potential. However, it para-
metrizes correlations among certain physical couplings,
and among those couplings and the mass splitting in the
neutral S3 singlet sector. The mass splitting and couplings
given above, by Eqs. (4.4) and (4.13), assume a basis
where ŵ1 ¼ ŵ2 ¼ v=

ffiffiffi
2

p
.

Clearly,

Δ2 ≡m2
S2
−m2

S1
ð4:14Þ

is a physical quantity, expressed as 2 cos σλ7v2 in the
adopted basis. Next, if we denote the AS1S1 coupling
(v sin σλ7) by the abbreviation ĝ, then we can identify the
modulus of λ7 as a physical quantity,3

jλ7j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δ2

2v2

�
2

þ
�
ĝ
v

�
2

s
; ð4:15Þ

whereas σ (in the chosen basis) parametrizes the ratio of the
two physical quantities Δ2 and ĝ by

tan σ ¼ 2ĝv
Δ2

: ð4:16Þ

V. THE SOFTLY BROKEN POTENTIAL

We now replace the potential (2.1) by

V ¼ V2 þ V 0
2 þ V4; ð5:1Þ

allowing for terms V 0
2 that softly break the S3 symmetry.

The most general form of these terms is4

V 0
2 ¼ μ22ðh†1h1 − h†2h2Þ þ

1

2
ν212ðh†1h2 þ H:c:Þ

þ 1

2
ν201ðh†Sh1 þ H:c:Þ þ 1

2
ν202ðh†Sh2 þ H:c:Þ: ð5:2Þ

The vacua studied in Ref. [16] will then be modified. In
the following we shall briefly discuss some general proper-
ties of the different vacua that result from the inclusion of

3It can be readily seen that this result does not depend on the
basis chosen for the definition of H and A.

4As for the unbroken case, we restrict ourselves to terms with
real coefficients. The analysis of the S3-symmetric model with
complex parameters and with the addition of complex soft
breaking terms would give an important contribution to the
understanding of such models.
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soft S3-breaking terms, employing a more generic termi-
nology to label them. The labeling will specify how many
and which VEVs vanish, and our focus will be on massless
states and mass degeneracies. Our approach is to fix the
zero VEVs in all possible positions and derive the resulting
constraints.

A. Real vacua

We summarize in Table III the different real vacua for the
softly brokenS3-symmetric potential. In the following,we list
some further properties, commentingalso on thedegeneracies
that arise in the limit of no soft S3-breaking terms. This
classification is based on considering all vacua with two, or
one or with no vanishing VEVs, where the labels are self-
explanatory. In Table VI we did not include the case
corresponding to Rx0y because w2 ¼ 0 only appeared in
the consistency conditions together with wS ¼ 0. However,
this could obviously be a limit of the general case R-III.
Below, we briefly comment on some of the properties of

the different categories of real vacua, allowing for soft
breaking terms.

1. ð0;0;wSÞ
Soft breaking terms ν201 and ν202 do not survive mini-

mization. If no soft breaking terms are present, there is

mass degeneracy among the charged scalars, as well as two
pairs of mass degenerate neutral scalars. If either ν212 or μ

2
2 is

present, there is no mass degeneracy.

2. ð0;w;0Þ
The soft breaking term ν212 does not survive minimization.

All masses are nondegenerate with or without soft breaking
terms. If no soft breaking terms are present (R-II-2), this
vacuum requires λ4 ¼ 0 and it has one massless state. If ν202
is the only soft breaking term, it requires λ4 ≠ 0, and we still
have one neutral massless state. This massless state results
from the condition relating ν202 and λ4 in Table III. If either μ

2
2

or ν201 is present, then all neutral scalars become massive.

3. ðw;0;0Þ
Soft breaking terms ν212 and ν201 do not survive mini-

mization. There are no massless scalars and no mass
degeneracy with or without the soft breaking terms.

4. ð0;w;wSÞ
All soft breaking terms survive minimization. There are

no massless scalars and no mass degeneracy with or
without the soft breaking terms. Note that the soft terms
ν212 and ν201 are proportional; i.e., they have to coexist.

TABLE III. Real vacua compatible with the most general soft S3-breaking terms, Eq. (5.2), together with the
minimization conditions.

Label w1; w2; wS Constraints

R00x ð0; 0; wSÞ μ20 ¼ −λ8w2
S,

ν201 ¼ ν202 ¼ 0

R0x0 ð0; w; 0Þ μ21 ¼ μ22 − ðλ1 þ λ3Þw2,
ν212 ¼ 0, ν202 ¼ w2λ4

Rx00 ðw; 0; 0Þ μ21 ¼ −μ22 − ðλ1 þ λ3Þw2,
ν212 ¼ ν201 ¼ 0

R0xy ð0; w; wSÞ μ20 ¼ − 1
2
ν202

w
wS

þ 1
2
λ4

w3

wS
− 1

2
λaw2 − λ8w2

S,

μ21 ¼ μ22 − 1
2
ν202

wS
w − ðλ1 þ λ3Þw2 þ 3

2
λ4wwS − 1

2
λaw2

S,
ν212 ¼ −ν201

wS
w

Rx0y ðw; 0; wSÞ μ20 ¼ − 1
2
ν201

w
wS

− 1
2
λaw2 − λ8w2

S,

μ21 ¼ −μ22 − 1
2
ν201

wS
w − ðλ1 þ λ3Þw2 − 1

2
λaw2

S,
ν212 ¼ −ν202

wS
w − 3λ4wwS

Rxy0 ðw1; w2; 0Þ μ21 ¼ −ν212
w2
1
þw2

2

4w1w2
− ðλ1 þ λ3Þðw2

1 þ w2
2Þ,

μ22 ¼ ν212
w2
1
−w2

2

4w1w2
,

ν201 ¼ ½−ν202 þ ðw2
2 − 3w2

1Þλ4� w2

w1

Rxyz ðw1; w2; wSÞ μ20 ¼ − 1
2
ν201

w1

wS
− 1

2
ν202

w2

wS
− 1

2
λ4

w2ð3w2
1
−w2

2
Þ

wS
− 1

2
λaðw2

1 þ w2
2Þ − λ8w2

S,

μ21 ¼ −ν212
w2
1
þw2

2

4w1w2
− wS

4w1
ν201 −

wS
4w2

ν202 − 3
4
λ4

ðw2
1
þw2

2
ÞwS

w2
− ðλ1 þ λ3Þðw2

1 þ w2
2Þ − 1

2
λaw2

S,

μ22 ¼ ν212
w2
1
−w2

2

4w1w2
− wS

4w1
ν201 þ wS

4w2
ν202 − 3

4
λ4

wSð3w2
2
−w2

1
Þ

w2
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5. ðw;0;wSÞ
All soft breaking terms survive minimization. There is no

mass degeneracy with or without soft breaking terms. If no
soft breaking term is present (requiring for consistency
λ4 ¼ 0), one of the neutral masses vanishes. If there is at
least one soft breaking term present, then all neutral scalars
become massive.

6. ðw1;w2;0Þ
All soft breaking terms survive minimization. There is no

mass degeneracy with or without soft breaking terms. If no
soft breaking term is present (requiring for consistency

λ4 ¼ 0), one of the neutral masses vanishes. If there is at
least one soft breaking term present, then all neutral scalars
become massive. Note that the μ22 term cannot be the only
soft term.

7. ðw1;w2;wSÞ
All soft breaking terms survive minimization. There is no

mass degeneracy with or without soft breaking terms. If no
soft breaking term is present (requiring for consistency
λ4 ¼ 0), one of the neutral masses vanishes. If there is at
least one soft breaking term present, then all neutral scalars
become massive.

