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Introduction

The measurements of the Higgs boson properties [1-4] are a paradigm of the physics pro-

gram at the Large Hadron Collider (LHC). A precise determination of the Higgs couplings

is crucial to test possible deviations from the Standard Model.

fusion.

In hadron collisions, the largest production mode of the Higgs boson is from gluon

The Higgs boson couples to the gluons via a heavy-quark loop. Accordingly,



the inclusive Higgs production cross section is known at next-to-leading order (NLO) [5,
6] in the strong coupling constant ay of perturbative QCD, with full heavy-quark mass
dependence. The NLO corrections more than double the leading-order cross section. In this
fashion, the next-to-next-to-leading order (NNLO) corrections are not known yet. However,
in the limit in which the heavy-quark mass is much larger than the other scales in the
process, i.e. by replacing the loop-mediated Higgs-gluon coupling by a tree-level effective
coupling, which is often termed Higgs Effective Field Theory (HEFT), inclusive Higgs
production from gluon fusion is known at next-to-next-to-next-to-leading order (N3LO) |7,
8], whose accuracy has reached the 5% level [9]. The next-to-largest production mode of the
Higgs boson in hadron collisions is from vector-boson fusion, for which inclusive Higgs [10]
and double-Higgs [11] production are known at N3LO in the deep inelastic scattering (DIS)
approximation. Also the cross section for the production of a Higgs boson in bottom quark
fusion in the five flavour scheme is known at N3LO in a; [12].

To go beyond inclusive cross sections with hadronic initial states requires to measure
and compute differential distributions. Only very few are known at N3LO accuracy: the
Higgs rapidity distribution, computed in the HEFT [13, 14], the Higgs rapidity and trans-
verse momentum distributions in vector boson fusion in the DIS approximation [10], and jet
production in DIS [15]. More differential distributions, like the Higgs transverse momen-
tum distribution [16] or Higgs production in association with a jet [17, 18], are known in the
HEFT at NNLO in «g. They usually involve (two-loop) 2 — 2 scattering amplitudes, and
sector-decomposition [19, 20], slicing [21-23] or subtraction [24-52] methods at NNLO,*
to deal with the computation of the cross section where the phase-space integration of the
(double and single) real radiation is performed with generic acceptance cuts. With some
abuse of terminology, we shall generically refer to those methods as subtraction methods.

Despite the recent progress in computing cross sections and differential distributions at
N3LO in the strong coupling constant, extending these results to more general observables
and processes requires further developments on the theory side, both for the computation
of the purely virtual three-loop corrections and for the development of subtraction methods
at N3LO. Indeed, on the one hand, so far there is no complete 2-to-2 three-loop scattering
amplitude known in QCD — only the three-loop gluon-gluon scattering amplitude in N = 4
super-Yang-Mills theory is known [53] (though the structure of the infrared singularities is
known for generic massless three-loop amplitudes [54, 55]). On the other hand, the tenet
of the subtraction methods is the universal behaviour of the QCD scattering amplitudes
in the infrared — soft and/or collinear — limits. Understanding the behaviour of the
amplitudes in these limits at a given order is therefore a necessary ingredient to develop a
subtraction scheme at that order.

At NNLO, the infrared behaviour of amplitudes is embodied in the tree-level currents,
with three collinear partons or two soft partons [56-59]; and in the one-loop currents, with
two collinear partons or one soft gluon [60-64]. The NNLO counterterms for unresolved
double-parton and single-parton configurations are then built out of those universal infrared
currents.

'Projection to Born [52] and gr subtraction [21] have been successfully used also in evaluations at N*L.O
accuracy, refs. [10, 11, 15] and [13], respectively.



The infrared behaviour of amplitudes at N®LO is embodied in the two-loop currents,
with two collinear partons [65-67] or one soft gluon [68, 69]; in the one-loop currents, with
three collinear partons [70, 71]? or two soft partons; and in the tree-level currents, with
four? collinear partons [58, 73, 74] or three soft partons [75].*

The results for the splitting amplitudes of refs. [58, 73, 74], however, are not directly
applicable to the construction of a subtraction method, because they have been extracted
from four-dimensional amplitudes with fixed external helicity states. In order to regulate
the phase space divergences it is important to work with a suitable regularisation scheme. A
particularly convenient such scheme is the conventional dimensional regularisation (CDR)
scheme, for which the number of spacetime dimensions is fixed to D = 4—2¢, and the quarks
and gluons have 2 and D — 2 helicity states, respectively. In this paper we compute the
squared tree-level quadruple-collinear splitting amplitudes for a quark parent in the CDR
scheme. Further, we compute all ensuing iterated limits where some of the collinear partons
become themselves unresolved, i.e., soft or collinear. Indeed, in designing counterterms for
subtraction methods beyond NLO, it has become evident that it is important to have
a detailed knowledge of iterated limits which describe overlapping and strongly-ordered
divergences.

This paper is organised as follows: in section 2, we discuss in general the limit when
m massless partons become collinear to each other in a tree-level amplitude. In section 3,
we present the main result of our paper, namely the computation of the tree-level splitting
amplitudes for a quark parent to split into four collinear partons. The explicit results,
which are too long to be recorded in this paper, are made available in computer-readable
form [76]. In section 4 we discuss in general the limit when m’ massless partons become
collinear to each other within a bigger cluster of m collinear partons. We then specify the
cases when two or three partons become collinear to each other within a cluster of four
collinear partons. In section 5, we review the tree-level soft currents that we use in this
paper, namely the single soft gluon and the double soft currents at tree-level. In section 6,
we describe the limit when one gluon becomes soft within a cluster of m collinear partons,
and then we consider the particular cases of m = 2,3,4. In section 7, we describe the
limit when a ¢g pair or two gluons become soft within a cluster of m collinear partons,
specifying it then to m = 3,4. In section 8, we summarise our findings. We include several
appendices with technical material omitted throughout the main text.

2 Multiple collinear limits at tree level

The aim of this paper is to study the behaviour of tree-level QCD amplitudes in the
limit where a certain number of massless partons become collinear. To be more concrete,
consider a scattering of n particles with momenta p; and with flavour, spin and colour
quantum numbers f;, s; and ¢;, respectively, and assume that p? =0forl1 <i<m<n-3.

2QOne-loop currents with three collinear partons are also known for mixed QCD+QED cases [72].

3Tree-level currents with more than four collinear gluons are known for MHV configurations [73].

“In ref. [75], the triple soft-gluon radiation is displayed, including some results on the quadruple soft-
gluon radiation from two hard partons.



Our goal is to study the behaviour of the amplitude as py, ..., pn become simultaneously
collinear to some light-like direction P. Tt is well known that in this limit the scattering
amplitude diverges order by order in perturbation theory, and the leading behaviour in the
limit is described by the amplitude for the production of a massless particle of momentum
P from a scattering of the particles that do not take part in the collinear limit, multiplied
by a universal factor which captures the collinear divergence and only depends on the
particles in the collinear set. In the remainder of this section we define the collinear limit
we are interested in more precisely and we set our notations and conventions.

In order to parametrise the approach to the collinear limit, it is convenient to introduce
a light-cone decomposition for all the momenta in the m-parton collinear set,

2 1z
ki, n

20, P’

Pl = a PP R — i=1,...,m, (2.1)
where the light-like momentum P specifies the collinear direction, Pk 1; = 0, z; are the
longitudinal momentum fractions with respect to the parent momentum P* = """, pf and
n* is an auxiliary light-like vector such that n-k;; =0and n-p; # 0 # n - P , and which
specifies how the collinear direction is approached. The collinear limit is then defined as
the limit in which the transverse momenta k; approach zero at the same rate. We stress
that this definition of the collinear limit is frame-independent, and it only depends on the
collinear direction P and the transverse momenta k ;- In particular it is independent of the
choice of the auxiliary vector n; changing the direction of n will merely affect the direction
from which the collinear limit is approached, but not the behaviour of the amplitude in the
limit. The variables that appear in eq. (2.1) are, at least a priori, completely unconstrained
apart from on-shellness and transversality, n -k ; = Pk 1; = 0, and so the sums of the
momentum fractions x; and the transverse momenta k| ; are unconstrained. Therefore, the
parametrisation in eq. (2.1) seems to depend on (D —1)m+2 degrees of freedom in D space-
time dimensions: the m variables x; and k,; in addition to the two light-like directions P
and n. This naive counting seems to be at odds with the fact that a set of m light-like mo-
menta (that do not sum up to zero) depend on (D —1)m degrees of freedom. This apparent
conundrum is resolved upon noting that the collinear limit is invariant under longitudinal
boosts in the direction of the parent momentum P = ) ", p;. This suggests to trade x;
and k| ; for new quantities z; and k 1; that are boost-invariant in the direction of the parent
momentum. In appendix A we show that a convenient set of such variables is given by

m
€T oM ~ .
Gm e = R =R s Y K =1 m. (2.2)

m
iz Pen =

It is easy to see that these new variables satisfy the constraints,
m m _
Zzi =1 and Zkiz =0, (2.3)
i=1 i=1

thereby reducing the number of degrees of freedom to (D — 1)m.



