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Abstract

In high-energy physics, Monte Carlo event generators (MCEGs) are used to
simulate the interactions of high energy particles. MCEG event records store
the information on the simulated particles and their relationships, and thus
reflects the simulated evolution of physics phenomena in each collision event.

We present the HepMC3 library, a next-generation framework for MCEG
event record encoding and manipulation, which builds on the functionality
of its widely-used predecessors to enable more sophisticated algorithms for
event-record analysis. By comparison to previous versions, the event record
structure has been simplified, while adding the possibility to encode arbitrary
information. The I/O functionality has been extended to support common
input and output formats of various HEP MCEGs, including formats used in
Fortran MCEGs, the formats established by the HepMC2 library, and binary
formats such as ROOT; custom input or output handlers may also be used.
HepMC3 is already supported by popular modern MCEGs and can replace
the older HepMC versions in many others.
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1. Introduction

During the simulation of elementary particle reactions at high energies
by MCEGs it is necessary to store and/or modify information related to the
simulation, in the form of calculation elements, intermediate particles, decay
cascades, etc. The main purpose of the HepMC3 event record library [1] is
to hold this information both on per-event and simulation-run bases, and to
facilitate manipulations upon it. In what follows, we first review the design
principles of HepMC3 and the challenges which motivated its development,
then turn to its technical implementation, and usage.

2. Data and object model

The logical structure of the information in the HepMC3 library follows
the typical convention of modern MCEGs, being split into two parts: general
information on the conditions during simulation execution (which is typically
common for a run of events), and the simulated events themselves. The first
part contains the description of used tools and settings applied in MCEG and
thus, partially prescribes the interpretation of the simulated events. Here and
below we call this data “run information”.

Each event from the second part holds a link to the run information and
itself consists of “particles”, “vertices” and additional information about the
event or constituent “particles” and “vertices”. In this scheme the “particles”
directly correspond to the physical particles and therefore possess physical
properties – four momentum, flavour1, status2, etc. The “vertices” do not
have a specific physical meaning and simply indicate the elementary transmu-
tation of a set of “incoming” particles into a set of “outgoing” particles: this
may be a purely technical operation and hence should not overinterpreted.
Typical examples of such a transmutation are 1 → 2 radiative splittings,
2 → 2 scatterings, 1 → 1 momentum-recoil corrections, and 1 → n decays.
Therefore, the vertices hold the lists of pointers to incoming and outgoing
particles, the position in space-time of the assumed interaction or decay (if

1The exact particle-flavour encoding is not enforced in the library code, for reasons of
performance and flexibility as the standard continually evolves. However, the examples
in this paper, and all known users of the HepMC library, follows the enumeration scheme
described in PDG [2].

2See App. A.1 for details.
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defined), and the status. The latter is an abbreviated physically meaningful
description of the transmutation, see App. A.1 for details.

The described event record structure results in a certain relation between
particles and vertices. In a vertex, for each incoming particle the outgo-
ing particles are considered as “children” and for each outgoing particle the
incoming particles are considered as “parents”. From these definitions the
wider terms “ancestors” and “descendants” are inferred by recursion, e.g. par-
ents of parents of. . . .

The particles that act as graph edges between vertices typically have a
“production vertex” where they came from, and an “end vertex”, where they
undergo their next modification or interaction: the only exceptions to this
rule are the stable final-state particles which have no end vertex, with the
(usually two) incoming beam particles which are assigned to a unique “root
vertex” without incoming particles.

The HepMC3 event record can hold events with arbitrarily complex re-
lations between the particles and vertices. However, to avoid algorithmic
problems, it is expected the event structure will adhere to the following rules:

• All particles and vertices in the event should be connected with each
other, e.g. the event should not contain dangling particles or vertices.

• Cyclic relations where a particle can be its own ancestor should be
avoided.

• All vertices should have at least one outgoing particle.

• All vertices but root vertex should have at least one incoming particle.

• Vertices should have a meaningful or zero status code3:

– Particles with no end vertex should be assigned status 1;

– The incoming particles should be assigned status 4.

• The number of weights in the event should match the number of the
names for weights in the run information.

The event’s constituent particles and vertices are collectively referred to
as “objects”. Inside the event these are enumerated with non-zero integer

3See App. A.1 for details.
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numbers (objects IDs, or OID), while OID=0 is reserved for the event itself.
For the correctly composed event the OIDs should be deducible from the
event topology, i.e. the particles are sorted according to the event topology
and their indices correspond to their position in the sorted list4 and are
positive. The indexes of vertices correspond to the minimal index of their
incoming particles taken with minus sign5 and are negative.

Any additional piece of information on the whole event, particles or ver-
tices is called an attribute and can be stored inside the event using character
representation and referred object OID. There are some standard physical
use case for the attributes: information on the polarisation, color (for parti-
cles), type of the interaction (for vertices), information on the used parton
density functions (PDFs), process cross-section etc. (for event). As every
object can have multiple attributes, these are distinguished by their names,
that should be unique within corresponding object. No restrictions are im-
posed on the number, type or names of the attributes. However, the users
should not use for their custom attributes names reserved for the standard
attributes. For the events the standard attributes are:

• GenCrossSection – an attribute holding the information on the cross-
sections on the processes in the event. The description of this attribute
is given in App. A.3.

• GenPdfInfo – an attribute holding the information on the used PDFs.
The description of this attribute is given in App. A.3.