TABLE IV. Complex vacua compatible with the most general soft S3-breaking terms, Eq. (5.2), together with the minimization
conditions. The following abbreviations are introduced: S� ¼ sin2 σ1ŵ2

1 � sin2 σ2ŵ2
2.

w1; w2; wS Constraints

ð0; ŵ2eiσ2 ; ŵSÞC0xy μ20 ¼ − 1
2
λbŵ2

2 − λ8ŵ2
S,

μ21 ¼ μ22 − ðλ1 þ λ3Þŵ2
2 þ cos σ2ŵ2ŵSλ4 − 1

2
λbŵ2

S,
ν202 ¼ ŵ2ðŵ2λ4 − 4 cos σ2ŵSλ7Þ,

ν212 ¼ ν201 ¼ 0

ðŵ1eiσ1 ; 0; ŵSÞCx0y μ20 ¼ − 1
2
λbŵ2

1 − λ8ŵ2
S,

μ21 ¼ −μ22 − ðλ1 þ λ3Þŵ2
1 − 1

2
λbŵ2

S,
ν212 ¼ −2 cos σ1ŵ1ŵSλ4,
ν201 ¼ −4 cos σ1ŵ1ŵSλ7,

ν202 ¼ −λ4ŵ2
1

ðŵ1eiσ1 ; ŵ2eiσ2 ; 0ÞCxy0 μ21 ¼ −ðλ1 − λ2Þðŵ2
1 þ ŵ2

2Þ,
μ22 ¼ −ðŵ2

1 − ŵ2
2Þðλ2 þ λ3Þ,

ν212 ¼ −4ŵ1ŵ2 cosðσ2 − σ1Þðλ2 þ λ3Þ,
ν201 ¼ −2ŵ1ŵ2 cosðσ2 − σ1Þλ4,

ν202 ¼ −ðŵ2
1 − ŵ2

2Þλ4
ðŵ1eiσ1 ; ŵ2eiσ2 ; ŵSÞCxyz

provided.
μ21 ¼ f2ŵ2

SSþμ
2
0 − 4ŵ2

1ŵ
2
2ðŵ2

1 þ ŵ2
2Þsin2ðσ2 − σ1Þðλ1 − λ2Þ

− ŵ2
S½2ŵ2

1ŵ
2
2sin

2ðσ2 − σ1Þ − ðŵ2
1 þ ŵ2

2ÞSþ�λb þ 2ŵ4
SSþλ8g=

½4ŵ2
1ŵ

2
2sin

2ðσ2 − σ1Þ�;
μ22 ¼ −f2ŵ2

SS−μ
2
0 þ 4ŵ2

1ŵ
2
2ðŵ2

1 − ŵ2
2Þsin2ðσ2 − σ1Þðλ2 þ λ3Þ

þ 4 cos σ2ŵ2
1ŵ

3
2ŵSsin2ðσ2 − σ1Þλ4 þ ŵ2

SS−½ðŵ2
1 þ ŵ2

2Þλb þ 2ŵ2
Sλ8�g=

½4ŵ2
1ŵ

2
2sin

2ðσ2 − σ1Þ�;
ν212 ¼ −f2 sin σ1 sin σ2ŵ2

Sμ
2
0 þ 4ŵ2

1ŵ
2
2 cosðσ2 − σ1Þsin2ðσ2 − σ1Þðλ2 þ λ3Þ

þ2 cos σ1ŵ2
1ŵ2ŵSsin2ðσ2 − σ1Þλ4 þ sin σ1 sin σ2ðŵ2

1 þ ŵ2
2Þŵ2

Sλb
þ 2 sin σ1 sin σ2ŵ4

Sλ8g=½ŵ1ŵ2sin2ðσ2 − σ1Þ�;
ν201 ¼ −f2 sin σ2ŵSμ

2
0 þ ŵ2

1ŵ2 sin½2ðσ2 − σ1Þ�λ4 þ sin σ2ŵSðŵ2
1 þ ŵ2

2Þλb
þ 4 cos σ1ŵ2

1ŵS sinðσ2 − σ1Þλ7 þ 2 sin σ2ŵ3
Sλ8g=½ŵ1 sinðσ2 − σ1Þ�;

ν202 ¼ f2 sin σ1ŵSμ
2
0 þ ŵ2ðŵ2

2 − ŵ2
1Þ sinðσ2 − σ1Þλ4 þ sin σ1ŵSðŵ2

1 þ ŵ2
2Þλb

−4 cos σ2ŵ2
2ŵS sinðσ2 − σ1Þλ7 þ 2 sin σ1ŵ3

Sλ8g=½ŵ2 sinðσ2 − σ1Þ�
ðŵ1eiσ ;�ŵ2eiσ ; ŵSÞCxyz

provided sin σ ≠ 0.
μ20 ¼ − 1

2
ðŵ2

1 þ ŵ2
2Þλb − λ8ŵ2

S,
μ21 ¼ −1

4ŵ1ŵ2
f4ŵ1ŵ2ðŵ2

1 þ ŵ2
2Þðλ1 þ λ3Þ

þ 2ŵ1ŵS½ðŵ2
1 þ ŵ2

2Þ cos σλ4 þ ŵ2ŵSλb�
� ðŵ2

1 þ ŵ2
2Þν212g,

μ22 ¼ 1
4ŵ1ŵ2

f2λ4ŵ1ŵSðŵ2
1 − 3ŵ2

2Þ cos σ � ðŵ2
1 − ŵ2

2Þν212g,
ν201 ¼∓ 2ŵ1ðλ4ŵ2 þ 2λ7ŵS cos σÞ,
ν202 ¼ λ4ðŵ2

2 − ŵ2
1Þ − 4λ7ŵ2ŵS cos σ.
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B. Complex vacua

Below, we briefly comment on some of the properties of
the different categories of complex vacua, allowing for soft
breaking terms.

1. ð0;ŵ2eiσ2 ;ŵSÞ
Soft breaking terms ν212 and ν201 do not survive mini-

mization. There are no massless scalars and no mass
degeneracy with or without the soft breaking terms.

2. ðŵ1eiσ1 ;0;ŵSÞ
All soft breaking terms survive minimization.
Let us first assume σ1 ≠ � π

2
(C-IV-a). If there are no soft

breaking terms (requiring λ4 ¼ λ7 ¼ 0), we have two
massless neutral scalars. With λ4 and λ7 both equal to
zero, the scalar potential acquires an Oð2Þ ⊗ Uð1ÞhS
symmetry, where Uð1ÞhS refers to the independent rephas-
ing of hS. Vacua that break these two continuous sym-
metries lead to two massless neutral scalars.
It is impossible to have ν212 or ν202 as the only soft

breaking term. If the μ22 term is the only soft breaking term,
we have one massless neutral scalar. If the ν201 term is
present, there are no massless neutral scalars.
Possible situations where we have only two soft breaking

terms are when we have ν212 and ν202 (this situation requires
λ4 ≠ 0) or when we have μ22 and ν201 (this situation requires
λ7 ≠ 0). In both these situations there are no massless
neutral scalars.
Possible situations where we have three soft breaking

terms are when we have ν212, μ
2
2, and ν202 or when we have

ν212, ν
2
01, and ν202. In either of these two situations there are

no massless neutral scalars. If all four soft breaking terms
are present, there are no massless neutral scalars.
Next, let us assume σ1 ¼ � π

2
(C-III-b). In this case

we immediately get ν212 ¼ ν201 ¼ 0, so the only possible
soft breaking terms are μ22 and ν202. If there are no soft
breaking terms (this requires λ4 ¼ 0), we have one
massless scalar. If the μ22 or ν202 term is present, there
are no massless scalars.