It is well known that in the limit where a subset of massless particles is collinear a
scattering amplitude factorises as [77-79]

Gl MG (P, pn)

C,C1...Cm;S,81-.-8m Mc,cm+1...cn;s,sm+1...sn

- (2.4)
= Spfflfm ffm+1...fn (Pvpm—l-l’,pn)

Here 4., indicates that the equality only holds up to terms that are power-suppressed in
the collinear limit, while f, s and ¢ respectively denote the flavour, spin and colour indices
of the parent particle. Note that in a theory with only fermions and gluons the flavour of
the parent is uniquely determined by the flavours of the particles in the collinear set. We
will therefore often suppress the dependence of the splitting amplitude on the flavour of the
parent parton. The quantity Sp appearing on the right-hand side is called a splitting am-
plitude and only depends on the kinematics and the quantum numbers in the collinear set.

The factorisation in eq. (2.4) is valid to all orders in perturbation theory. It implies
that also the squared matrix element must factorise. We use the following notation for the
matrix element summed over all spin and colour indices,

2 C1...Cn;81...8n 2
Mg 1 spn)P = Y [ METEE (L pa)| (2:5)
(814e+ey8n)
(e1,-.sCn)
Using this notation, the factorisation of the squared matrix element can be concisely written
as

S1..m

2 20* g3 ! Ass' / ~
(gl...’m ’Mflfn(p177pn)| = > Pslsfm ;;erl...fn(Pvpm-i-lw")pn)7 (26)

where g; denotes the strong coupling constant and u is the scale introduced by dimensional
regularisation. A sum over the spin indices s and s’ is understood, and we defined the
Mandelstam invariant

st.m= (P14 +Dpm)”. (2.7)
Throughout this paper we work in Conventional Dimensional Regularisation (CDR)), where
the gluons have D — 2 polarisations. 7?;,/,L+1... i denotes the helicity tensor obtained by not
summing over the spin indices of the parent parton,

*
} : C,Cm41.--CniS,8m41..-5n CCmg1--Cn3S \Smg1...5n (2 8)

SS —
ffm+1---fn - ffm+1~-~fn ffm+1~~~fn ’

(SmA1,m55n)

(CyCm415ee5Cn)
where for the sake of clarity we have suppressed the momenta on which the amplitude
depends. The tensorial structure of the factorisation in eq. (2.6) is necessary to correctly
capture all spin correlations. Due to colour conservation in the hard amplitude there are no
non-trivial colour correlations, and we therefore sum over the colour ¢ of the parent parton
in eq. (2.8). The quantity ]5;13' £, iDL €q. (2.6) is the (polarised) splitting amplitude for
the squared matrix element. It depends on the transverse momenta &; and momentum
fractions z; of the particles in the collinear set as well as the spin indices of the parent



parton. As in general no confusion will arise, we will always suppress the dependence of
the splitting amplitude on its arguments. It is related to Sp by

2412¢ g2 m=l , ] *

SS _ C,C1...Cm;S,81-...Sm c,C.. Cm,S ,81...5m

St Pfl...fm - Cf ( Z ) Spfflmfm Sp ffl i :| , (29)
S15e.0sSm

(07017"'7Cm)

where Cy is the number of colour degrees of freedom of the parent parton with flavour f,
ie., Cy= N2 —1 for a gluon and Cq = N, for a quark.

It is sometimes useful to define the unpolarised splitting amplitude by averaging over
the spins of the parent parton,

D 1 ss’
<Pf1...fm>Epr05 ' PE g (2.10)

where N, denotes the number of physical polarisation states for the parent parton. The
splitting amplitudes for the squared matrix element have been computed at tree level for
the emission of up to three collinear partons in refs. [56, 57]. The goal of this paper is
to compute for the first time the tree-level splitting amplitudes® for the squared matrix
element for the emission of up to four partons, in the case where the parent parton is a
quark.

When the parent parton is a quark, Lorentz invariance implies that the fermion number
and the helicity must be conserved. Then it is easy to see that the tensorial structure of
the splitting amplitude is trivial,

PE g =8 Ppyg) - (2.11)

For m = 2 and m = 3 the corresponding splitting amplitudes read [57, 80],

A 1+ 22
() =Cr (T2 —c1-2) (2.12)
<p<jiqéq3> = CFTRQH,S )
(Pjigags) = CFTR(Q123 + Qu32) + Cr <CF - > <Q§3d3 + Qfsd)z) ;

~ (ab ab) (nabd) nab)
(Pyrgaqs) = Ch (Ql )+ le 3) + CrCa (Qu 3 T Qél 3 > )

5Since in general no confusion arise, we refer to both Sp and p simply as splitting amplitudes.



with

1 80 2. 4 )2 .
Qup= 2ot | Tk AR (g (ziﬂj— S”) , (2.13)
2 Sij SijSijk Zi—‘ij Sijk
. 25
QU =(1-¢ (SJ'“ —e) (2.14)
Sl]
. 1 2 2. 1— 2 .
+S”’“[ A2 —e<( ) g g B >—62(1—zk)}
Sij 1—Zj l—Zk l—Zj 1—Zk
2
_ Sijk z,[ 1427 _6<1+21—Zj>_62],
SijSik 2 (1—2]‘)<1—Zk) l—zk
2 2 € z»z—i-zz)
(ab) Sijk zp+1 ( i 75y
= — — 1 2.15
Q”’k 25ik5jkz Z,L'Zj Zl'Zj 6(6+ ) ( )
2 2
. 1— 2 1—2.)3 6(1—2]') (zizj—l—z—i—z-)
_i_M ( zz)zk+( ZJ) _ ' J +62(Zk—|-1)
Sik ZiZj ZiZj
+(1—¢) [e—(l—e)sjk} ,
Sik
Qe _ Siik (1_6)2]2'+2(1_Zj)+(1_€)(1_2k)2+2zk (2.16)
ij:k 25ij5ik 1— Zk Zj '
2 2
Sii 1-— 1-— 2
. (LI
45ik3jk ZiZg
2 2
Sijk 2 (Zi _22i+2) % (Zj _6Zj+6) Zk (ZZ‘—2Zj) —zj
2k g +2e
28ij Zj (1—Zk) Zj (1—Zk)
sigh | _Zi+2(1*2j)(2r2k)+zj C(A=z) e+ (1—2)°
QSik Zj (1 - Zk) Zi%g
2 2 3 2
z7+ z5 1—2.)3— 2.
+e(l—z) [ —L —¢ +(1—6)( %) =2+ %
2% 2 (1—zy)
t; e 1
1— ij,k - -
+( 6) [4Sij2 24|
where T = %, and Cr and C4 denote the quadratic Casimirs of the fundamental and

adjoint representations of SU(N,),

_NZ-1

C
F= 9N,

and Cyq = N,. (2.17)

The quantity ;; is defined as

RiSjk — ZjSik 4 Zi — Zj )

tii =2 i 2.18
ik zi + 25 2 + 2k %ij ( )



Note that the combination,
1

N, = Ca—2Cr, (2.19)
occurs in eq. (2.12) as well as later in the text and signals contributions which are sub-
leading in N..

In the case where the parent parton is a gluon, the helicity-tensor is no longer diagonal.
In order to simplify the discussion as much as possible, for the rest of the paper we will

work in the axial gauge, where the gluon field is subject to the following two conditions:
oA =n, AP =0, (2.20)

where n is an arbitrary light-like reference vector. In this gauge, the gluon propagator
takes the form

0% " (p, n) P’ + ntp”

: d*™ (p.n) = —g" + 2.21

P (p;n) =—g - (2.21)

In principle, we may choose a different reference vector for every gluon (external or inter-

nal), as long as the reference vector is not orthogonal to the momentum. In our case, it

is convenient to choose all gauge reference vectors to coincide with the reference vector n

appearing in the definition of the collinear limit in eq. (2.1). With this gauge choice, we

can write the collinear factorisation for a parent gluon in terms of Lorentz indices rather

than helicities [57],

262

m—1
) P,ul/ fm 7}.f’m+1 fn,,uzz(P pm-‘,—l,...,pn)’

(2.22)
where quantities with open Lorentz indices are obtained by amputating the polarisation

2
%1m|Mf1fn(p177pn)‘2 - < E

S1..m

vectors. The formulation in terms of Lorentz indices has the advantage that we do not need
to work with the extra-dimensional physical polarisation states of the gluon. The complete
tensor structure of the splitting amplitude contains terms involving the transverse momenta
of the collinear partons [57],

DUV _ g)
P =9 AR

w f1 e (2.23)
i,5=1

Let us make a comment about gauge invariance. Since physical polarisation states are trans-

verse, only the transverse part of a Lorentz tensor carries physical information (because

the non-transverse part vanishes upon contraction with a physical polarisation vector). For

this reason it is often sufficient to consider Lorentz tensors that are explicitly transverse.