• GenHeavyIon – An attribute holding the information on the heavy ions
in the incoming beams. The description of this attribute is given in
App. A.3.

• alphaQCD – an attribute holding the floating point value of QCD cou-
pling constant.

• alphaQED – an attribute holding the floating point value of QED cou-
pling constant.

4For the ordering to be unique, an ordering rule is needed for topologically identical
particles such as e.g. the initial leptons in e+e− → hadrons. Such a rule cannot cover
all potential cases, but, using the particle types, their charge, invariant mass or other
quantities it can cover practically all physically meaningful cases.

5Therefore, the root vertex has no index and all its properties are stored in the event.
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• event_scale – an attribute holding the floating point value of event
hard scale.

• mpi – an attribute holding the number of multiparticle interactions
integer.

• signal_process_id – an attribute holding an integer number that
characterises the signal process in the event. As the exact numbering
scheme is not not defined, the value is generator dependent, see Ref. [3]
as an example.

• signal_vertex_id – An attribute holding the index of the vertex signal
process.

• random_states1, random_states2 . . . random_statesN – arbitrary num-
ber of attributes holding the integer number states of random number
generator in the beginning of event simulation. The numbering should
start from one. No gaps in the numbering of these states are allowed.

• random_states – vector of integer numbers corresponding to the states
of random number generator at the beginning of event simulation.

• cycles – an attribute holding an integer number to show the presence
of cyclic relations in the event. The events with tree-like structure
should have this attribute equal to zero or don’t have it at all.

The attributes alphaQCD, alphaQED, random_states, signal_process_id,
mpi and signal_vertex_id typically present in the events that were origi-
nally produced with the HepMC2 library.
For the vertices the single standard attribute is:

• weights – vector of floating point numbers which correspond to the
weights assigned to this vertex.

For the particles the standard attributes are:

• flows – vector of integer numbers which correspond to the QCD color
flow information. No encoding scheme of the colour flows is imposed
by the library, but it is expected to comply with the rules in Ref. [2].

• theta – an attribute holding the floating point value of the θ angle for
polarisation.
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• phi – an attribute holding the floating point value of the φ angle for
polarisation.

If these attributes are present in the event they will be handled where it is
required, e.g. in the event serialisation or in the interfaces to generators. The
implementation of the attributes is slightly different between the HepMC3
version 3.2.0 and the versions 3.1.x. See section Sec. A.2 for details.

3. Implementation

Thanks to the usage of features of recent C++ standards [4], the C++

implementation of the library has been significantly simplified with respect
to HepMC2. Many custom types and iterators were removed and the library
became more modular, allowing the implementation of custom features with-
out breaking the compatibility with core library components.

For efficient memory management most of the basic types are now used via
the smart pointers [5] as implemented in the C++ standard library. In addi-
tion, the concept of const-correctness [6] is promoted in the implementation of
the library, fixing longstanding problems where traversing the particle–vertex
links in the event graph would permit a const event event to be modified
without resorting to use of const_cast. Other defects, such as needing to
obtain a non-const version of an event in order to perform certain read-only
operations have also been fixed in HepMC3. To preserve this consistency,
const versions of the HepMC3 smart pointers are also implemented.

The main constituent classes of the library are briefly described below.

3.1. C++ storage classes

In HepMC3 the information is represented via C++ objects and can be
serialised as C++ structures with plain data types. The main types of objects
(plain structures) in HepMC3 are:

• FourMomentum – a type that implements four vector in Minkovski space.
The class includes some static functions for calculations of distance
between vectors, their scalar product and other related quantities.

• GenRunInfo – the main bookkeeping type that holds meta-information
about the generated events: list of used tools, names of used event
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weights and arbitrary attributes. The embedded structure struct

GenRunInfo::ToolInfo (three std::string fields) holds name, ver-
sion and description of tool used for event generation and/or pro-
cessing. This object can be serialised into plain data type structure
GenRunInfoData. The corresponding smart pointer types are GenRunInfoPtr
and ConstGenRunInfoPtr.

• GenEvent – the data type that holds the position of the primary inter-
action, and lists of vertices, particles and attributes. This object can
be serialised into the plain data type structure GenEventData. The
relations between the particles and vertices are implemented in the
GenEventData structure as two lists of object OIDs. The relations be-
tween vertices and particles in GenEventData are encoded via members
std::vector<int> links1 and std::vector<int>links2 in a graph-
like structure. The positive elements in std::vector<int> links1

stand for particles and that have end vertex OID encoded at the same
position in std::vector<int> links2. The negative elements in std

::vector<int> links1 stand for production vertex with outgoing par-
ticle OID encoded in the same position in std::vector<int> links2.

• GenVertex – type of the objects used to describe decays and inter-
actions, holds its position, list of incoming and outgoing particles, can
have multiple attributes stored in the parent GenEvent. This object can
be serialised into plain data type structure GenVertexData. The corre-
sponding smart pointer types are GenVertexPtr and ConstGenVertexPtr

.

• GenParticle – type of objects used to describe particles, holds mo-
menta, flavour, status of the particle, can have multiple attributes
stored in the parent GenEvent. This object can be serialised into
plain data type structure GenParticleData. The corresponding smart
pointer types are GenParticlePtr and ConstGenParticlePtr.

• Attribute – base class used to store arbitrary information. The at-
tribute data is stored as (and can be serialised to) std::string, which
is used to initialise an object of arbitrary type derived from the Attribute
class.