3. ðŵ1eiσ1 ;ŵ2eiσ2 ;0Þ
All soft breaking terms survive minimization.
Let us first assume σ1 − σ2 ≠ � π

2
(C-III-c). If there are

no soft breaking terms (this requires λ2 þ λ3 ¼ 0 and
λ4 ¼ 0), we have two massless neutral scalars. Not all
combinations of soft breaking terms are allowed, but if at
least one soft breaking term is present, we have no massless
neutral scalars.
Next, let us assume σ1 − σ2 ¼ � π

2
. In this case we

immediately get ν212 ¼ ν201 ¼ 0, so the only possible soft
breaking terms are μ22 and ν202. If ŵ2 ≠ �ŵ1 and no soft
breaking terms are present, we have two massless scalars. If

either of the soft breaking terms are present, we have no
massless neutral scalars.
Finally, if σ1 − σ2 ¼ � π

2
and ŵ2 ¼ �ŵ1 (C-I-a), there

are no soft breaking terms and also no massless neutral
scalars.

4. ðŵ1eiσ1 ;ŵ2eiσ2 ;ŵSÞ
All four soft breaking terms survive minimization. The

case sinðσ2 − σ1Þ ¼ 0 requires special attention and is
listed separately in Table IV. Finally, if σ1 − σ2 ≠ 0, then
all soft terms are constrained by the parameters of the
unbroken potential, together with the VEVs (moduli ŵ1,
ŵ2, ŵS, and the phases σ1 and σ2).

VI. THE C-III-c MODEL WITH
SOFT S3-BREAKING

The C-III-c vacuum was characterized [16] as a vacuum
with ŵS ¼ 0 and with the other two VEVs arbitrary
complex, ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ. It is worth stressing that the
C-I-a vacuum (ŵ1;�iŵ1; 0) is not a particular case of
C-III-c. This is clearly seen by comparing the constraints
arising from the stationary-point equations. Whereas there
are three constraints attached to C-III-c [see Eq. (2.10)],
there is only one constraint attached to C-I-a, namely μ21 ¼
−ðλ1 − λ2Þv2. The C-III-c vacuum requires λ4 ¼ 0,
λ2 þ λ3 ¼ 0, and μ21 ¼ −ðλ1 − λ2Þv2 and can, in fact, be
simplified to ðŵeiσ; ŵ; 0Þ due to the O(2) symmetry
resulting from λ4 ¼ 0.
The C-I-a case was studied by Derman and Tsao [19]

and by Branco, Gérard, and Grimus [31]. It has the
property of being geometrical in the sense that it is
complex with the phases fixed by the symmetry rather
than by the parameters of the potential. In the defining
representation this vacuum appears as (x; xe2πi=3; x−2πi=3).
It was shown [31] that this vacuum does not violate CP
in spite of being complex.
One of the constraints of C-III-c is λ4 ¼ 0. Whenever

λ4 ¼ 0 the potential acquires an additional O(2) sym-
metry that is continuous. This symmetry is broken by the
VEVs, and therefore there will be massless scalars. There
will, in fact, be two massless scalars, as discussed above.
One way of avoiding massless scalars is to include soft
breaking terms. Soft breaking terms combining hS with
one of the hi are not consistent with λ4 ¼ 0.
It was shown [16,30] that the presence of the O(2)

symmetry allows one to transform the C-III-c vacuum into
(ŵeiσ=2; ŵ−iσ=2; 0), and therefore it can readily be shown
that it also preserves CP. Actually, the introduction of soft
breaking terms can only introduce CP violation in the mass
part of the potential, not in the interactions. Thus, if the
mass-squared matrices split into CP-even and CP-odd
parts, then CP is conserved.
The C-III-c vacuum with soft breaking terms is denoted

as Cxy0 in Table IV. The minimization constraints are
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μ21 ¼ −ðŵ2
1 þ ŵ2

2Þðλ1 − λ2Þ; ð6:1aÞ
μ22 ¼ −ðŵ2

1 − ŵ2
2Þðλ2 þ λ3Þ; ð6:1bÞ

ν212 ¼ −4ŵ1ŵ2 cosðσ2 − σ1Þðλ2 þ λ3Þ; ð6:1cÞ
ν201 ¼ −2ŵ1ŵ2 cosðσ2 − σ1Þλ4; ð6:1dÞ

ν202 ¼ −ðŵ2
1 − ŵ2

2Þλ4: ð6:1eÞ

It is clear from these expressions that μ22 and ν212 can be
different from zero only if λ2 þ λ3 ≠ 0. Likewise, ν201 and
ν202 can only be present for λ4 ≠ 0.
We shall here present three avenues to the introduction of

modifications to C-III-c:
(i) Models with VEVs ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ, λ4 ¼ 0,

and λ2 þ λ3 ≠ 0,
(ii) Models with VEVs ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ, λ4 ≠ 0,

and λ2 þ λ3 ¼ 0,
(iii) Models with VEVs ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ, λ4 ≠ 0,

and λ2 þ λ3 ≠ 0.

A. Models with VEVs ðŵ1eiσ1 ;ŵ2eiσ2 ;0Þ, λ4 = 0,
and λ2 + λ3 ≠ 0

It is clear from expressions (5.2), (6.1d), and (6.1e) that
the condition λ4 ¼ 0 is not consistent with having soft
breaking terms involving hS and either one of the hi. Soft
breaking terms involving h1 and h2 are possible only if we
relax the condition λ2 þ λ3 ¼ 0.
The introduction of soft breaking terms of S3 also breaks

the O(2) symmetry that resulted from having λ4 equal to
zero. As a result, in this case we cannot use this symmetry
to write this set of vacua with equal moduli for the first two
entries.
In general, CP is spontaneously broken in this case,

provided that cosðσ2 − σ1Þ ≠ 0. It can readily be seen that,
if cosðσ2 − σ1Þ ¼ 0, then ν212 must be zero and only the soft
breaking term proportional to μ22 survives. The vacuum will
have the form ð�iŵ1; ŵ2; 0Þ, the initial symmetry h1 →
−h1 is not broken, and CP is conserved by the vacuum,
since the following condition [31]

Uijh0jΦjj0i� ¼ h0jΦij0i ð6:2Þ

is satisfied for

U ¼

0
B@

−1 0 0

0 1 0

0 0 1

1
CA: ð6:3Þ

It can be checked that by going to the Higgs basis,
according to the method proposed in Ref. [30], that CP is
conserved when the following four conditions are met:

• sin½2ðσ2 − σ1Þ� ¼ 0; ð6:4aÞ

• λ7ðsin 2σ1 − sin 2σ2Þ ¼ 0; ð6:4bÞ
• λ7ðŵ2

1 sin 2σ1 þ ŵ2
2 sin 2σ2Þ ¼ 0; ð6:4cÞ

• λ7ðŵ2
1 sin 2σ2 þ ŵ2

2 sin 2σ1Þ ¼ 0: ð6:4dÞ
Clearly, if σ1 ¼ σ2 ¼ 0, there is no CP violation. Actually,
these conditions are sufficient, not necessary for CP
conservation. This distinction will be illustrated by Case
4 discussed in Appendixes B and C.
If cosðσ2 − σ1Þ ≠ 0 and ŵ1 ¼ ŵ2, the term in μ22 is forced

to be zero and only the soft breaking term in ν212 survives.
The vacuum will have the form ðŵeiσ1 ; ŵeiσ2 ; 0Þ which can
be rephased into ðŵeiσ; ŵe−iσ; 0Þ. The potential will have
symmetry for h1 ↔ h2 and CP is conserved with the
following choice of U in Eq. (6.2):

U ¼

0
B@

0 1 0

1 0 0

0 0 1

1
CA: ð6:5Þ

In Case 4 of Table Vone might expect CP to be violated.
However, this is not the case as will be shown in
Appendix C. To prove it one can go to the Higgs basis
where only one of the fields acquires a nonzero real VEV
and use the freedom to rephase the fields with zero VEV in
order to make all the coefficients of the potential real [30].
This set of transformations changes the form of the
potential but does not change the physics. In its final
version both the potential and the VEVs are real.