This is the case of the tensor 7}‘}1:“1“. i in eq. (2.22), which can be chosen to be explicitly

transverse, i.e., it can be chosen to satisfy

The splitting amplitude in eq. (2.23), however, is in general not transverse, because we
have
124 v 4(9)
B, P =P A7 (2.25)



This is immaterial so long as the splitting amplitude is contracted to a tensor 7}‘}';“ o

that is transverse. We could alternatively have defined an explicitly transverse splitting
amplitude by replacing g"” by —d"”(P,n) in eq. (2.23), at the price of introducing terms
proportional to the gauge vector n that cancel when contracted with a transverse quantity.

3 Quark-parent splitting amplitudes for four collinear partons

In this section we present the main result of our paper, namely the computation of the
tree-level splitting amplitudes for m = 4 collinear partons, in the case where the parent
parton is a quark. The computation follows the same lines as the computation of the case
m = 3 in ref. [57], and we review the different steps for completeness in the remainder of
this section. Our results for the splitting amplitudes are rather lengthy. We therefore do
not present all of them here in printed form, but we make them available in computer-
readable form [76]. Note that the constraints in eq. (2.3) have not been imposed on the
splitting amplitudes. This may allow us, through crossing symmetry, to readily obtain the
splitting amplitudes for initial-state collinear emissions [81].

Let us start by describing the steps we perform to compute the splitting amplitudes.
Our goal is to isolate the leading divergent behaviour of a tree-level amplitude in the limit
where m partons become collinear, defined as the limit where their transverse momenta k| ;
in eq. (2.1) approach zero at the same rate. In order to isolate the leading behaviour, we
introduce a small parameter A and perform the uniform rescaling k; — A\k1;, 1 <7 < m.
After this rescaling the matrix element depends on A, and we can approach the collinear
limit by expanding the matrix element into a Laurent series around A = 0. The leading

m=1) "is universal and

term in the expansion, which corresponds to the coefficient of 1/ A2
described by the collinear factorisation in eq. (2.6).

In applying the previous algorithm, we could start from any amplitude for n > m + 3
partons, work out the interferences between all Feynman diagrams in D dimensions and
only keep their contribution to the leading term in A. In ref. [57] it was argued that
when working in a physical gauge (e.g., axial gauge) only a subset of diagrams needs to
be considered. Indeed, in a physical gauge contributions from Feynman diagrams where
collinear partons are separated by a hard propagator are subleading in the collinear limit.
As a consequence, we only need to consider a subset of Feynman diagrams in the axial

gauge, and we have

G My (D1, o) =

m—1
2M2693 (n)s * 1 -(n)ss (n)s (31)

S1..m

where a sum over the spin indices s, s’ of the intermediate state is understood, and
we suppress all colour and spin indices of the external partons. Here M;’}Zrilm fn =

M;v})msﬂm In (P, pm+1,---,Pn) denotes the sum of all Feynman diagrams with an off-shell
leg with momentum P, flavour f and spin s. Note that this subset of Feynman diagrams
is by itself not gauge invariant, and the superscript (n) indicates the dependence on the



gauge choice. The squared off-shell current Vf(f)sfn may be written as the interference of
two colour-dressed off-shell currents,

m—1

2#2595 (n)ss’ 1 €,C1...Cm;38"S1...5m * C,C1...Cm;881...8Sm

<m VRO =g 30t e,
S15-+58m

(67017"'76771)

(3.2)
where C; is defined after eq. (2.9). Note that also Vf(f);:; depends on the gauge vector
n before the collinear limit is taken. Since the collinear limit is gauge invariant, this
dependence disappears in the limit, and the squared off-shell current reduces to the splitting
amplitude,

GV (1o pm) = PE (3.3)

Using eq. (3.3) we can substantially reduce the number of interfering Feynman dia-
grams that we need to evaluate. This strategy can always be used, independently of the
flavour of the parent parton. We focus in this paper solely on the case where the parent
parton is a quark, f = ¢. In that situation we can further simplify the computation by
averaging over the spins of the parent quark and use eq. (2.11) to recover the polarised
splitting amplitude from the unpolarised one. Averaging over fermion spins is equivalent
to computing the trace of Dirac spin indices, and we obtain the following simple formula
relating the unpolarised splitting amplitude to the squared off-shell current,

W, (i, ,pm>> )

P =% |T
< flfm> %1 I'( AP - n

We have used this procedure to compute all quark-initiated splitting amplitudes up to
m = 4, and we reproduce all known results for the cases m = 2 and 3 in eq. (2.12). The
results for m = 4 are new and are presented for the first time in this paper. More precisely,
there are three different quark-initiated splitting amplitudes of the form ¢ — fifsfsq,
with (f1, f2, f3) € {(7, 4, 9),(q,¢,9),(g,9,9)}. Splitting amplitudes for anti-quark initiated
processes can easily be obtained from charge conjugation. In the remainder of this section
we discuss in more detail the computation of these splitting amplitudes. The explicit results
are available in computer-readable form [76].

Let us start by discussing the collinear splitting ¢ — ¢'¢’gq. There are five diagrams
that contribute to the off-shell current Jg g in eq. (3.2). The diagrams are shown in
figure 1. Going through the steps outlined above, we find that the result for the splitting
amplitude ¢ — ¢'¢’gq can be decomposed into an ‘abelian’ and a ‘non-abelian’ part,

(P,

1 > (ab 1 A(nab
T dbg30a) = §C%<P( o)+ §CACF<PE ) . (3.5)

71959394 71959394
The indices carried by the parton label refer to the indices of the momenta and the mo-
mentum fractions of the partons.

In the case where the quarks in the final state have the same flavour, ¢’ = ¢, we need
to include also Feynman diagrams where the quarks 2 and 4 in figure 1 are interchanged.

,10,



Figure 1. The Feynman diagrams contributing to the off-shell current ¢ — ¢ ¢5g3q4. In the case

of identical quarks, ¢} = g4, we also need to include the diagrams with ¢5 and ¢4 exchanged.

This naturally leads to the following representation of the splitting amplitude ¢ — gqgq,

. ~ A (id
Prragsas) = | (Piganas) + 2 0 4)| + (P ghguan) - (3.6)
The terms in square brackets denote the contributions from the splitting amplitude for
different quark flavours in eq. (3.5). The last term is new, and captures interference con-
tributions from identical quarks. We can decompose it into contributions with different
colour factors, corresponding again to ‘abelian’ and ‘non-abelian’ parts,
o 1 o 1 o
(Pliggsar) = 3CH2Cr = Ca)(Piipga)) + 7CaCr(Ca = 208)(Prghei?). (3.7)

41929394 41929394 1929394

Note that, because of eq. (2.19), the two terms on the right-hand side of eq. (3.7) yield a
contribution to eq. (3.6) which is sub-leading in N,.

Finally let us discuss the splitting amplitude ¢ — gggq. The Feynman diagrams
contributing to the off-shell current are shown in figure 2. We can decompose the splitting
amplitude into contributions from different colour factors as follows,

H(al H(na 3 H(na
<P919293‘14> = C%<P9(1;)2)93q4> + C%CA <P£§192bg)31q4> + 501240}? <P£$192bg)3244>‘ (3'8)

We note here that the computation of nggq poses a challenge due to the large number
of interference diagrams that need to be evaluated once all gluon permutations are taken
into account. An important step in the computation was therefore to exploit as much as
possible symmetries between the different permutations in order to minimise the number
of terms. In particular, one may exploit the symmetries under the exchange of the three
external gluons to reduce the number of diagrams that need to be directly evaluated. We
can thus write nggq in a symmetrised form as

A~

<P919293Q4> = <ng§;r;§lq4> + (5 permutations of g1g293), (3.9)

which can be decomposed into different colour factors as in eq. (3.8),

N

. . 3 .
(Pyrsgsis) = Ch(Pgl™) + CECAPLEI ™) + SCACHPRI ™). (3.10)
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Figure 2. The Feynman diagrams contributing to the off-shell current ¢ — g19293q4.

4 Nested collinear limits

4.1 Strongly-ordered vs. iterated collinear limits

In this section we analyse the collinear limit of the splitting amplitudes themselves, i.e.,
we study their behaviour in the limit where a subset of collinear partons is more collinear
than the others. Since splitting amplitudes are gauge-invariant quantities that share many
properties with on-shell scattering amplitudes, they must themselves exhibit a factorisation
similar to eq. (2.6) for amplitudes. The reasons for studying these limits are twofold:
firstly, checking that our splitting amplitudes have the correct properties under collinear
limits is a strong sanity check on our results. Secondly, the knowledge of these limits is
an important ingredient whenever splitting amplitudes are used to build counterterms to
subtract infrared divergences in higher-order computations.