The Attribute objects allow custom information to be stored in the
events. Apart from the attributes used to store plain types (double, int
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, std::string) and the corresponding vectors (std::vector<double>,
std::vector<int>, std::vector<std::string>) the library provides im-
plementation for the GenPDFInfo, GenCrossSection and GenHeavyIon at-
tributes. These are described in detail in App. A.3.

3.2. Manipulation with objects

The set of orthogonal operations is built in a way that objects manipulates
on their constituents/subordinates and not vice verse. The following basic
operations are present in the HepMC3

• adding/removing particle to/from event. The particle is added to the
list of particles in the event if it is not present there already. While
removing the particle attributes are removed as well. It is not checked
if particle already belongs to any other event.
These functions are implemented in
void GenEvent::add_particle(GenParticlePtr) and in
void GenEvent::remove_particle(GenParticlePtr).

• adding/removing particle to/from vertex. The particle is added to the
the list of vertex incoming or outgoing particles. The production/end
vertex of the particle is updated. In case the vertex belongs to an event,
the particle will be added to the event as well.
These functions are implemented in
void GenVertex::add_particle_in (GenParticlePtr),
void GenVertex::add_particle_out(GenParticlePtr),
void GenVertex::remove_particle_in (GenParticlePtr) and
void GenVertex::remove_particle_out(GenParticlePtr).

• adding/removing vertex to/from event. The vertex and all it’s particles
are added to the list of event vertices/particles. These functions are
implemented in void GenEvent::add_vertex(GenVertexPtr) and in
void GenEvent::remove_vertex(GenVertexPtr).

• adding/removing object attributes.
These functions are implemented in
bool GenEvent::add_attribute(const std::string&, std::shared_ptr

<Attribute>),
bool GenVertex::add_attribute(const std::string&, std::shared_ptr

<Attribute>),
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bool GenParticle::add_attribute(const std::string&, std::shared_ptr

<Attribute>),
void GenEvent::remove_attribute(const std::string&),
void GenParticle::remove_attribute(const std::string&) and
void GenVertex::remove_attribute(const std::string&).

• setting/getting the properties of run info, event, particles, vertices. For
the full list of these functions we refer to the reference manual which
is shipped with the library and to the online reference manual [2].

For a more convenient usage multiple basic functions were combined to op-
erate on list of particles or vertices are implemented.

3.3. LHEF classes

Another important innovation in the HepMC3 library is built-in support
of routines for the LHEF event record/file format [7, 8]. The Les Houches
Event File format (LHEF) is used for passing events from a matrix-element
generator program (MEG) to a MCEG implementing parton showers, un-
derlying event models, hadronisation models etc. Previously the standard
implementation in C++ of the LHEF routines had already been maintained
by Leif Lönnblad. After the merger of the standard LHEF implementation
into the HepMC3 library, HepMC3 is a single package for manipulations with
event records used in MCEGs and MEGs.

3.4. I/O classes and formats

The serialisation of the MCEG event record is the most important part of
the library. Historically the serialisation was implemented in different pack-
ages and in different formats. The number of formats led to compatibility
problems in the interaction between different simulation packages. For in-
stance, significant technical difficulties arise when the LHC-era MCEGs are
used in the simulation and reconstruction chains of older experiments [9]. To
overcome such difficulties the reading and writing of events from/to disk was
implemented in classes that inherit from the same abstract classes HepMC3

::Reader/HepMC3::Writer. Both base classes have very similar structure.
Apart from constructors and destructors only the following functions are
expected to be re-implemented:

• The method to fill next event from input
bool Reader::read_event(GenEvent& evt)
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• The method to write event
void Writer::write_event(const GenEvent &evt)

• The methods to get input/output source state
bool Reader::failed()/bool Writer::failed()

• The methods to close input/output source
bool Reader::close()/bool Writer::close()

• The method to skip full reading some number of events
bool Reader::skip(const int n)

• The methods to set/get extra options for the I/O classes void Reader

::set_options(std::map<std::string, std::string>&), std::map
<std::string, std::string> Reader::get_options()const, void

Writer::set_options(std::map<std::string, std::string>&) and
std::map<std::string, std::string> Writer::get_options()const

.

The standard methods to access GenRunInfo objects that are used for
readers/writers are: std::shared_ptr<GenRunInfo> run_info() and void

set_run_info(std::shared_ptr<GenRunInfo> run). With such a design
the algorithms to read or write events from/to external sources are universal
for all event formats, e.g. for reading,

#include "MyCustomReader.h"

...

std::shared_ptr <Reader > examplereader;

examplereader= std:: make_shared <MyCustomReader >(/*...*/);

...

while ( !examplereader ->failed () ) {

GenEvent evt(Units::GEV ,Units::MM);

examplereader ->read_event(evt);

if ( examplereader ->failed () ) {

std::cout << "End of file reached. Exit." << std::endl;

break;

}

}

In addition to the supported standard described formats, the library allows
users to implement customised input or output format via implementation of
custom Reader and/or Writer classes inherited from the base classes Reader
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and Writer. The custom Reader or Writer class can be linked to the user
codes directly, either as in the previous code listing, or used at run-time via
a plugin mechanism:

...

std::shared_ptr <Reader > examplereader;

examplereader= std:: make_shared <ReaderPlugin >(input ,

"libMyReader", "newMyReader");

...

while ( !examplereader ->failed () ) {

GenEvent evt(Units::GEV , Units::MM);

examplereader ->read_event(evt);

if ( examplereader ->failed () ) {

std::cout << "End of file reached. Exit."<< std::endl;

break;

}

}

The supported formats described were introduced by different groups of
people, and for different purposes. Therefore the amount of information
they hold is significantly different. The ROOTTree, ROOT, LHEF and Asciiv3

formats, in addition to the standard content, can hold almost arbitrary
information via the attributes mechanism.