B. Models with VEVs ðŵ1eiσ1 ;ŵ2eiσ2 ;0Þ, λ4 ≠ 0,
and λ2 + λ3 = 0

These are also models denoted byCxy0 in Table IV. In the
particular case of cosðσ2 − σ1Þ ¼ 0 and ŵ1 ¼ ŵ2, no soft
breaking term survives; we fall into the case C-I-a, and
there is no spontaneous CP violation.
We now find that CP is violated unless Eqs. (6.4b)–

(6.4d) are satisfied, together with

• ŵ2
1 sinð2σ1 − σ2Þ þ ð2ŵ2

1 − ŵ2
2Þ sin σ2 ¼ 0; ð6:6aÞ

• ŵ2
2 sinð2σ1 − σ2Þ þ ð2ŵ2

2 − ŵ2
1Þ sin σ2 ¼ 0; ð6:6bÞ

• ŵ2
1 sinð2σ1 − σ2Þ − 3ŵ2

2 sin σ2 ¼ 0; ð6:6cÞ
• ŵ2

2 sinð2σ1 − σ2Þ − 3ŵ2
1 sin σ2 ¼ 0; ð6:6dÞ

which replace Eq. (6.4a). Clearly, if σ1 ¼ σ2 ¼ 0, there is
no CP violation. There are two special cases worth
considering:

(i) cosðσ2 − σ1Þ ¼ 0, and ŵ1 ≠ ŵ2,
(ii) cosðσ2 − σ1Þ ≠ 0, and ŵ1 ¼ ŵ2.

In the first case, the vacuum can be written as ð�iŵ1; ŵ2; 0Þ,
where we chose σ2 ¼ 0 by the freedom to rephase. In this
case, the term proportional to ν201 does not survive, and the
potential is symmetric under h1 → −h1. CP is therefore
conserved since Eq. (6.3) is satisfied.
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In the second case, only the term proportional to ν201
survives, and in general CP will be violated (unless both
phases vanish). This phenomenon illustrates the fact that soft
breaking terms can introduce spontaneousCP violation [35].

C. Models with VEVs ðŵ1eiσ1 ;ŵ2eiσ2 ;0Þ, λ4 ≠ 0,
and λ2 + λ3 ≠ 0

In this general case, going to the Higgs basis, we see that
the full set of conditions, including Eqs. (6.4) and (6.6),
must be satisfied. Obviously, for σ2 − σ1 ¼ 0, these equa-
tions can be verified after a suitable rephasing. Otherwise,
CP is violated.
Table V summarizes the results obtained in this section.

In Cases 3, 7, and 10 the vacuum can be written in the same
form, but Case 3 is CP conserving, while the other two are
CP violating.
In Appendix B we collect some information on the mass

spectra of these different models.

VII. SUMMARY

We have presented a detailed discussion of some 3HDM
vacua obtained from an S3-symmetric potential with soft

symmetry breaking. The S3-symmetric potential, for certain
VEV alignments, is plagued with massless states and
degeneracies, whose origins have been identified. In fact,
all possible vacua, except ðx; x; xÞ, expressed in the defin-
ing representation, break the S3 symmetry spontaneously.
We have shown that some vacuum solutions require
conditions on the parameters of the potential that lead to
accidental continuous symmetries that in turn are broken by
the vacuum. Allowing for soft S3 breaking terms, all states
become massive.
The case of a vanishing singlet VEV, without the

introduction of soft breaking terms, which we denoted as
C-III-c is particularly interesting. It exhibits an unfamiliar
feature: the minimum of the potential allows for a relative
phase between the two nonzero VEVs, whose value is
not constrained by the minimization conditions [16]. For
all other complex S3 vacua the phases always appear in
the minimization conditions and therefore cannot be
considered as free parameters [16]. In the C-III-c case
the phase appearing in the VEVs is an additional free
parameter which determines the mass splitting in the
neutral S3 singlet sector. This phase also shows up in
certain couplings. Whenever this phase is chosen to be

TABLE V. Summary of softly broken C-III-c-like vacua. Here, “SBT” stands for “soft breaking terms.”When the
two moduli are equal, we denote it ŵ. In the last column we listed the symmetry responsible for no spontaneous CP
violation.

Case Constraints Allowed SBT Vacuum CP

1 λ4 ¼ 0, λ2 þ λ3 ¼ 0 None ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ Conserving
C-III-c ≡ðŵeiσ=2; ŵe−iσ=2; 0Þ O(2)

2 λ4 ¼ 0, λ2 þ λ3 ≠ 0 μ22 ð�iŵ1; ŵ2; 0Þ Conserving
cosðσ2 − σ1Þ ¼ 0, ŵ1 ≠ ŵ2 h1 → −h1

3 λ4 ¼ 0, λ2 þ λ3 ≠ 0 ν212 ðŵeiσ1 ; ŵeiσ2 ; 0Þ Conserving
cosðσ2 − σ1Þ ≠ 0, ŵ1 ¼ ŵ2 ≡ðŵeiσ=2; ŵe−iσ=2; 0Þ h1 ↔ h2

4 λ4 ¼ 0, λ2 þ λ3 ≠ 0 μ22, ν
2
12 ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ Conserving

No other conditions

5 λ4 ≠ 0, λ2 þ λ3 ¼ 0 None ð�iŵ; ŵ; 0Þ Conserving
cosðσ2 − σ1Þ ¼ 0, ŵ1 ¼ ŵ2 h1 → −h1

C-I-a

6 λ4 ≠ 0, λ2 þ λ3 ¼ 0 ν202 ð�iŵ1; ŵ2; 0Þ Conserving
cosðσ2 − σ1Þ ¼ 0, ŵ1 ≠ ŵ2 h1 → −h1

7 λ4 ≠ 0, λ2 þ λ3 ¼ 0 ν201 ðŵeiσ ; ŵ; 0Þ Violating
cosðσ2 − σ1Þ ≠ 0, ŵ1 ¼ ŵ2

8 λ4 ≠ 0, λ2 þ λ3 ¼ 0 ν201, ν
2
02 ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ Violating

No other conditions

9 λ4 ≠ 0, λ2 þ λ3 ≠ 0 μ22, ν
2
02

ð�iŵ1; ŵ2; 0Þ Conserving
cosðσ2 − σ1Þ ¼ 0, ŵ1 ≠ ŵ2 h1 → −h1

10 λ4 ≠ 0, λ2 þ λ3 ≠ 0 ν212, ν
2
01 ðŵeiσ ; ŵ; 0Þ Violating

cosðσ2 − σ1Þ ≠ 0, ŵ1 ¼ ŵ2

11 λ4 ≠ 0, λ2 þ λ3 ≠ 0 All ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ Violating
σ2 − σ1 ≠ 0, ŵ1 ≠ ŵ2
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zero the two neutral scalars from the S3 singlet sector are
degenerate in mass. It is possible to remove this phase
from the VEVs by a rephasing giving rise to a CP
conserving potential with λ7 complex. In this basis all
free parameters appear in the potential.
This work focuses on the C-III-c vacuum as well as on its

versions with soft breaking terms. It is beyond the scope of
this paper to discuss other possible vacua with soft breaking
terms. However, models with ŵS nonzero may also provide
interesting possibilities from the phenomenological point
of view.
Furthermore, we have seen that the form of the vacuum

does not determine whether CP is violated spontaneously.
One and the same form of the vacuum may conserve or
violate CP, depending on which soft S3 breaking terms
(and corresponding constraints) are present.
The results presented in this paper should be useful for

model building, providing guidelines for various interest-
ing scenarios. The S3-symmetric potential with three
Higgs doublets has been analyzed by several authors
in the past few years with many different aims [36],
such as looking for realistic Yukawa couplings [37–40],
looking for dark matter candidates [41–44], looking for
CP violation [45,46], as well as many other studies.
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APPENDIX A: REAL AND COMPLEX VACUA OF
THE S3-SYMMETRIC POTENTIAL

For convenience, we include Tables VI and VII that
summarize some of the properties of the possible real and
complex vacuum solutions [16].