To be concrete, let us consider a collection of m partons with flavour indices
{fi,-- s fmrs--+, fm} and momenta {p1,...,Pms,---,Pm}, with m’ < m. We always think
of these partons as being part of an on-shell n-point amplitude My, ¢, involving (n —m)
additional coloured partons. Our goal is to study the behaviour of the amplitude in the limit
where {p1, ..., pm } become collinear to some lightlike direction P’ and {]5’ s DPmi 4l - Pm}
are collinear to another lightlike direction P. There are two different scenarios of how such
a kinematic configuration can be reached, depending on the order in which the different
collinear limits are taken. This is most conveniently understood by imagining the physical

— 12 —



Figure 3. Consecutive splitting f — fi+... 4+ for + ...+ fon = (fi+ ...+ for) + ... + fr, where
an m’-parton subset becomes collinear to the direction P’ within the larger m-parton collinear set.

process where a parton with flavor f and momentum P =}, p; emits collinear radiation:

1. The parton with momentum P and flavor f splits into a set of collinear partons with
momenta {pi,...,pn} and flavors {f1,..., fm}, and the m/-parton subset becomes
collinear to the direction P’ (see figure 3). We call this limit the iterated collinear
limit, and we denote it by €1 G1..on| My, 1. (P15 - - - 0|2

2. The partons with momenta {p1,...,p, } and flavors {f1,..., fi} become collinear
to the direction P Then, the parton with momentum P’ and flavor f1...m), together
with the partons with momenta {p,, 11, ..., pm} and flavors { fy 11, ..., fm}, become
collinear to the direction P (see figure 4). We call this limit the strongly-ordered
collinear limit, and we denote it by G(1. /). Gl | My 1, (P15 - - )2

It is clear that these two limits describe the same region of phase space. Hence, the

behaviours of the amplitude in the two limits must agree (because the value of the amplitude

in a given point of phase cannot depend on how this point was approached), i.e., the
strongly-ordered and iterated collinear limits of the amplitude must agree,

G G| My (01, 0) P = Cmyon G My g (1, -0 (4.1)

In the next section we will not distinguish them further, and only talk about the strongly-
ordered limit. However, since the two limits are approached from different directions, i.e.,
they are computed from different kinematic parametrisations, we can exploit the fact that
the limits agree in order to check whether our splitting amplitudes have the correct collinear
sub-limits. This is discussed in more detail in appendix C.

4.2 Parametrisation of the strongly-ordered collinear limit

In this section we give a precise definition of the strongly-ordered collinear limit. We start
by performing separate light-cone decompositions in each of the m- and m/-parton sets. For
the m-parton set, we will use the notations and conventions of eq. (2.1). For the m’-parton
subset we write

2 m
~ K. m
no__ o plu AN ) - /
Pl =y P" + Kl T i=1,....m, (4.2)
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Figure 4. Consecutive splitting f(1. ) — fi+...+ fmr and f = (fi+...+ fowr) +.. .+ fi where

the partons with momenta {15’ ,Pm/+1, - - - Pm } become collinear to the direction P.

withn2 = P2 = P' -k ; =n'-k,; = 0. The momenta P and P’ indicate the directions to
which the partons in each set become collinear. We stress that at this point the lightcone
directions P’ and n' in eq. (4.2) are not related to the quantities P and n in eq. (2.1).
However, we may choose n’ = n without loss of generality. Indeed, if P = E(1,%) and
P =F (1, o ) are given, we can choose any lightlike vectors n and n’ such that n - P #0
and n/ - P/ # 0. For example, we may choose n = (1,7) and n' = (1,17), where @ and v/
are unit vectors. The choice of these unit vectors is arbitrary, as long as @ - ¥ # 1 and
Y # 1. It is then easy to see that we can always assume without loss of generality
7= , i.e., n = n'. Let us also mention that, just like in the case of the ordinary collinear
limit in section 2, we will always work in the axial gauge and we assume that the gauge
vectors of all external and internal gluons is n.

With this setup, we can give a rigorous definition of the strongly-ordered collinear
limit. Just like in the definition of the ordinary collinear limit in section 2, the vectors
k:iz and ﬁ’j_i parametrise the transverse distance to the planes spanned by (ﬁ,n) and
(P',n), respectively. The strongly-ordered collinear limit where the m’-parton subset is
more collinear then the m-parton set is then defined as the limit where both kﬁL_l and
/ﬁ‘ii approach zero, but the /-f‘j_i tend to zero faster than the kil We can implement the
operation of taking this limit by a uniform rescaling of the transverse momenta in each
collinear set by a different parameter,

kii— MNeli, K1 — N1, (4.3)

and keeping the dominant singular terms of order 1/ 2(m'=1) \2(m=m") i) the limit A, \' — 0
with A > .

We conclude this section by discussing some properties of the parametrisation in
eq. (4.2). First, the quantities y; and £, are not invariant under longitudinal boosts.
Following the discussion in section 2, we can define longitudinal-boost invariant quantities

by (cf. eq. (2.2)),

’

m
Y bi-n ~ o m /
G = & ==, /m:/m—gg ki, l=1,...,m, (4.4)
. J
qun:ﬂJj Pren j=1
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where P’ = ZZI p; is the parent momentum of the m/-parton subset. Just like the variables
defined in eq. (2.3), these new variables automatically satisfy the constraints,

d Gg=1 and > &y =0. (4.5)
=1 =1

From now on, we only work with these variables, and in order to avoid cluttering notation,
we shall drop the tilde on the transverse momenta. Second, the momenta p;, ¢ < m’, are
in both sets, and so they admit lightcone decompositons according to both eq. (2.1) and
eq. (4.2). It must therefore be possible to relate the variables ((;, k1;) and (z, k1 ;) for
i < m/. This is worked out in detail in appendix B. In particular, it is shown that z; and

(; are related through a simple ratio,
Z;
G=—7—- (4.6)
Z;nﬂ Zj

We also show that the collinear directions are related by
_(Z)
1i n*
= pH zi + kY = . 4.7
Zz S A (4.7)

=1

4.3 Factorisation in the strongly-ordered collinear limits

In this section we discuss how the tree-level squared amplitudes factorise in the strongly-
ordered collinear limit. The corresponding factorisation formula follows immediately by
iterating the collinear factorisation of the scattering amplitude in eq. (2.4),

%(1...m’)...m<g1...m"Mfl..‘fn (1, - .. ,Pn)|2 _ <292,u2e> -1 <W>m m
St..m/ S[1..m/]..m
X PR HG g T (PPt ) (48)
where
Stomom = (P4 st + o+ pm)?. (4.9)
The functions ]ADJI}h/ £ and 7}5]‘3/ .f, are the splitting amplitude and the helicity tensor
hh';ss'

introduced in section 2. The splitting tensor H is new. It is obtained by

(1.. m’)fm/+1"'fm
squaring the amplitude-level splitting amplitude without summing over the helicities of one

of the partons in the collinear set (cf. eq. (2.9)),

ﬂ e If[hh';ss’
[ f(l...m/>fm/+1“.fm

1..m/]..m

1 Z S CyCon/ 41++Cm38 M8, g 8m [S CiCopl 41+ .Ccm;s’,h s m/41ee-Sm * (410)

Cff f(14.4m’)fm’+1---fm pf(l m/! f R Jm ’

(Sm/+17"'7s'm)
(ot 4 15-,Cm)

where C; is defined after eq. (2.9). Just like in section 2 we suppress the dependence of all
splitting amplitudes and tensors on their arguments. Due to the equivalence in eq. (4.1),
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the factorisation of the squared amplitude in the strongly-ordered limit can be cast in the
form of a factorisation of the splitting amplitude itself,

-1
Aol S[1..m/]..m n ~Shi/ Arhh';ss’
SS _ )
Cgl...mlpfl._,fm - ( 31‘7“m/ ) P Tooefont Hf(lA.Am’)fm’-o—l"'fm . (411)
By comparing eqgs. (2.4) and (4.8), it is easy to see that upon summing over the helicities
(h, ') the splitting tensor reduces to an ordinary splitting amplitude,
hh! frhh';ss’ _ pss’

O H vt = Pho ot it (4.12)
In this paper we only consider the situation where the parent parton with helicity
indices (s,s’) is a quark. In that case additional simplifications occur. We start by dis-
cussing the case where the final-state parton with helicity indices (h,h’) is also a quark,

J@..my = q. The splitting tensor may then involve three different tensor structures,

Frhh/;ss' _ hh' ¢ss’ hs gh's’ hs’ ch's

Hf(lmm/)fm’-&-l"'fm = H{ 0" 6°° + Hy 6" 0 + H36™ 6"°. (4.13)
Since ]5}”1” 7, s proportional to 6™ in this case, only a specific linear combination of the
coefficients H; enters eq. (4.11). Equation (4.12) then implies that in the case where the

parent parton is a quark, we can cast eq. (4.11) in a simpler form involving only unpolarised
splitting amplitudes,

S[1..m']..m

m'—1
Croom (Ppyf) = ( ) Pyt ) Pafpsirofm) - (4.14)

S1..m/

If instead f(1. ,,v) = g, helicity conservation on the parent quark line implies that

Frhh';ss’ - I~ hh!
Hgfm/+1...fm - 558 Hgfm/+1--~fm : (415)

Just like for the ordinary splitting amplitude in section 2, it is convenient to work with
Lorenz indices instead of helicity indices for the gluons. If we work in the axial gauge, the
most general tensor structure is
U
rrof _ gaB(p vy
Hgfm’+1~~~fm =d” (P’n) Agfm’+1---fm + Z
i j=m'+1

o Bt (416)
For the sake of clarity, we have omitted the dependence of the coefficients A, ot 1 eeefrm and
Bij g ot oo fm OLL their arguments. Unlike for the ordinary splitting amplitude, we cannot
replace d*? (]S,n) by —g®?, and so the splitting tensor depends on the gauge vector n,
because the Lorentz indices of the splitting tensor are contracted with a splitting amplitude,
which is not transverse (see the discussion at the end of section 2). The n-dependence
cancels of course in every gauge-invariant physical quantity.