IO GenEvent

IO_GenEvent is an outdated text-based format used in the HepMC2 [10]
library. The HepMC3 implementation is fully compatible with that in the
HepMC2 library. However, unlike HepMC2, the reading ends after the first
occurring footer HepMC::IO_GenEvent-END_EVENT_LISTING.

The IO_GenEvent record has fixed format, i.e. the information is lim-
ited to particles, vertices, weights, PDF and heavy-ion information, and no
extension is allowed.

The attributes were used to reach compatibility with the HepMC2 soft-
ware in the I/O ReaderAsciiHepMC2 and WriterAsciiHepMC2 classes, e.g.
the attributes with names alphaQCD and alphaEM emulate the corresponding
class members of GenEvent class in the HepMC2 library. With this emula-
tion the events can be read from IO_GenEvent files produced by the HepMC2
library without any loss of information.

The classes that implement I/O in this format are ReaderAsciiHepMC2
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and WriterAsciiHepMC2. The reading of the events by the ReaderAsciiHepMC2
can be tuned by the options "vertex_weights_are_separated",
"event_random_states_are_separated" and "particle_flows_are_separated

" – see Sec. A.2 for details.

Asciiv3

Asciiv3 is the HepMC3 native plain text format. While being similar
to IO_GenEvent, this format is extendable and in comparison to the former
requires less storage space, as it does not save meaningless information on
particles (e.g. colour flow for hadrons).

The information on events is given between the header lines
HepMC::Version X.Y.Z

HepMC::Ascii3-START_EVENT_LISTING,
where X.Y.Z stands for library version and the footer line
HepMC::Ascii3-END_EVENT_LISTING.
The run information (GenRunInfo) is written after the header lines followed
by the lines with information on events. Each non-empty line should start
from a one letter tag that defines how the content of the line should be
interpreted. While reading6 all unknown tags are treated as errors. The tags
for the run information are “W”, “N” and “T”. These are used as follows:

W number of weights

N name of weight 1 name of weight 2 . . .
T name of tool 1 version of tool 1 description of tool 1

The tag “T” can appear multiple times.
Each event starts from line with leading character “E” and ends with the
next line with leading character “E” or footer line. The following tags are
parsed:

E number of particles number of vertices

W value of weight 1 value of weight 2 . . .
U momentum unit length unit

A object OID attribute name string 1 string 2 string 3 . . .
P particle OID parent vertex OID PDG I.D. px py pz e particle mass status,

where px, py, pz and e stand for the particle 4-momentum components. If

6In the presented implementation the event might be omitted with bool Reader::

skip(const int) function without checks for correctness of tags.
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the production vertex has only one incoming particle, the outgoing particles
can be presented as

P particle OID parent particle OID PDG I.D. px py pz e particle mass status

V vertex OID status (comma-separated list of incoming OIDs) @ x y z t,

where x, y, z and t stand for the correspond position components of the
vertex and production time. In case all components of the vertex position
are zero, these can be omitted

V vertex OID status (comma-separated list of incoming OIDs).

The tags “E”, “W”, “U” should appear only once per event. Multiple “A”,
“P”, “V”, “T” tags per event are allowed. Note that vertex with no position
and zero status will not appear in the listing explicitly.

The classes that implement I/O in this format are ReaderAscii and
WriterAscii.

HEPEVT

HEPEVT is an outdated plain text based format used by many MCEGs
written in Fortran (e.g. Pythia6). The main purpose of the implementation
is to provide a compatibility layer for the MCEGs used in the completed
HEP experiments at HERA, LEP and PETRA machines. The HEPEVT
is the most restrictive format and holds only the information on the parti-
cles without any options for extra information. A more detailed description
can be found elsewhere [11]. The classes that implement I/O in this for-
mat are ReaderHEPEVT and WriterHEPEVT. The reading of the events by the
ReaderHEPEVT can be tuned with an option "vertices_positions_are_absent

". The option should be present in the list of options of the ReaderHEPEVT

object to read event record without vertex positions.

ROOTTree

ROOTTree is a binary format based on the ROOT [12] TTree. This for-
mat is implemented using customisation of ROOT Streamer class. Basically,
objects of interests (e.g. GenEvent, GenParticle and others) are serialised as
into corresponding data structures (e.g. GenEventData, GenParticleData)
and written in this way as branches of ROOT TTree. As a result, the cor-
responding TTree saved to a ROOT file, can be interpreted with standard
ROOT without the HepMC3 library itself, i.e. a user with standard ROOT
can retrieve all information on the events in a form of simple structures
GenEventData, GenParticleData etc.
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This has several advantages in comparison to the other formats: it al-
lows random access, access over network, has the best I/O performance and
requires the smallest amount of storage space per event. The classes that
implement I/O in this format are ReaderROOTTree and WriterROOTTree.

ROOT

ROOT is a binary format based on the ROOT [12]. This format is imple-
mented using standard ROOT serialisation and writes the objects to ROOT
files “as is”. The classes that implement I/O in this format are ReaderROOT

and WriterROOT.

LHEF

The plain-text Les Houches Event Format, primarily intended for low-
multiplicity partonic matrix-element event communication. The class that
implement I/O in this format is ReaderLHEF. Currently no implementation
of Writer is provided. The documentation on the LHEF functions can be
found elsewhere [8].