TABLE VI. Possible real vacua (partly after Derman and Tsao [19]). This classification of vacua [16] uses the
notation R-X-y, explained in the text. The VEVs of the ϕi are denoted by ρi.

Vacuum ρ1, ρ2, ρ3 w1; w2; wS Comment

R-0 0, 0, 0 0, 0, 0 Not interesting
R-I-1 x, x, x 0; 0; wS μ20 ¼ −λ8w2

S
R-I-2a x;−x; 0 w; 0; 0 μ21 ¼ −ðλ1 þ λ3Þw2

1

R-I-2b x; 0;−x w;
ffiffiffi
3

p
w; 0 μ21 ¼ − 4

3
ðλ1 þ λ3Þw2

2

R-I-2c 0; x;−x w;−
ffiffiffi
3

p
w; 0 μ21 ¼ − 4

3
ðλ1 þ λ3Þw2

2

R-II-1a x, x, y 0; w; wS μ20 ¼ 1
2
λ4

w3
2

wS
− 1

2
λaw2

2 − λ8w2
S,

μ21 ¼ −ðλ1 þ λ3Þw2
2 þ 3

2
λ4w2wS − 1

2
λaw2

S

R-II-1b x, y, x w;−w=
ffiffiffi
3

p
; wS μ20 ¼ −4λ4

w3
2

wS
− 2λaw2

2 − λ8w2
S,

μ21 ¼ −4ðλ1 þ λ3Þw2
2 − 3λ4w2wS − 1

2
λaw2

S

R-II-1c y, x, x w; w=
ffiffiffi
3

p
; wS μ20 ¼ −4λ4

w3
2

wS
− 2λaw2

2 − λ8w2
S,

μ21 ¼ −4ðλ1 þ λ3Þw2
2 − 3λ4w2wS − 1

2
λaw2

S
R-II-2 x; x;−2x 0; w; 0 μ21 ¼ −ðλ1 þ λ3Þw2

2, λ4 ¼ 0

R-II-3 x; y;−x − y w1; w2; 0 μ21 ¼ −ðλ1 þ λ3Þðw2
1 þ w2

2Þ; λ4 ¼ 0

R-III ρ1, ρ2, ρ3 w1; w2; wS μ20 ¼ − 1
2
λaðw2

1 þ w2
2Þ − λ8w2

S,
μ21 ¼ −ðλ1 þ λ3Þðw2

1 þ w2
2Þ − 1

2
λaw2

S,
λ4 ¼ 0
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APPENDIX B: MASSES IN THE SOFTLY
BROKEN C-III-c MODELS

Regardless of the softly broken S3 parameters, the
charged mass eigenstates are of the same form in every
softly broken C-III-c model. Therefore, only the neutral
states are analyzed here. Also, since ŵS ¼ 0, the masses
will only depend on the relative phase,

σ ≡ σ1 − σ2; ðB1Þ

not on σ1 and σ2 separately.

1. Models with λ4 = 0 and λ2 + λ3 ≠ 0

These are the models discussed in Sec. VI A. The softly
broken parameters consistent with the λ4 ¼ 0 constraint are
μ22 and ν212. Because of the fact that λ4 ¼ 0 and ŵS ¼ 0,
there is no mixing between the S3 doublet and singlet at the
level of masses. These models might provide possible dark
matter candidates. Since the S3 singlet possesses zero

vacuum value, it could be associated with an inert doublet.
Moreover, the λ4 ¼ 0 constraint results in a discrete
symmetry Z2∶hS → −hS, which could stabilize the scalar
dark matter sector.

a. Case 2. C-III-c-μ22
CP is conserved, and the squared masses are given by

m2
Hð1;2Þ ¼ ðλ1 þ λ3Þv2 ∓ Δ; ðB2aÞ

m2
A ¼ 2ðλ2 þ λ3Þv2; ðB2bÞ

m2
Sð1;2Þ ¼ μ20 þ

1

2
ðλ5 þ λ6Þv2 ∓ λ7ðŵ2

1 − ŵ2
2Þ; ðB2cÞ

where

Δ2 ¼ ðλ1 þ λ3Þ2v4 − 16ðλ1 − λ2Þðλ2 þ λ3Þŵ2
1ŵ

2
2: ðB3Þ

In the limit λ2 þ λ3 → 0, both m2
H1

and m2
A vanish linearly.

TABLE VII. Complex vacua. Notation: ϵ ¼ 1 and −1 for C-III-d and C-III-e, respectively; ξ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−3 sin 2ρ1= sin 2ρ2

p
, ψ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½3þ 3 cosðρ2 − 2ρ1Þ�=ð2 cos ρ2Þ

p
. Imposing the vacuum constraints [16], the

vacua labeled with an asterisk (*) are in fact real.

Irreducible Representation Defining Representation
w1; w2; wS ρ1, ρ2, ρ3

C-I-a ŵ1;�iŵ1; 0 x; xe�
2πi
3 ; xe∓2πi

3

C-III-a 0; ŵ2eiσ2 ; ŵS y; y; xeiτ

C-III-b �iŵ1; 0; ŵS xþ iy; x − iy; x

C-III-c ŵ1eiσ1 ; ŵ2eiσ2 ; 0 xeiρ − y
2
;−xeiρ − y

2
; y

C-III-d,e �iŵ1; ϵŵ2; ŵS xeiτ; xe−iτ; y

C-III-f �iŵ1; iŵ2; ŵS reiρ � ix; reiρ ∓ ix; 3
2
re−iρ − 1

2
reiρ

C-III-g �iŵ1;−iŵ2; ŵS re−iρ � ix; re−iρ ∓ ix; 3
2
reiρ − 1

2
re−iρ

C-III-h
ffiffiffi
3

p
ŵ2eiσ2 ;�ŵ2eiσ2 ; ŵS xeiτ; y; y

y; xeiτ; y

C-III-i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þtan2 σ1Þ
1þ9 tan2 σ1

q
ŵ2eiσ1 ,

x; yeiτ; ye−iτ

�ŵ2e−i arctanð3 tan σ1Þ; ŵS yeiτ; x; ye−iτ

C-IV-a* ŵ1eiσ1 ; 0; ŵS reiρ þ x;−reiρ þ x, x

C-IV-b ŵ1;�iŵ2; ŵS reiρ þ x;−re−iρ þ x;−reiρ þ re−iρ þ x

C-IV-c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 cos2 σ2

p
ŵ2, reiρ þ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 2 cos2 ρÞ

p
þ x,

ŵ2eiσ2 ; ŵS reiρ − r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ 2 cos2 ρÞ

p
þ x;−2reiρ þ x

C-IV-d* ŵ1eiσ1 ;�ŵ2eiσ1 ; ŵS r1eiρ þ x; ðr2 − r1Þeiρ þ x;−r2eiρ þ x

C-IV-e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− sin 2σ2

sin 2σ1

q
ŵ2eiσ1 ,

reiρ2 þ reiρ1ξþ x; reiρ2 − reiρ1ξþ x,

ŵ2eiσ2 ; ŵS −2reiρ2 þ x

C-IV-f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cos ðσ1−2σ2Þ

cos σ1

q
ŵ2eiσ1 ,

reiρ1 þ reiρ2ψ þ x,

ŵ2eiσ2 ; ŵS reiρ1 − reiρ2ψ þ x;−2reiρ1 þ x

C − V� ŵ1eiσ1 ; ŵ2eiσ2 ; ŵS xeiτ1 ; yeiτ2 ; z
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b. Case 3. C-III-c-ν212
CP is conserved, and the squared masses are given by

m2
Hð1;3Þ ¼ ðλ1 þ λ3 ∓ ΔÞv2; ðB4aÞ

m2
H2

¼ 2ðλ2 þ λ3Þv2; ðB4bÞ

m2
Sð1;2Þ ¼ μ20 þ

1

2
ðλ5 þ λ6Þv2 ∓ λ7 cos σv2; ðB4cÞ

where

Δ2 ¼ ðλ1 − λ2Þ2 þ ðλ2 þ λ3Þ2
þ 2ðλ1 − λ2Þðλ2 þ λ3Þ cosð2σÞ: ðB5Þ

The above terminology is determined bym2
H1

<m2
H2

<m2
H3
,

valid for μ21 < 0. In the limit λ2 þ λ3 → 0, both m2
H1

and
m2

H2
vanish linearly.