We have checked that our results for the quadruple splitting amplitudes have the
correct behaviour in all strongly-ordered collinear limits, i.e., they satisfy eq. (4.14) for
m’ = 2 and 3. The strongly-ordered limit of the quadruple splitting amplitudes involves
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the splitting tensors with two or three collinear particles in the final state. The relevant
splitting tensors for two collinear partons are [33]

A 1 ;
Hf;lgﬁ = 9 g (Pyg) »

4.17)
~ 1 ~ P kﬁ (
B — B 1M
Hgy =CF 5(1—2)07/& (P,n)—21_z W
Similarly, the splitting tensors for three collinear partons are
NI 1 /oA
H(%iﬁ 9 " (Pafifa) (4.18)
Ay, = G+ Cr O ). (119
(nab)

The ‘abelian’ and ‘non-abelian’ pieces flggﬂq #2) and ﬁ;ﬁ] have the tensor structure of
eq. (4.16), with coefficients Ag(ga;) ), Bi](-i]};)q, Ag(gnqab), Bi](flgzl;) given in appendix D.
5 Tree-level soft currents

Tree-level amplitudes do not only factorise in the limit where massless particles become
collinear, but also when they are soft. We therefore expect that splitting amplitudes exhibit
factorisation properties in the limit where some of the particles in the collinear set have
vanishing energies. We start by discussing the soft limits of scattering amplitudes in general
before turning to the soft limits of splitting amplitudes in subsequent sections.

We start by reviewing the behaviour of tree-level amplitudes as a massless parton
becomes soft. We follow the notations and conventions of section 2. If a subset of m
partons become soft, i.e., have vanishing energy, the amplitude is divergent and the leading
behaviour in the soft limit is described by the factorisation formula,

ylmM%?:SlS" (pl’ o ,pn) — JC1.,.cm;81...smM;m-&-l...jcn;sm-&-l...sn (pm—i-l, o ’pn) ’ (5'1)

m+1---Jn

where .¥] ., denotes the operation of keeping only the leading divergent term in the limit.
The soft current J€t--¢m®t---m jg an operator on the colour space of the hard partons that
maps the colour space of the hard particles to the total colour space of both the soft and
the hard particles. It depends on the spins of the soft particles and the momenta of both
the soft and hard particles. It also depends on the flavours of the soft particles, though we
do not show this dependence explicitly. The soft current has been computed at tree level
for the emission of up to three soft partons [57, 75, 82, 83].
If we consider the current with the external polarisation vectors removed, e.g.,

JOU-Cmis1Sm — 82 <p1’ TL) N E;ZZ (pm7 n) Jer-emivivm ’ (5_2)

it is expected that the soft current J€i—-¢m¥1--¥m he gauge invariant, in the sense that it
vanishes when contracted with a soft gluon momentum, up to colour conservation in the
hard amplitude,

n
P ISt —0 mod 3 TE= 0, (5.3)

V]..Vk...Um
i=m+1
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Equation (5.3) is known to hold for m = 2 [57] and for m = 3 [75], and conjectured to hold
for any m [75].
The soft current for the emission of a single soft gluon reads,

J9(p1) = ugse;(prin ZTC pz (5.4)
=2

where the sum runs over the n — 1 hard partons and T is the SU(3) generator in the
representation of parton 4, i.e., (T¢)q = Tg.p, = Iy, if parton i is a quark, (T)ap T
if it is an anti-quark, and (T¢)a, = if% for a gluon.

The one-loop soft current is manifestly transverse, up to colour conservation in the

hard amplitude,
n
¢ = ucgs ZTf =0. (5.5)
i=2

The transversality of the soft current implies that we can drop gauge-dependent terms in
the polarisation sum of the gluons. For example, in the case of a single soft gluon, we have

S| Mg fs.. fnl2

c2.. c ..Ck...Cp;S2...Sn, - n (56)
_/.L gs Zsjk pl |:Mf2 fn :| T?C]T;lcc MC2 C] Ck .Cn;82...8 ’
7,k=2
where we introduced the eikonal factor,
28'k
Sip(p1) = ———. (5.7)
51551k

Note that colour matrices of different partons commute, T; - Ty = Ty, - T, if j # k, and

TichT?c] = (Ti)c;c;’ = Cj 50903’ ) (5'8)
where T? = C} denotes the quadratic Casimir in the representation of parton j, i.e. C; =
Cr if parton j is a quark, C; = Cy if it is a gluon.

Next, we examine the current for the emission of a soft g pair or of two soft gluons.
We consider first the case where a soft gluon splits into a quark of momentum p; and an
antiquark of momentum p-. In the limit of the soft ¢g emission, the squared matrix element
factorises as [57]

quzq’qu’szmfn’Z

n
2¢ 2 qq Cg...cj‘..ck .Cn;83...8n c12 612 c3.. C] Ck .Cn;83...8n (59)
= (1™g5) ';3 S (P1,p2) [Mfs fn T% Tece,Mps.. ’
-]’ =
where cj9 labels the colour of the gluon which splits into the qq pair, and
7 4T'R 8182k + 5152 — Sk
Sgg(pl,p2) _ 2R 1592k 1k°2j jko12 (510)

512 $5(12)Sk(12)

,18,



where
Si(12) = Si1 + Si2.- (5.11)

In the case of two soft gluons of momenta p; and po, the factorisation of the squared
matrix element can be separated into abelian and non-abelian parts [33, 57],

,(ab b)
‘71929’M9192f3---fn|2 = <ylg2g () + 5”1 (na ) |M9192f3 fn’ . (5-12)

The abelian part is made out of a product of two single-gluon eikonal factors, with the
colour correlations involving up to four hard partons,

,(ab
FED | Mgygors...sn (5.13)
1 n €3...Co i ClpCpC 3835 *
= (n*g2)° Z Sik(p1)Sji(p2) [Mfz T hett > ]

,]kl 3

|:T01 T , T TC2,+TC2 T02 T TA 1|MC3'“CZ“'CJ Chre-CheCniS3.. Sn

¢~ cgey, c]c] cocy e cecy T chep ek,

The non-abelian part, on the other hand, features the same colour correlations as the
single-gluon and the soft-gg-pair cases,

,(nab
yl%g (na )|Mglg2f3 fn’Q _ 7(M2eg§)2014

Z ;01 pQ |:M;3...?...ck...cn;ss...sn:| re12 ez Mcs c] ClyeiCiS3..8n (5.14)
’ 3-Jn / ,

ccj ckC),
7,k=3

where

s.0. Si1Sk2 + 5428 1—¢ 5.0.
S (p1,p2) :5](-;C N(p1, pa) + 4~ T 2200 ( L )(phPQ))

85k R L (5.15)
51255 (12)5k(12)
and
3;2'0')(1917]32) = Sjk(p2) (Sj2(p1) + Sk2(p1) — Sj(p1)) (5.16)

is the approximation of Sji(p1,p2) in the strongly-ordered limit.

6 Single soft limit of tree-level splitting amplitudes

Having reviewed in section 5 the soft limits of tree-level amplitudes in general, we now focus
on the behaviour of splitting amplitudes in the limit where one gluon from the collinear set
is soft. Since splitting amplitudes share many properties of gauge-invariant amplitudes, we
expect that the soft behaviour of splitting amplitudes can be encoded into universal factors
closely related to the soft current reviewed in the previous section. In this section we derive
a general formula that describes the soft limit of a splitting amplitude, and we show how
we can recover the soft behaviour of triple collinear limits which was analysed in ref. [33].
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Without loss of generality, we assume for now that the soft gluon is parton 1. The
soft limit of the splitting amplitude o f2 o 18 defined as follows: we introduce a small

parameter A\, and we perform the rescaling,
21—>/\Z1, Sli—>)\812‘, k'ﬁ_—))\kﬁ_, 1l<i<m. (6.1)

We expand the resulting function in A and only keep the leading pole in A. As we now show,
the coefficient of the leading pole is universal and described by a formula very reminiscent
of the factorisation of the squared matrix element in eq. (5.6).

In order to obtain the factorisation of the splitting amplitude in the soft limit, we start
from eq. (5.6) and take the collinear limit where the partons 1 through m are collinear. In
this limit, the amplitude on the right-hand side factorises according to eq. (2.4). Next, we
split the double sum in eq. (5.6) into four contributions:

1. m < j,k < n: neither j nor k are in the collinear set. These terms do not contribute
in the collinear limit, because the eikonal factor is not singular in the limit.