3.5. Search module classes

HepMC3 comes with an optional “search” library for finding particles
related to other particles or vertices. Two main interfaces are defined: Rel-
atives, for finding a particular type of relative, and Feature, for generating
filters based on Features extracted from particles. In addition, the standard
boolean operator on Filters are also defined. A Filter is any object that
has an operator that takes as input a ConstGenParticlePtr and returns a
bool that reflects whether the input particle passes the filter requirements
or not. Filter is defined in Filter.h as an typedef of std::function<bool(
ConstGenParticlePtr)>. The filters may use the Selector class to extract
standard features from a particle and construct relational filters. As an
illustrative example the following code will obtain a list of all final state de-
scendants of a particle that has a transverse momentum larger than 0.1 GeV
and has a pseudorapidity between -2.5 and 2.5:
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std::vector <ConstGenParticlePtr >

getDescendants(ConstGenParticlePtr parent) {

Filter f = (StandardSelector :: STATUS == 1 &&

StandardSelector ::PT > 0.1 &&

StandardSelector ::ETA > -2.5 &&

StandardSelector ::ETA < 2.5);

return applyFilter(f, Relatives :: DESCENDANTS(parent ));

}

3.6. Other classes and free functions

In addition to the classes described above, HepMC3 includes a small
number of auxiliary classes.

The Setup class controls verbosity of warnings.
The Units class holds information on used units. The allowed length units

are mm and cm, while the allowed energy units are MeV and GeV. The func-
tion GenEvent::set_units(Units::MomentumUnit, Units::LengthUnit)

performs conversion between different units used in the event. Note that it
does not affect the units used in the attributes of event.

The Print class provides multiple static functions to produce human-
readable printings of objects in the library. The same task is performed with
free overloaded operators << in PrintStreams.h header.

The functions and macros that help to find out the version of library are
located in Version.h header.

The header ReaderFactory.h provides functions std::shared_ptr<Reader
> deduce_reader(const std::string &filename) and std::shared_ptr

<Reader> deduce_reader(std::istream &) that try to open the a file or
stream for reading and automatically deduce the appropriate reader.

4. Installation, dependencies, compatibility and usage

HepMC3 supports GNU/Linux, OS X and Windows operation systems
and should be able to operate on some other Unix systems. It has been tested
on Ubuntu, CentOS, Fedora, openSUSE, Windows 10 and OS X operating
systems on Intel-compatible 64-bit processors. Binary packages are available
for multiple operating systems, see Tab. 1 for details.

HepMC3 may be installed either from source, or by using precompiled
packages from the repositories of corresponding Linux distributions (for Linux
users), or from Homebrew-HEP for OS X users. For the Windows, BSD and
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Operating system Repository ROOT Version Credits

Mac OS X homebrew-hep [13] no 3.2.0 Enrico Bothmann
Arch Linux AUR [14] no 3.1.1 Frank Siegert
Debian 9 Testing [15] no 3.1.2 Mo Zhou
Ubuntu 19 Universe [16] no 3.1.1
Fedora 28+ EPEL [17] yes 3.2.0 Mattias Ellert
RHEL 7+ and like EPEL [17] yes 3.2.0 Mattias Ellert
SUSE/openSUSE Tumbleweed [18] no 3.1.1
Linux LCG [19] yes 3.1.2
Windows 10 no 3.2.0
BSD 12 no 3.2.0
Solaris no 3.2.0
Multiple pypi [20] no 3.2.0 HepMC Devs.
Linux/MacOSX conda-forge [21] no 3.2.0 Henry Schreiner

Table 1: Summary on systems where HepMC3 was tested and the availability of HepMC3
precompiled binaries. For the majority of tests only the Intel-compatible 64-bit architec-
ture (x86 64) was considered. The ROOT support was tested only for these systems which
provide ROOT packages in the repositories.

Solaris users it is necessary to build the library from sources. Windows 10
users should be able create NSIS [22] installers if needed. Python-based users
can install the HepMC3 packages from the CondaForge [21] or PyPI [20]
repositories.

The detailed instructions to compile the library from sources are provided
in the README.md file distributed with the library source codes and are the
same for all the supported platforms. Only a short version is given below.

4.1. Dependencies

The only basic dependency for the installation of the library from sources
is the availability of a C++ 11 compatible C++ compiler with appropriate
run-time and the build tool CMake [23]. It is recommended to use CMake
of version 3.9 and newer. The basic features of the package can be extended
if additional packages are available, see Tab. 2.
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4.2. Installation from sources

The procedure of installation from sources consists of multiple steps7.
The first step is to get the HepMC3 sources from the git [34] repository:

git clone https :// gitlab.cern.ch/hepmc/HepMC3.git

or from the official site:

wget http :// cern.ch/hepmc/releases/HepMC3 -3.2.0. tar.

gz

tar -xzf HepMC3 -3.2.0. tar.gz

Windows users can use web-browsers and/or proprietary utilities instead.
The second step is to create a work-space area on which to perform the
builds:

mkdir myhepmc3 -build

cd myhepmc3 -build

The third step is to configure, build and install the code with CMake [23]8,
e.g.

cmake -DCMAKE_INSTALL_PREFIX =../

MyInstallationLocation -DHEPMC3_ENABLE_ROOTIO=

OFF ../ HepMC3

cmake --build ./

cmake --install ./

Optionally, after the compilation, it is possible to run the build-in test suite
based on CTest [23]:

ctest ./

7Here and below the commands are given assuming POSIX-compatible shell (e.g. GNU
bash) and Unix-like OS.