c. Case 4. C-III-c-μ22 − ν212
CP is conserved, illustrating that the conditions (6.4) are

not necessary. This is explained in Appendix C. The
squared masses are given by

m2
Hð1;2Þ ¼ ðλ1 þ λ3Þv2 ∓ ΔH; ðB6aÞ

m2
H3

¼ 2ðλ2 þ λ3Þv2; ðB6bÞ

m2
Sð1;2Þ ¼ μ20 þ

1

2
ðλ5 þ λ6Þv2 ∓ λ7ΔS; ðB6cÞ

where

Δ2
H ¼ ðλ1 þ λ3Þ2v4 − 16ðλ1 − λ2Þðλ2 þ λ3Þ sin2 σŵ2

1ŵ
2
2;

ðB7Þ

Δ2
S ¼ v4 − 4 sin2 σŵ2

1ŵ
2
2: ðB8Þ

The above terminology is determined bym2
H1

<m2
H2

<m2
H3
,

valid for μ21 < 0. In the limit λ2 þ λ3 → 0, both m2
H1

and
m2

H3
vanish linearly.

2. Models with λ4 ≠ 0 and λ2 + λ3 = 0

These are the models discussed in Sec. VI B. They
actually contain states of negative squared mass, but are
described here as limits to be avoided in any discussion of
realistic versions of Cases 9, 10, and 11.
The softly broken parameters consistent with the λ3 þ

λ2 ¼ 0 constraint are ν201 and ν202. Because of the fact that
λ4 ≠ 0, there is mixing between the S3 doublet and singlet.

a. Case 6. C-III-c-ν202
Because of the mixing between the doublet and singlet

sectors, the neutral mass-squared matrix is now 6 × 6.
Transforming to the Higgs basis and removing the would-
be Goldstone boson, it is reduced to a 5 × 5matrix spanned
by the fields

fηHB1 ; ηHB2 ; ηHB3 ; χHB2 ; χHB3 g: ðB9Þ

The 5 × 5 mass-squared matrix is block diagonal, a 3 × 3
“η” block and a 2 × 2 “χ” block [see Eq. (2.3)], reflecting
the fact that CP is conserved. The η block has the following
properties:

detðM2
ηÞ ¼ 8ðλ2 − λ1Þλ24ŵ2

1ŵ
4
2; ðB10Þ

TrðM2
ηÞ ¼ μ20 þ 2ðλ1 − λ2Þv2

þ 1

2
ðλ5 þ λ6Þv2 þ λ7ðŵ2

2 − ŵ2
1Þ: ðB11Þ

For the product of the three squared masses to be positive,
we must have λ2 > λ1. For the χ block we may solve
explicitly for the squared masses in terms of a square root:

m2
Að1;2Þ ¼

1

4
ð2μ20 þ λaŵ2

1 þ λbŵ2
2 ∓ ΔÞ; ðB12Þ

where

Δ2 ¼ 16λ24ŵ
2
1v

2 þ ð2μ20 þ λaŵ2
1 þ λbŵ2

2Þ2: ðB13Þ

We note that the product of these two masses is negative,

m2
A1
m2

A2
¼ −λ24ŵ2

1v
2 < 0; ðB14Þ

so Case 6 must be abandoned. Actually, with λ1 − λ2
positive (as follows from μ21 being negative), also the
determinant (B10) is negative, signaling the fact that not
one, but two masses squared are negative.

b. Case 7. C-III-c-ν201
In this case, the 5 × 5 matrix spanned by the fields (B9)

has the following structure:

M2 ¼

0
BBBBB@

× 0 × 0 ×

0 0 × 0 0

× × × × ×

0 0 × 0 ×

× 0 × × ×

1
CCCCCA: ðB15Þ

While individual elements (denoted “×”) also depend on
μ20, λ5, λ6, and λ7, the product of all five masses squared is
very simple,
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M2
1M

2
2M

2
3M

2
4M

2
5 ¼ detðM2Þ ¼ 1

2
ðλ1 − λ2Þλ44 sin4 σv10:

ðB16Þ

However, the sum of all masses squared depends on these
additional parameters,

TrðM2Þ ¼ 2μ20 þ 2ðλ1 − λ2Þv2 þ ðλ5 þ λ6Þv2: ðB17Þ

A necessary condition for positive squared masses
is λ1 > λ2.
One might be tempted to conclude from Eq. (B16) that

four of the squared masses vanish as λ4 → 0. This is not
necessarily the case, as illustrated by the following exam-
ple. Let a toy model have the two squared masses:

m2
a;b ¼

h
λ0 ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ20 − λ24

q i
v2: ðB18Þ

While the product is given by m2
am2

a ¼ λ24v
4, the individual

masses squared are for λ4=λ0 → 0 given as

m2
a ≃

λ24
2λ0

v2; m2
b ≃ 2λ0v2: ðB19Þ

As mentioned above, in Case 7 and for λ1 > λ2, the
overall determinant is positive, allowing for an even
number of negative squared masses. A numerical explora-
tion shows that two of them are negative, as for Case 6.

c. Case 8. C-III-c-ν201 − ν202
The Higgs basis rotation and reduction to a 5 × 5 matrix

yields the following structure:

M2 ¼

0
BBBBB@

× 0 × 0 ×

0 0 × 0 ×

× × × × ×

0 0 × 0 ×

× × × × ×

1
CCCCCA; ðB20Þ

with

detðM2Þ ¼ 8ðλ1 − λ2Þλ44 sin4 σŵ4
1ŵ

4
2v

2; ðB21Þ

TrðM2Þ ¼ 2μ20 þ ð2λ1 − 2λ2 þ λ5 þ λ6Þv2: ðB22Þ

For positive squared masses we must have λ1 > λ2.
The mass eigenstates are all mixtures of the gauge fields

of Eq. (B9), and CP is violated.
The overall determinant is positive, allowing for an even

number of negative squared masses. A numerical explora-
tion shows that two of them are negative, as for Case 6.