2. 2 <7 <m <k <n: the eikonal factor has a simple pole in the collinear limit coming
from s1; — 0. In the collinear limit, the eikonal factor reduces to

22z
CrmSik(p) = ——. (6.2)
21 815
3. 2<k<m < j<n: similar to the previous case, with
2z
61..mSjk(P1) = — . (6.3)
21 S1k

4. 2 < j,k < m: both invariants in the denominator of the eikonal factor are singular in
the collinear limit. However, there is still only a simple pole, because the numerator
also vanishes. Hence, these terms contribute at the same order as those with only
one of the two particles in the collinear set.

Putting everything together, we see that in the collinear limit eq. (5.6) becomes®

1.1 Mgy fo. fa !2 = (6.4)

€,C2...Cj...Cl . .Cm3S

9 c,co.. c eiClyerCm ;ST c c
sy ffm+1 I, Zsﬂf pP1 [Spffz I ] TcchTcickS ffoefm

53>

/ ! *
ccm+1...cj...cn;s C,C2...Cl...Cm ;8" 1 c1
{[ F ettt } [Spffz---fm } To . Too

218
k=2 j=m+1~1 71k !
c\c2...ChCmi;S 4 € Cmt1...CjCn;S
<SPy, fm Pttt
* / ’ .
C,CmA41---Cj.--Cn €,C2...Cl..Cm3S c1 c1 ¢/ \Ca.ChCmS p 4 € 1CmALClonCniS
+[Mffm+1~-fn } [S Pyt } T T SPrh ™ Myt :

SFor readability, we keep the spin dependence of all quantities implicit, except for the spin indices of the
parent parton, in order to keep track of spin correlations.

— 20 —



Next, we can use colour conservation for the hard amplitude in eq. (5.6), which asserts
that

n m
doOTH ==Y T (6.5)
i=m-+1 =2

Applying this relation to the second and third lines in eq. (6.4), we find

Gt Mgy po 1P = (6.6)
 92¢ 9 , c,Ca.. C eiCleeaCm ;S €,C2...Cj...Ch ...Cm ;S
- ,LL Egs jsfsm+l-~-fnc Z S]k pl |:Spff2 f :| Tglcj Tillgc S ff2 fj g
] k=2
9,,2¢ 7_ 1 2k S C7CQ...C;...Ck-.-Cm;5/ T T4 § CyC2.0.Cj . ChnCim3S
+ 2u ffm+1 fncf ;2 21 S1n Pttofm ey el Pty fm
j =

€,C2...Cj...C}..Cm;S’ c1 c1 c,c2.. c ..CE---Cm;S
+ [S ff2 Jm ] Tc cchJc S ff2 f }

s 1 " c,c c ..Cl.-Cm S’ / .
2¢ 2 7Tss ) 2. k--Cm; c1 c €,C2...C5...CL...Cm}S
= p gs T a Z U]k;l |:Spff2 fm :| TC CJT . 4 S ff? Sm ’

ey,
J
7,k=2

where we defined

S5 z Z5
Ujk;l =2 <— gk —+ k -+ J ) . (67)
SjISKL ZSkl 2S5

We see that the hard matrix element completely factorises, and the soft gluon is only
colour-correlated to the other collinear partons. This is a manifestation of colour-coherence:
the cluster of collinear partons acts coherently as one single coloured object, and the hard
partons cannot resolve its individual collinear constituents. Comparing eq. (6.6) to eq. (2.6),
we see that the splitting amplitude admits a factorisation very reminiscent of the squared
matrix element in eq. (5.6),"

2% g2 m-1
=2 [( — 02 o fin
1..m

_ c,Ca.. c iClperiCim 38 c c €,C2...Cj...Ch ...Cm ;8
= 195 Z Ujk:1 [Spfﬁ } T3, TSPy
]k 2

(6.8)

Just like for the matrix element, the factorisation of soft emissions happens at the amplitude
level and we have to keep track of colour correlations due to the soft emission. The main
difference between eq. (5.6) and eq. (6.8) is the fact that the eikonal factor is replaced by
the quantity Ujy, defined in eq. (6.7).

Eq. (6.8) generalises similar formulae found in the context of triple-collinear emissions

in ref. [33], as we shall see in section 6.1. A few remarks are in order:

e The factorisation in eq. (6.8) is valid for an arbitrary number of collinear partons,
and up to the colour correlations it is independent of the specific type or functional
form of collinear amplitude.

"Note that in writing eq. (6.8), we have assumed that the soft limit and the collinear limit commute,
which is certainly true in the strict limit.
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e Up to replacing the quantity Ujz, with the appropriate factor, the factorisation in
eq. (6.8) is valid for any soft emission which is characterised by two-parton colour
correlations, like e.g. a soft g¢ pair or the non-abelian part of the two-soft-gluon
current, as we shall see in section 7.

e For soft emissions characterised by colour correlations with four or more partons,
eq. (6.8) can be suitably generalised, as we shall see in section 7 in the case of the
abelian part of the two-soft-gluon current.

When restricted to a specific collinear amplitude, the colour correlations of eq. (6.8)
can be further simplified. In the simplest case of a soft gluon in a simple collinear limit,
eq. (6.6) is reduced to

G| Mgypog, P = 0 G2TiS e, +Ung [S i } T ., T SPyy Py (6.9)
The colour algebra, eq. (5.8), is trivial. Further,
Cr - [swi ] sep = g (6.10)

Then, using the explicit value of eq. (6.7) for j = k = 2, eq. (6.9) becomes

€ 422
€127\ Mgy fo...5, I = 1793 o~

02 ’MfQ fn| ) (611)

which is the well-known soft-collinear limit. We can state eq. (6.11) in the equivalent
fashion,

2 242 ~ ol 4Z ’
7 K f;Qgs) 5ffz] = gl ——Cy 5" (6.12)

Next, we illustrate the factorisation in eq. (6.8) on the examples of triple and quadruple

collinear splitting amplitudes.

6.1 Single soft limit of a triple collinear limit

The first non-trivial example of the factorisation in eq. (6.8) is the single soft limit of a
triple collinear limit. Let us consider a gluon, denoted as parton 1, becoming soft within
the collinear limit of the process f — g1 fafs. In this case eq. (6.8) becomes

2M2692 2 2 1
yl [( 31238 P;fof:; =M egsC (613)
c,ches;s c1 c c,clcs;s c,ches;s c1 c c,coch;s
X {Um [Spff§f3 ] T, TeseySPrrg, + V23 {Spffjfs } T e, Tese,SPyr s
c,cach;s’1* e c c,ches;s c,coch;s c1 c c,cac;s
+U2331 [Spffzfg } T s Tese,SPypyp, + Ussa [Spffzfg } T s TeseySPr sy } :
where we used the symmetry of Uj.; under j <+ k. The functional form of eq. (6.13) is

characteristic of soft emissions which give rise to two-parton colour correlations within a
collinear structure made of two hard partons.
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In fact, using eq. (5.8) for i = 2,3, and the fact that colour charges of different partons
commute, Ty - T3 = T3 - T, we can use colour conservation to write

T2 — T2 — T?
Ty T3 = Pfﬂ (6.14)

where T% = Cp denotes the colour coefficient for emission by the parent P of the collinear
set. We can therefore simplify eq. (6.13),

20%g2\* 1w
7 [( oy ) Lortafs

2 2e .2 R
= 1*g2 [Us2a T3 + Usz1 (Th — T3 — T3) + Us31 T3] ( ﬁ; 23%) P;;f3

(6.15)

Using the specific values of Uj.1, eq. (6.7), and of the colour algebra, for the process
q — g192q3 we obtain

2H2692 2 .,
24 [( 81238 Pyrgzas

(6.16)
2¢ 2 2z3 523 z2 z3 2:“’2693 Hss’
=2u~gs | ——Cp + + — Cy Pires -
Z1513 512513 21512 21513 523
For the process g — ¢1G2q3, we obtain
2#2692 ,
< [( 51238 Pgsls¢72Q3
(6.17)

s S z z 20u%€g2\ A
— op2 g2 [2 B op+ (_ 8 , 2 . = >CA:| ( H gs) B
512513 S§12813  Z1S812 21513 523

For the process g — g1g2g3, we obtain

20% g2\ 5o 2¢ 2 [ 523 22 23 20g3
8% 5) P = 2u°¢ C 5 Pss 6.18
! ( 5123 ) 919293 H9s <812813 i 21812 * Z1$13> A ( 593 ) nos - (6-18)

Equations (6.16), (6.17) and (6.18) are in agreement with the single soft limit of a triple

collinear limit computed in ref. [33].