8CMake of version 3 could be named as “cmake3” on some systems.
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4.3. Compatibility

Starting from version 3.1.0, the HepMC3 and HepMC2 libraries can co-
exist in one installation, therefore the migration of user code from HepMC2
to HepMC3 can go as easy as possible.

4.4. Usage

As of end 2019 several MCEGs were interfaced to HepMC3, see Tab. 3
for details.
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Package or Used in Purpose
feature

ROOT 6 ROOT, examples, tests Provide ROOT I/O

Doxygen [24] documentation Generate documentation

Pythia 6 interfaces, examples Provide Pythia6 example

Pythia 8 interfaces, examples, Pythia8 examples and tests
tests

TAUOLA interfaces, examples, PHOTOS examples and tests
tests

PHOTOS interfaces, examples, Tauola examples and tests
tests

HepMC 2 tests Compare HepMC3 vs HepMC2

threads tests Check thread safety

graphviz [25] examples Provide GUI event viewer

valgrind [26] tests Check for memory leaks

zlib [27] examples Access compressed ASCII files

Python [28, 29] Python, tests Compile/test Python bindings

binder [30] Python development Generate Python bindings

astyle [31] development Format the code

cppcheck [32] development Do static analysis of the code

NSIS [22] development Create Windows installers

gengetopt [33] development Create option parsers

Table 2: Summary of the packages that can be used in HepMC3. The packages used for
development only are given in the bottom part of the table.
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Code Type Matched versions Interface

Code HepMC3 location

SHERPA-MC [35] MCEG >2.2.8 3.1+ SHERPA-MC
>2.2.6 3.0 SHERPA-MC

JetScape [36] MCEG 1.0 3.0 JetScape

ThePEG 2 [37] MCEG toolkit 2.2.0 3.1+ ThePEG2

Herwig 7 [38] MCEG 7.2.0 3.1+ ThePEG2

Pythia 8 [39] MCEG 8.2+ 3.X HepMC3

Pythia 6 [3] MCEG 6.4 3.1+ HepMC3

Tauola [40] MCEG 1.1.6c 3.X HepMC3

Photos [41] MCEG 3.61 3.X HepMC3

WHIZARD [42] MCEG >2.8.1 3.1+ WHIZARD

Rapgap [43] MCEG >3.303∗ 3.1+ Rapgap

Cascade [44] MCEG >3.00∗ 3.1+ Cascade

EvtGen [45] MCEG master∗ 3.1+ EvtGen

Geant V [46] Simulation master 3.0 GeantV

MC-TESTER [47] Testing 1.25 3.X HepMC3

Rivet [48] Testing 3.0.3 3.1+ Rivet

Table 3: Summary on the usage of HepMC3 in external projects. “master” stands for the
latest version in the used version control system of the official repository, e.g. for master
branch of git repository. If known, the versions where support is expected to be released
are given in brackets. The ∗ symbols denote support implemented in non-official versions
of the codes.
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5. External codes

The library itself embeds some external codes. These are:

• pybind11 [49], a header-only library used for python bindings.

• Pythia 6 [3], a MCEG generator used in the examples.

• gzstream [50], a set of C++ classes wrapping the zlib compression li-
brary.

• Codes from examples of the binder [30] package.

• Various cmake modules were taken from the cmake distribution, see
details in the corresponding modules.

The initial version of the Pythia 8 HepMC3 interface was committed by
Mikhail Kirsanov, who created the HepMC2 interface for the Pythia 8 pack-
age [39]. The later versions were improved by Philip Ilten.

6. Performance

During the event generation by the MCEGs the speed of event construc-
tion typically is not of great concern. Moreover, it strongly depends on the
type of generator, its settings and therefore is not well defined. Therefore,
we concentrate on a better defined characteristics of I/O performance while
using already generated events. The input samples [51] consist of multiple
event samples with various signal processes saved in HepMC2 files. These
include the e+e− → hadrons processes for

√
s = 10–206 GeV, e+e− → Υ,

e±p deep-inelastic scattering, pp→ jets for
√
s = 7 and 13 TeV, and more.

With these samples series of tests were performed with HepMC2 and
HepMC3 libraries. All tests were performed on CentOS 7 x86 64 with ROOT
version 6.18, zlib version 1.27, HepMC2 version 2.06.10, gcc version 4.8.5 and
default settings for ROOT compression level, ROOT compression algorithm
and the precision of Asciiv3 output. Before the tests all the files were loaded
into memory.

The measurements of relative samples sizes are given in Fig. 1.
The Fig. 1 shows that Asciiv3 with default precision has the same size as

IO_GenEvent, and the ROOTTree format provides the most efficient packing of
events ahead of compression with zlib. The measurements of total reading
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time for the samples are given in Fig. 2. The same measurements as described
above were corrected for the time of opening of files are given in Fig. 3.

The Fig. 3 shows that reading from Asciiv3 is typically faster than from
IO GenEvent in HepMC3. The reading from Asciiv3 is in HepMC3 is some-
times slightly slower than reading from IO_GenEvent in HepMC2. The small
difference can be explained with extra time needed to assure thread safety.

The ROOTTree format provides the most efficient reading of events for
almost all cases.