3. Models with λ4 ≠ 0 and λ2 + λ3 ≠ 0

These are the models discussed in Sec. VI C. In these
models there is mixing between the S3 doublet and singlet.

a. Case 9. C-III-c-μ22-ν
2
02

The 5 × 5 neutral mass-squared matrix is block diagonal,
a 3 × 3 η block and a 2 × 2 χ block, reflecting the fact that
CP is conserved. The following properties can be extracted:

detðM2
ηÞ ¼ 8ðλ1 − λ2Þ½ðλ2 þ λ3Þð2μ20 þ λbŵ2

1 þ λaŵ2
2Þ

− λ24ŵ
2
2�ŵ2

1ŵ
2
2; ðB23Þ

TrðM2
ηÞ ¼ μ20 þ 2ðλ1 þ λ3Þv2 þ

1

2
ðλbŵ2

1 þ λaŵ2
2Þ: ðB24Þ

The masses squared of the χ sector are given by

m2
Að1;2Þ ¼

1

4

�
2μ20 þ 4

�
λ2 þ λ3 þ

1

4
λa

�
ŵ2
1

þ 4

�
λ2 þ λ3 þ

1

4
λb

�
ŵ2
2 ∓ Δ

�
; ðB25Þ

where

Δ2 ¼
�
2μ20 þ 4

�
λ2 þ λ3 þ

1

4
λa

�
ŵ2
1

þ 4

�
λ2 þ λ3 þ

1

4
λb

�
ŵ2
2

�
2

− 16½ð2μ20 þ λaŵ2
1 þ λbŵ2

2Þðλ2 þ λ3Þ − λ24ŵ
2
1�v2:

ðB26Þ

For the χ sector we have

detðM2
χÞ ¼ ½ðλ2 þ λ3Þð2μ20 þ λaŵ2

1 þ λbŵ2
2Þ − λ24ŵ

2
1�v2:
ðB27Þ

Necessary conditions to have all squared masses positive is
then

ðλ2 þ λ3Þð2μ20 þ λbŵ2
1 þ λaŵ2

2Þ − λ24ŵ
2
2 > 0; ðB28Þ

ðλ2 þ λ3Þð2μ20 þ λaŵ2
1 þ λbŵ2

2Þ − λ24ŵ
2
1 > 0: ðB29Þ

b. Case 10. C-III-c-ν212-ν
2
01

In this case, the 5 × 5 neutral mass-squared matrix takes
the form
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M2
0 ¼

0
BBBBB@

× 0 × × ×

0 × × 0 0

× × × × ×

× 0 × × ×

× 0 × × ×

1
CCCCCA; ðB30Þ

with

detðM2Þ ¼ sin2 σðλ1 − λ2Þ½A4ðμ20Þ2 þ A2μ
2
0 þ A0�v6;

ðB31Þ

where

A4 ¼ 8ðλ2 þ λ3Þ2; ðB32aÞ

A2 ¼ 4ðλ2 þ λ3Þ½2ðλ2 þ λ3Þðλ5 þ λ6Þ − λ24�v2; ðB32bÞ

A0 ¼
1

2
f½2ðλ2 þ λ3Þðλ5 þ λ6Þ − λ24�2

− cos2 σ½4ðλ2 þ λ3Þλ7 − λ24�2gv4 ðB32cÞ

¼ 1

2
sin2 σλ44v

4 − 2ðλ2 þ λ3Þλ24ðλ5 þ λ6 − 2λ7 cos2 σÞv4

þ 2ðλ2 þ λ3Þ2½ðλ5 þ λ6Þ2 − 4λ27 cos
2 σ�v4; ðB32dÞ

and

TrðM2Þ ¼ 2μ20 þ ð2λ1 þ 2λ2 þ 4λ3 þ λ5 þ λ6Þv2: ðB33Þ

The mass eigenstates are a mixture of all five gauge
fields, and CP is violated.

c. Case 11. C-III-c-μ22-ν
2
12-ν

2
01-ν

2
02

In this case, all elements of the 5 × 5 neutral mass-
squared matrix are nonzero, CP is violated, and the
determinant is rather complex,

detðM2Þ ¼ 8 sin2 σðλ1 − λ2Þ½A4ðμ20Þ2 þA2μ
2
0 þA0�ŵ2

1ŵ
2
2v

2;

ðB34Þ

with

A4 ¼ 4ðλ2 þ λ3Þ2; ðB35aÞ

A2 ¼ 2ðλ2 þ λ3Þ½2ðλ2 þ λ3Þðλ5 þ λ6Þ − λ24�v2; ðB35bÞ

A0 ¼ sin2 σλ44ŵ
2
1ŵ

2
2 − ðλ2 þ λ3Þλ24½ðλ5 þ λ6Þv4

− 2ðv4 − 4 sin2 σŵ2
1ŵ

2
2Þλ7�

þ ðλ2 þ λ3Þ2½ðλ5 þ λ6Þ2v4 − 4ðv4 − 4 sin2 σŵ2
1ŵ

2
2Þλ27�

ðB35cÞ

¼ ðλ2 þ λ3Þ½ðλ2 þ λ3Þλa − λ24�λbv4
þ sin2 σ½4ðλ2 þ λ3Þλ7 − λ24�2ŵ2

1ŵ
2
2; ðB35dÞ

whereas the trace has the familiar value, given by
Eq. (B33).

4. Sums of masses squared

The contributions to the trace of the mass-squared matrix
in the neutral sector, i.e., the sum of all squared masses of
the neutral scalars, can be expressed in terms of μ20, μ

2
1,

λ2 þ λ3, λ5 þ λ6, and λ7 as

TrðM2Þ ¼ #μ20 þ #μ21 þ #
1

2
ðλ2 þ λ3Þv2

þ #
1

2
ðλ5 þ λ6Þv2 þ #λ7v2; ðB36Þ

where we use the minimization condition μ21 ¼ −ðλ1 −
λ2Þv2 and trade λ3 for μ21 and ðλ2 þ λ3Þ.
We summarize in Table VIII the coefficients denoted “#”

above. Where CP is conserved, contributions to the CP-
even and CP-odd parts are given separately, as xþ y. The
singlet sector contributes to the μ20, ðλ5 þ λ6Þ, and λ7 terms
(the latter cancel among CP-even and -odd terms), whereas
the doublet sector contributes to the μ21 and ðλ2 þ λ3Þ terms.
Expressed in these terms, the structure is remarkably

simple and regular.

APPENDIX C: CP CONSERVATION IN CASE 4

For Case 4, when the two soft breaking terms μ22 and ν
2
12

are present, the vacuum configuration ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ
does not result in a CP-violating model. This can be shown
explicitly by constructing a basis transformation that results
in both a real potential and a real vacuum, thereby
eliminating the possibility of having spontaneous CP
violation. We start by simultaneously rephasing all three
doublets to get a vacuum configuration of the form
ðŵ1eiσ; ŵ2; 0Þ, leaving all parameters of the potential

TABLE VIII. Contributions to sums of masses squared.

Case CPC μ20 μ21
1
2
ðλ2 þ λ3Þ 1

2
ðλ5 þ λ6Þ λ7

1 ✓ 1þ 1 −2þ 0 0 1þ 1 �a ∓ a
2 ✓ 1þ 1 −2þ 0 4þ 4 1þ 1 �b ∓ b
3 ✓ 1þ 1 −2þ 0 4þ 4 1þ 1 �a ∓ a
4 ✓ 1þ 1 −2þ 0 4þ 4 1þ 1 �c ∓ c
5 ✓ 1þ 1 −2þ 0 0 1þ 1 −bþ b
6 ✓ 1þ 1 −2þ 0 0 1þ 1 −bþ b
7 � � � 2 −2 0 2 0
8 � � � 2 −2 0 2 0
9 ✓ 1þ 1 −2þ 0 4þ 4 1þ 1 −bþ b
10 � � � 2 −2 8 2 0
11 � � � 2 −2 8 2 0

a ¼ cos σv2, b ¼ ðŵ2
1 − ŵ2

2Þ, c ¼ ΔS.
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V ¼ μ20h
†
ShS þ μ21ðh†1h1 þ h†2h2Þ þ μ22ðh†1h1 − h†2h2Þ