6.2 Single soft limit of the quadruple collinear limit

We now consider the single soft limit of a quadruple collinear limit. We denote the soft
gluon as parton 1, within the quadruple collinear limit f — g1 fof3f4. The general single
soft factorization formula (6.8) becomes

20292 \* ew
4 [< o) Dohns
ccz...cj...c,C .C4;8

2% 2 €,C2...C5...Ck.. .cq;8’ ¢ c
=H gs Z Ujk 1 [Spff2f3f4 Tc;cJTc;tckS ffafsfa
] k=2

(6.19)
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The easiest non-trivial application of eq. (6.19) is the soft limit of the splitting ¢ —

913595q4. Here the lower order process splitting amplitude is Spgl;?(;g’qcf;s with the single
213
colour structure T¢, . T¢ .. We can, therefore, explicitly compute the colour correlation

structure of eq. (6.19) in terms of the single colour structure of the lower order splitting
amplitude, i.e. make the replacements,

T2=Ti=T%=Cp, (6.20)
and

Ty T3 = % -CF,

Ty Ty = Ca_ 20, (6.21)

Note that colour conservation implies
(To+ T3+ Ty)?=T% =Cr, (6.22)

so that one of the replacements in eq. (6.21) can be derived from the other two. Inserting
these expressions in eq. (6.19) we get

2 3
<2:U’ eg<‘>‘> fgss’
= !
51234 91459394

Ca Ca 2022\ - .o
+ 2U23.1 S5 - Cr | +2U24.1 5 2CF | +2U34.1(2CF — Chy) Toont Pti’gng4

A

= MQEQE{UQZJCF + Us31Cp + Usa;1 CF (6.23)

2,202\ % . ,
= 192 [CrB{Y, + C4A® | <M gs) Py

= !
$934 59394’
where

4 2 2 2 2 4
Ale) — %P2 4F3 2R 2523 LS n 834

b}
81221  S1321  S14%Z1  S12813 512514 513514
45,5 88,k 85,k 82; 8z, 4z
(a9) iy _ SSjk T R

(6.24)

R 51iS1j  S1iS1k  S1jS1k  S1i21  S1521  S1k21

Next, we examine the soft limit of the splitting ¢ — ¢ggqq. The colour correlation is
C,C2C3C4;

S
423 a4 has two colour structures.

now more involved, since the lower order splitting Sp
We therefore decompose it into

SPZZy?q?JfS _ C<1:<:2c3c4F§qé)s 4 C§C2C3C4ngq)s _ (6.25)
with
Cie2osct = T, Tenes CSeaose — TS, Te (6.26)
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Upon squaring,

() alas _ 21792
> R — Q23,40

50 5234
s s _ (20°92\°
> [Fg } Fy) " (24,307, (6.27)
(@@)s"\* f(ad)s 282\ () (id) \ css’
Z [(F1 ) F,™° + c.c.} = ot (Q23 4+ Q2473) 6%,

Si

where @Q;; 1, and dig are defined in egs. (2.13) and (2.14). With these definitions, eq. (6.19)
becomes

4
2M2Egg Hss’ € 7)s' ] * q
A [( P91f2f3f4 = Mg gg Z Ujk;1 Z [F((Iqq) } Fl()qq)s [Tj ) Tk:]a|b , (6.28)

S
1234 k=2 ab=1

where

1

[T - Til,p = e

c ceacse
[CC6203C4] Tcl Tt [C 2C3C4
cj=cjr T chej T ekey, b

(6.29)

] ck=cpr *

As a concrete example of our notation,

[T T] (00620304)*1\01 T | CCC2C§C4_Ta T¢ T T4 T Tb
2432 = chea T each T2 T TcepezTeca T cheg T esch T cacaT cge

(6.30)
=T% T% T T4

chez T cea T cheg T esdh 0462

T, =~ Tx [TT'TOT T T
It is, then straightforward to compute the color correlations [T - Tk]a|b' We get

[T - T)ly; = [T;-Tjly, = CrTr,

C
[T - T3]11 =[T2- T3]22 = - <C - A> CrTr,

[Ts - T4]11 =[Ts- T4]22 = (2Cp — Cy)CpTg ,

C
[T - Tyl = Ch <CF - 2A> : (6.31)

C
[Ty - T3]y, = —Cr (CF — QA) ;

C
[Ty Ty)yy = —Cr (CF - 2A> :

[T3-Ty4lyy =Cr (Cp—Ca) <CF - C;) .
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We can then rewrite the soft limit in terms of @);; and Qg.d,z as

3 2
2/'6269 2 , 292 2e
7 <8 P;fq2q3q4 = 6" giu™ (6.32)

51234 5234

X { [CFCATRA(Q) + C%TRB%?;;] Q23,4 + [CFCATRA((]) + C%TRBSZ),g} Q243

C % 1
+[or (cr- %) 02+ scrom] et ot |

where A@ and Bi(% are defined in eq. (6.24), and

22 Z3 Z4 523 524 534
DW=_—=_4 + + + - : (6.33)
S1221 S13%1 S1421 512513 512514 513514

Next, we consider the case ¢ — ¢19293q4 with the gluon labeled 1 becoming soft. The
underlying splitting amplitude can be written in terms of two colour structures, corre-
sponding to the two colour orderings,

Spegacacs = Ciczcscénggg) + CSCQC3C4F§99) 7 (6.34)
with
CPoret = (TT ), G5 = (T, (6.35)

Upon squaring we have

s* s 2u%¢g? 2 a na na
Z [Fggg) ] Fggg) :< o gs> (Q532+2Q23 b)+2Q b))(sss

55 5234
s* s 2% g2 na na /
> [mi ] wiom = (2298 Q) aglt Qe 00)

Si

5 [(F0) P v - -2 (22E) (o + ) 5

Si

where Qm . and QJZZ’) are defined in eqgs. (2.15) and (2.16). We can now write eq. (6.19)
as
7 2u2€g§ PSS/ B U 2 F(gg)S/ *F(gg)s T T
1 1234 91929304 = g Z ki1 Z [ b } 97T k]a|b . (6.37)
J.k=2 a,b=1
with

[TQ T ]a\b CACa\ba
[T3-T ]a\b CaCypp (6.38)
(T4 Talyp = CrCap,
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where

1
Ca|b — a [02026304)]* CZCQC3C4 , (639)
or explicitly,
Ca
Cip=Cyp = Ck, Cip=CF (C - 2) . (6.40)
Moreover,
CQ
[T T3]1\1 - _TACF,
02
[T T3]2\2 - _TACF7
[TQ : T3]1‘2 - 07
1
[Tz - Talyy = ZCF7
[Tz Talyp = ——-CF. (6.41)
Ca Ca
[T, T4]1\2 -9 <C - 2> )
Ca
[T T4]1\1 - *701%“,

Finally, replacing explicitly Uj.1, eq. (6.7), and using eqgs. (6.36) and (6.41), we can write
eq. (6.37) as

2M26 982 3 .,
7 $1234 Pyig29501 (6.42)
, 202 1,2€ 2
= 5" g2 <Z2Z> {[0a03A% + CrC3B9 1 CrOl + G3DE9] QL)

+ [C AC2AY) 4 CrCiBY9) 1+ CpCl?) + C%D(gg)} o))

- [CAC% (2E<99> - D<99>) _ CACpEY) 203 D(gg)} (Qgﬂb) N ng?gz))) } |
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with

4z, 2z 2z4 284
Az(‘?g) _ + Jj + L
S$1i21  S1j%1  S14%1  S15514
22 Z3 523
B(QQ) — _ + ,
1221 S1321  S12513
(99) Z zZ4 Si4
C;” = + - ; (6.43)
S$1i21  S14%21  S1iS14
4zy
D9 — 7
51421
22’2 22:3 42’4 2824 2834
Ela9) — _ +

S1221  S13Z1  S1421  S12514  S13514
Using eq. (6.1), we have checked that a direct computation of the soft limit of the quadruple
collinear splitting functions, that were presented in section 3, agrees with the single soft
factorization formulae for the quadruple collinear limits, egs. (6.23), (6.32) and (6.42).

7 Double soft limits of tree-level splitting amplitudes

Next, we consider the limit where a ¢g pair or two gluons from the collinear set are soft.
We take the soft ¢g pair or the two soft gluons as partons 1 and 2. Like in eq. (6.1), we
introduce a small parameter A, and perform the rescaling,

21—>)\Zl, 22—>)\22, k’ﬁ_—))\k’ﬁ_, k‘gj_—>>\k‘gj_ (71)
812—>)\2812, Su—>/\81i, Sgi—>)\82i, 2<1<m.

We expand the resulting function in A and only keep the leading pole in A, which is O(A™%).