7. Interfaces, examples and documentation

7.1. Interfaces

The presented library contains some interfaces to the MCEGs, which do
not ship the interfaces to HepMC3, see Tab. 3. These interfaces can be used
instantly in the production or tests to generate the Monte Carlo simulated
events. One important difference between the HepMC2 and HepMC3 is that
the later delivers only it’s interface for the Pythia6 generator, while the
former provided C++ wrappers to the Pythia6 functions.

7.2. Examples

For the users convenience, numerous example programs are provided with
the library. A brief overview of these codes is given in Tab. 4.

These examples can be modified and/or compiled using with external
HepMC3 installation. For instance, with an installed HepMC3 it is possible
to compile examples only:

mkdir -p myexamples

cd myexamples

git clone https :// gitlab.cern.ch/hepmc/HepMC3

...

cd HepMC3/examples/

cmake -DUSE_INSTALLED_HEPMC3=ON CMakeLists.txt

cmake --build .

7.3. Documentation

The online documentation is available on the HepMC3 home page [1]. It
includes the automatically generated documentation on the codes as well as
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Example location Requires Purpose

BasicExamples/
basic tree.cc Build event from scratch
hepevt wrapper example fortran.f FORTRAN Use HEPEVT wrapper
HepMC2 reader example.cc Read HepMC2

IO GenEvent files
HepMC3 fileIO example.cc Read HepMC3 Asciiv3

ConvertExample/ (ROOT,zlib) Convert files from
one format into another

LHEFExample/ Manipulate LHEF events

Pythia6Example/ FORTRAN Use Pythia6 interface

Pythia8Example/ Pythia8 Use Pythia8 interface

ViewerExample/ ROOT, Use GUI event browser
graphviz

RootIOExample/ ROOT Use ROOT format

RootIOExample2/ ROOT Use ROOT format
with own class

RootIOExample3/ ROOT Use ROOTTree format

Table 4: List of examples in HepMC3. The optional dependencies are given in brackets.

extra material on specific topics, e.g. the LHEF format. The same documen-
tation can be generated from the sources using the doxygen [24] utility and
appropriate configuration options, e.g.

cmake -DHEPMC3_BUILD_DOCS=ON <other options >

CMakeLists.txt

7.4. Python bindings

HepMC includes C++ codes for Python [52] language bindings. The
codes are suitable for compilation of Python modules for Python2.7 [28] and
Python3 [29]. These codes were generated automatically using the binder [30]
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utility and depend on the pybind11 [49] header-only library included in the
HepMC3 codes. So far the binding codes are available for all classes in
HepMC3 and LHEF name spaces but some in Search engine. For usage
examples please look into the tests. To turn on the compilation of bindings
use

cmake -DHEPMC3_ENABLE_PYTHON=ON <options > CMakeLists

.txt

By default the Python modules will be generated for Python2 and Python3
if these are found in the system. The exact desired Python version can be
specified appropriate configuration options, e.g.

cmake -DHEPMC3_PYTHON_VERSIONS =2.7 ,3.4 ,3.6 <other

options > CMakeLists.txt

In case the test suite is enabled, tests of python bindings with all the en-
abled versions will run as well. In the automatically generated codes it was
assumed that std::ostream will be mapped onto io.stringIO() and sim-
ilar objects. The constructors of classes derived from Reader/Writer with
std::ifstreams/std::ostreams were omitted. To benchmark the imple-
mented capabilities, the Pythia8 HepMC3 interface was re-implemented in
Python and tested together with Python bindings of Pythia8, see Fig.??.

Despite not being recommended, it should be possible to compile the
Python bindings using the installed version of HepMC3. To do this, copy
the python directory outside the source tree, uncomment the line

project(pyHepMC3 CXX)

in python/CMakeLists.txt and run CMake inside the python directory with
the option -DUSE_INSTALLED_HEPMC3=ON.

The package pyhepmc/pyhepmc-ng [53] provides bindings to some core
functions of HepMC3.
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Figure 1: Size of events samples in different formats relatively to the size of same sample
in HepMC2 IO GenEvent format. The physical content of the files with simulated events is
encoded in the name of file. “BFactory” and “LEP” in the file names indicate simulation of
e+e− collisions at B-factories and PETRA/TRISTAN/LEP colliders. The main simulated
processes are e+e− → hadrons for “LEP” and e+e− → resonances → hadrons. “DIS” in
the file name indicates the simulation of deeply-inelastic e±p scattering at HERA collider.
“LHC”, “SppS” and “TVT” in the file name indicate the simulation of pp collisions at
LHC, SppS or Tevatron colliders. The numbers following the collider name abbreviate the
centre-of mass energy of the collision in GeV or TeV. In addition, the names of files with
pp simulated events include the abbreviated in the main process name, e.g. “LHC-8-Jets”
abbreviates the inclusive jet production.
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reading time of same sample in HepMC2 IO GenEvent format. See Fig. 1 for details.
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Figure 3: Corrected reading time of events samples in different formats relatively to the
corrected reading time of same sample in HepMC2 IO GenEvent format. The correction
is done subtracting the time needed to read the first event in the file. See Fig. 1 for details.
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using the HepMC2, HepMC3, Pythia8 and python packages from the EPEL repository on
x86 64 machine running CentOS7. The C++ codes were compiled with standard options
for this platform using the gcc compiler of version 4.8.5.
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8. Conclusions

The HepMC3 library is designed to perform manipulations with event
records of High Energy Physics Monte Carlo Event Generators (MCEGs).
The library version 3.2.0 has been released in November 2019.