þ 1

2
ν212ðh†2h1 þ h†1h2Þ ðC1Þ

þ λ1ðh†1h1 þ h†2h2Þ2 þ λ2ðh†1h2 − h†2h1Þ2
þ λ3½ðh†1h1 − h†2h2Þ2 þ ðh†1h2 þ h†2h1Þ2�
þ λ5ðh†ShSÞðh†1h1 þ h†2h2Þ þ λ6½ðh†Sh1Þðh†1hSÞ
þ ðh†Sh2Þðh†2hSÞ� þ λ7½ðh†Sh1Þðh†Sh1Þ
þ ðh†Sh2Þðh†Sh2Þ þ H:c:� þ λ8ðh†ShSÞ2 ðC2Þ

unchanged. Consider now the change of basis given by0
B@

h̄1
h̄2
h̄S

1
CA ¼ eiψ

0
B@

cos θ e−iξ sin θ 0

−eiχ sin θ eiðχ−ξÞ cos θ 0

0 0 eiτ

1
CA
0
B@

h1
h2
hS

1
CA;

ðC3Þ

with

θ ¼ arctan

�
ŵ2

ŵ1

�
; ðC4Þ

χ ¼ − arctan

�
v2

ðŵ2
2 − ŵ2

1Þ tan σ
�
; ðC5Þ

ξ ¼ −σ; ðC6Þ

ψ ¼ −σ; ðC7Þ

τ ¼ π

4
þ σ

2
−
1

2
arctan

�
v2

ðŵ2
2 − ŵ2

1Þ tan σ
�
: ðC8Þ

This takes us to the Higgs basis, with the real vacuum
configuration ðv; 0; 0Þ along with a transformed potential of
the form

V̄ ¼ γ̄0ðh̄†Sh̄SÞ þ γ̄1ðh̄†1h̄1Þ þ γ̄2ðh̄†2h̄2Þ þ γ̄3½ðh̄†1h̄2Þ þ ðh̄†2h̄1Þ�

þ Λ̄1

2
ðh̄†1h̄1Þ2 þ

Λ̄2

2
ðh̄†2h̄2Þ2 þ Λ̄3ðh̄†1h̄1Þðh̄†2h̄2Þ þ Λ̄4ðh̄†1h̄2Þðh̄†2h̄1Þ

þ Λ̄5

2
½ðh̄†2h̄1Þ2 þ ðh̄†1h̄2Þ2� þ Λ̄6½ðh̄†1h̄1Þðh̄†1h̄2Þ þ ðh̄†1h̄1Þðh̄†2h̄1Þ�

þ Λ̄7½ðh̄†2h̄2Þðh̄†1h̄2Þ þ ðh̄†2h̄2Þðh̄†2h̄1Þ� þ Λ̄8ðh̄†Sh̄SÞ½ðh̄†1h̄1Þ þ ðh̄†2h̄2Þ�

þ Λ̄9½ðh̄†Sh̄1Þðh̄†1h̄SÞ þ ðh̄†Sh̄2Þðh̄†2h̄SÞ� þ
Λ̄10

2
½ðh̄†Sh̄1Þ2 þ ðh̄†1h̄SÞ2�

þ Λ̄11

2
½ðh̄†Sh̄2Þ2 þ ðh̄†2h̄SÞ2� þ

Λ̄12

2
½ðh̄†Sh̄1Þðh̄†Sh̄2Þ þ ðh̄†1h̄SÞðh̄†2h̄SÞ�

þ Λ̄13ðh̄†Sh̄SÞ2; ðC9Þ

where all the γ̄i and Λ̄i become real when imposing
Eq. (6.1), thus implying a CP conserving model.

APPENDIX D: CONTINUOUS SYMMETRIES OF
THE POTENTIAL

Symmetries of multi-Higgs-doublet models are only
manifest in particular bases. Reference [21] provides a
very useful prescription to identify the symmetries present
in specific implementations of three-Higgs-doublet models
when written in bases where these symmetries are not
manifest. It is well known that aZ2 symmetry acting on one

Higgs doublet in models with two Higgs doublets may
manifest itself as a symmetry for the interchange of the two
doublets. Here we show how a continuous O(2) symmetry
of an S3-symmetric potential corresponding to the C-III-c
vacuum can explicitly appear as a different continuous
symmetry.
Let us consider the C-III-c vacuum configuration

ðŵ1eiσ1 ; ŵ2eiσ2 ; 0Þ in the framework of the S3-symmetric
3HDM potential without soft breaking terms. The sta-
tionary-point equations require λ4 ¼ 0 and λ3 ¼ −λ2, so the
quartic part of the potential simplifies to

V4 ¼ λ1ðh†1h1 þ h†2h2Þ2 − λ2½ðh†1h1 − h†2h2Þ2 þ 4ðh†1h2Þðh†2h1Þ� þ λ5ðh†ShSÞðh†1h1 þ h†2h2Þ
þ λ6½ðh†Sh1Þðh†1hSÞ þ ðh†Sh2Þðh†2hSÞ� þ λ7½ðh†Sh1Þ2 þ ðh†Sh2Þ2 þ ðh†1hSÞ2 þ ðh†2hSÞ2�
þ λ8ðh†ShSÞ2: ðD1Þ
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Using the basis-independent checks given in [21], we find
that our potential satisfies the constraints for both O(2) and
Uð1Þ1 symmetries. The O(2) symmetry is manifest in the
basis in which we start out because the potential is
symmetric now under the change of basis given by0

B@
h1
h2
hS

1
CA → O

0
B@

h1
h2
hS

1
CA; ðD2Þ

where

O ∈

8>><
>>:
0
B@

cos α − sin α 0

sin α cos α 0

0 0 1

1
CA;

0
B@

cos α sin α 0

sin α − cos α 0

0 0 1

1
CA
9>>=
>>;:

ðD3Þ
The Uð1Þ1 symmetry does not manifest itself in this basis,
so it must be a hidden symmetry which manifests itself in
another basis. Let us therefore change into another basis
using 0

B@
h1
h2
hS

1
CA ¼ B

0
B@

ϕ1

ϕ2

ϕ3

1
CA; ðD4Þ

where

B ¼

0
B@

1ffiffi
2

p 1ffiffi
2

p 0

− iffiffi
2

p iffiffi
2

p 0

0 0 1

1
CA: ðD5Þ

The transformed potential in the new basis is given by

V2 ¼ μ20ϕ
†
3ϕ3 þ μ21ðϕ†

1ϕ1 þ ϕ†
2ϕ2Þ; ðD6Þ

V4 ¼ λ1ðϕ†
1ϕ1 þ ϕ†

2ϕ2Þ2 − λ2½ðϕ†
1ϕ1 − ϕ†

2ϕ2Þ2
þ 4ðϕ†

1ϕ2Þðϕ†
2ϕ1Þ� þ λ5ðϕ†

3ϕ3Þðϕ†
1ϕ1 þ ϕ†

2ϕ2Þ
þ λ6½ðϕ†

3ϕ1Þðϕ†
1ϕ3Þ þ ðϕ†

3ϕ2Þðϕ†
2ϕ3Þ�

þ 2λ7½ðϕ†
1ϕ3Þðϕ†

2ϕ3Þ þ ðϕ†
3ϕ1Þðϕ†

3ϕ2Þ� þ λ8ðϕ†
3ϕ3Þ2:
ðD7Þ

Applying the transformation (D5) to the vacuum (2.11), it is
seen to become real.
In this new basis, the potential is manifestly symmetric

under the Uð1Þ1 transformation given by

0
B@

ϕ1

ϕ2

ϕ3

1
CA →

0
B@

eiα 0 0

0 e−iα 0

0 0 1

1
CA
0
B@

ϕ1

ϕ2

ϕ3

1
CA: ðD8Þ

This Uð1Þ1 symmetry is not an additional continuous
symmetry, it is just the way the original O(2) symmetry
manifests itself after the change of basis. If the potential
possesses a symmetry in the original basis represented by a
matrix S, then after changing to a new basis, the potential
will possess a symmetry represented by the matrix B†SB.
Applying this to the matrices in (D3), we find that the O(2)
matrices are transformed into the following two matrices in
the new basis

8>><
>>:
0
B@

eiα 0 0

0 e−iα 0

0 0 1

1
CA;

0
BB@

0 eiα 0

e−iα 0 0

0 0 1

1
CA
9>>=
>>;; ðD9Þ

thus showing that this Uð1Þ1 symmetry is just the original
O(2) symmetry expressed in the new basis.
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