The I/O functionality of the library has been extended to support com-
mon input and output formats of HEP MCEGs, including formats used
in Fortran HEP MCEGs, formats used in HepMC2 library and ROOT.
The library is already supported by many MCEGs (e.g. Herwig, Sherpa,
WHIZARD), provides interfaces to others (Pythia8, TAUOLA and PHO-
TOS) and can replace the older HepMC versions in various applications
dealing with Monte Carlo event records (e.g. in Rivet).
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Appendix A

A.1 Status codes

Status code Meaning Usage

0 Not defined (null entry) Not a meaningful status

1 Undecayed physical particle Recommended for all cases

2 Decayed physical particle Recommended for all cases

3 Documentation line Often used to indicate
in/out particles in hard process

4 Incoming beam particle Recommended for all cases

5–10 Reserved for future standards Should not be used

11–200 Generator-dependent For generator usage

201– Simulation-dependent For simulation software usage

Table 5: Status codes for particles.

Status code Meaning Usage

0 Not defined (null entry) Vertex with no meaningful status

1- Generator-dependent For generator usage

Table 6: Status codes for vertices.

A.2 Compatibility with earlier version of HepMC3

Prior to version 3.2.0, the following attributes were handled during the
reading of IO_GenEvent files in a different way. The differences are:
For the particles:

• The particle flows were added to the event as multiple IntAttribute

attributes with names “flow1” and “flow2”.
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• The vertex weights were added to the event as multiple DoubleAttribute
attributes with names “weights1”, “weights2” . . . “weightsN”.

• The event random number generator states were added to the event as
multiple IntAttribute attributes with names “random state1”, “ran-
dom state2” . . . “random stateN”.

The old behaviour during the event reading can be restored setting the op-
tions "particle_flows_are_separated", "vertex_weights_are_separated
" and
"event_random_states_are_separated".

A.3 Attributes

The attributes described below have a simple structure with all important
members being public. Therefore, the functions like void GenPDFInfo::

set(...) are provided only for convenience and are not described in detail
below.

A.3.1 GenPdfInfo

The GenPDFInfo contains the following data members:

• int parton_id[2] – array with two elements holding PDG I.D. for
the first and second interacting parton.

• int pdf_id[2] – array with two elements holding I.D.s of PDF distri-
butions as encoded in the LHAPDF [54] library.

• double scale – value of factorisation scale (in GeV).

• double x[2] – array with two elements holding fractions of interacting
partons momentum with respect to the momentum of their beams.

• double xf[2] – array with two elements holding the values of PDF.

The representation of GenPDFInfo as std::string is structured as

parton id[0] parton id[1] x[0] x[1] scale xf[0] xf[1] pdf id[0] pdf id[1]
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A.3.2 GenCrossSection

The GenCrossSection contains the following data members:

• long int accepted_events – the number of generated events.

• long int attempted_events – the number of attempted events.

• std::vector<double> cross_sections – values of cross-sections.

• std::vector<double> cross_section_errors – values of cross-section
uncertainties.

The representation of GenCrossSection as std::string is structured as

cross sections[0] cross section errors[0] accepted events attempted events

cross sections[1] cross section errors[1] . . .

A.3.3 GenHeavyIon

The GenHeavyIon contains the following data members:

• int Ncoll_hard the number of hard nucleon-nucleon collisions.

• int Npart_proj the number of participating nucleons in the projectile.

• int Npart_targ the number of participating nucleons in the target.

• int Ncoll the number of inelastic nucleon-nucleon collisions.

• Deprecated int spectator_neutrons Total number of spectator neu-
trons.

• Deprecated int spectator_protons Total number of spectator pro-
tons.

• int N_Nwounded_collisions Collisions with a diffractively excited
target nucleon.

• int Nwounded_N_collisions Collisions with a diffractively excited
projectile nucleon.

• int Nwounded_Nwounded_collisions Non-diffractive or doubly diffrac-
tive collisions.

• double impact_parameter The impact parameter.
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• double event_plane_angle The event plane angle.

• Deprecated double eccentricity The eccentricity.

• double sigma_inel_NN The assumed inelastic nucleon-nucleon cross
section.

• double centrality The centrality.

• double user_cent_estimate A user defined centrality estimator.

• int Nspec_proj_n The number of spectator neutrons in the projectile.

• int Nspec_targ_n The number of spectator neutrons in the target.

• int Nspec_proj_p The number of spectator protons in the projectile.

• int Nspec_targ_p The number of spectator protons in the target.

• std::map<int,double> participant_plane_angles Participant plane
angles.

• std::map<int,double> eccentricities Eccentricities.

The std::string representation of GenHeavyIon can be built in two ways:

• The “old” version is structured as:

v0 Ncoll hard . . . Nspec targ p

participant plane angles.size()

participant plane angles[0].first participant plane angles[0].second . . .
eccentricities.size()

eccentricities[0].first eccentricities[0].second . . .

With all other members described above listed between Ncoll hard and
Nspec targ p.

• The “new” version is structured as:

v1 Ncoll hard . . . Nspec targ p

participant plane angles.size()

participant plane angles[0].first participant plane angles[0].second . . .
eccentricities.size()

eccentricities[0].first eccentricities[0].second . . .
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With all non-deprecated members described above listed between Ncoll hard

and Nspec targ p.

The “new” should comply to the Lisbon Accord [55] and is aimed to be
helpful for the groups performing heavy-ion physics studies.
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