7.1 Soft qq pair

For the soft ¢g pair, whose current in eq. (5.9) features two-parton colour correlations
like the single gluon soft current, the derivation of the soft limit of a tree-level splitting
amplitude is the similar to the one of section 6. Namely, we split the double sum of eq. (5.9)
into four contributions, and using colour conservation for the hard amplitude in eq. (5.6),

n m
Z TS = — ZT?? , (7.2)
i=m-+1 =3

we arrive at an expression which is formally similar to eq. (6.8),

-1
B 2“2692 m .,
q9
yl? [( s qslSqZ.fli---fnL

S1..m
| o , . (7.3)
/2 2\2 qq CyC3.--Cje-Ch-Cm3S Cl2 rmCl2 €,C3...Cj...Cl . .Cm3S
- (,LL gs) a Z Ujk;l? |:Spff3...fm :| Tc;.(:chkc;CSpffg.,.fm s
.77k:3
where
U9 (1. pa) = 4Tg (31j32k + S1k52j — SjkS12 21525 + 22515 — ZjS12
Gk;12\F1s 5%2 55(12)Sk(12) (z1 + 22)5]‘(12) (7.4)
2182k + 2251k — ZkS12 22129 ) '
(21 + 22)81(12) (z1+22)%) "
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where 5(19), Sk(12) are defined in eq. (5.11). The first term on the right-hand side of eq. (7.4)
stems from j and k being in the collinear set, 3 < j, k < m. Then all the invariants in the
eikonal factor S;]g (p1,p2) in eq. (5.10) are singular in the collinear limit, and S;-]Z (p1,p2)
contributes as such. The second and third terms of eq. (7.4) stem from either j being in the
collinear set and k outside, 3 < j < m < k < n, or viceversa, 3 < k <m < j <n. They are
obtained from the eikonal factor Sgg (p1,p2) in eq. (5.10) using the rescaling in eq. (7.1).
The last term in eq. (7.4) stems from neither j nor k being in the collinear set, m < j, k < n.
However, at variance with the single soft limit analysed in section 6, the first two terms of
the eikonal factor in eq. (5.10) contribute in the collinear limit, when m < j, k < n.

We display how the factorisation in eq. (7.3) works in the simplest case of a soft ¢g
pair in the triple collinear splitting, ¢ — ¢}d5q3 or ¢ — ¢1G2g3. The double sum in eq. (7.3)
is reduced to a single factor, j = k = 3, with Tg = ('3, where (3 = CF if particle 3 is a
quark or C3 = C}y if particle 3 is a gluon. Then, using eq. (6.10) and the explicit value of
eq. (7.4) for j = k = 3, we can write

| 2m2 g2\ A 8T, —~ 2 :
Sy ( a gs> Prns| = (1*g2)? 2R = 2z (2152 Z228213) C36%°
8123 S19 21+ 29 53(12) (21 + 2’2) 83(12)
(7.5)

or equivalently,

q 2
%123‘5/1(12(1‘/\/1611621"3-”%’ =

c 8TR 23 812 21823 — 22813)> (7.6)
= (,UQ 93)2 2 - ( 2.9 ) C |Mf3---fn|27
21+ 22 8312) (21 + 22) 53(12)

512

in agreement with ref. [33].

7.2 Soft qq pair limit of a quadruple collinear limit

The first non-trivial example of the factorisation in eq. (7.3) is the soft ¢g pair limit of
a quadruple collinear limit. We denote the soft gg pair as partons 1 and 2 within the
collinear limit of the process f — q1Ga2f3fs. We stated in section 6.1 that the functional
form of eq. (6.13) is characteristic of soft emissions which give rise to two-parton colour
correlations within a collinear structure made of two hard partons. Thus, it applies to soft
qq emission within a quadruple collinear amplitude as well, up to replacing in eq. (6.15)
the factors Ujy.; from eq. (6.7) with U;]g;lz from eq. (7.4),

| 7 2u2g2 3
71 |(252)

51234

(7.7
2% 22 [7796 2 | 7790 (2 2 m2 gq 2] (28595 pss )
= (1"g;) [U33;12T3 + Usio(Tp — T3 — TY) + U44;12T4] sa1 o fa 0
where T% = Cp denotes the colour coefficient of the parent P of the collinear set, and

U??f;u is obtained readily from eq. (7.4). We mention Ugg;u and U 2212 explicitly since they
have a rather compact form, which has been used in eq. (7.6),

paa _8Ir [z s12 (:1shi— 2210)° , =34 (7:8)
01312 2 \ 21+ 22502 (a+ Z2)2312(12)

512
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As in section 6.1, through eq. (7.7) we may describe three processes, which we list with
their corresponding colour algebra,

q = 1329344 » q = 91429344, T3 =Ca, T =T% = Cp,
9= 0@Gd, 99— adeed, T3=Ti=Cp, T? =Cua, (7.9)
9 — 41429394 T%zTZ:T2 =Cy.

We have checked that, if we use the color factors in the first line of eq. (7.9), then our results
for the splitting amplitudes P;;gq and P;,Sq_/, gq BT€ consistent with the soft factorisation in
eq. (7.7).

7.3 Two soft gluons

The derivation of the two-soft gluon limit of the tree-level splitting amplitudes is more
involved, since the two-soft gluon current features also four-parton colour correlations in
the abelian part in eq. (5.13).

We start from the non-abelian part in eq. (5.14), which features only two-parton colour
correlations. We split the double sum of eq. (5.14) into four contributions, and repeat the
analysis done for the soft qg pair. Like in that case, when neither j nor k are in the collinear
set, there is a contribution from the double pole in s12 of eq. (5.15). We obtain then an

expression which is yet again similar to eq. (6.8),

. —1
ag(nab) 209\ pe (7.10)
S1. m 9292f3...fm :
2 2 gg nab C,Cg...C’~...Ck...Cm;S c c C,C3...Cj c .Cm;S
—(p 6gs C Z Ujk 12 [ ffg...fzn Tc:f:]TcizckS ffs.. fj . ’
7,k=3
where
g99(nab) _ cgg 99 99 22129 1 —c€
Uiz~ = S5k (p1,p2) — 877 (p1,p2) — S (p1,p2) +4 Gt a)? 5, (7.11)
with
S7(p1,p2) = (7.12)
.0. i1t 21842 1—e€ 1 (s.0.) 4 22’,‘
:S~(SO) : +422521 ) < _ =g : o ,
i (Lp2) (21 + 22)8i(12) 519 8" (p1,p2) s12 (21 + 22)8;(12)
and

S5 (py,po) = — (7.13)

2Z,‘ ( 2Si2 22’2 + 2Zi>
22842 S§1512 21812 21841

As regards the abelian part of the two-soft gluon current, the quadruple sum in
eq. (5.13) may be split into several contributions:

1. m < i4,5,k, ¢ < n. None of 7, j, k, £ are in the collinear set. These terms do not
contribute in the collinear limit, because the eikonal factors are not singular in the

limit.
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2. 3<1<m < j,k, £ <n,and likewise the other three cases where only one index runs
in the collinear set. These terms do not contribute in the collinear limit, because one
eikonal factor is not singular in the limit.

3.3 < i,k < m < j, ¢ < n, and likewise the other case where only the pair (j,¢)
runs through the collinear set. These terms do not contribute in the collinear limit,
because one eikonal factor is not singular in the limit.

4. 3 <i,5 <m < k,f < n, and likewise the other three cases where one index from
the pair (i, k) and one index from the pair (j,¢) run through the collinear set. Each
eikonal factor has a simple pole in the collinear limit. For example, for 3 < ¢,57 <
m < k, ¢ < n, the eikonal factors reduce to

2zi 2Zj

C1..mSik(p1)Sje(p2) = (7.14)

)
21 817 22 825

and likewise for the other three cases.

5. 3<14,j,k <m < £ <mn,and likewise the other three cases where one index is outside
of the collinear set. For 3 <4, j,k <m < ¢ < n, we obtain

% Su(pr), (7.15)

22 52

C1..mSik(p1)Sje(p2) = —

and likewise for the other three cases.

6. 3 <1,4,k,£ <m. Each eikonal factor behaves like in the analogous case discussed in
section 6 for the single soft limit.

Putting together the contributions outlined above, and using colour conservation for the
hard amplitude in eq. (5.6) as in eq. (6.5), the coefficient of the abelian part in eq. (5.13) of
the double soft gluon limit becomes, as expected, the product of two single gluon coefficients
Ujk., defined in eq. (6.7),
-1
ygg ,(ab) [(2#2€g§>m pss’ (716)

S1 m 9192 f3---fm

% 2 2 1 1 “ ¢,c3...¢, - o iClrrnCpnC; S *
(/’L gs E Uzk 1 Ujé ;2 Spff3 Fm
1,7,k =3

c C3...cl...c]...ck...c[...cm;s

[Tcl TC , T T, 4T T, T T }s Py

(AT ONA cjc] cecy cjc] cecy T chei T excy,

The sum of egs. (7.10) and (7.16),

-1
ygg 21“‘2693 " Hss’ _
12 $1 9192 f3---fm

2¢ 2\ M1
,(ab) ,(nabd) 2:“ Hss’
<ygg yngQ ) [( > glg2f3---f’m] )

S1..m

(7.17)

yields the double-soft gluon limit of an m-parton collinear amplitude.
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In the simplest case of two soft gluons in a triple collinear splitting, ¢ — g1g2q3 or
g — 919293, the quadruple sum in eq. (7.16) is reduced to a single factor, i = j = k = ¢ = 3.
Thus, we can write

11

‘5123«?1929 ‘M9192f3 P = (W*g2)° ;;4 YY) Uss;1 Uss;2
(7.18)
C,Ch; c,c3;8
x [spy| [maTaTeTe),  + (TeTeTaT),, | SpYt
Using the colour algebra in eq. (5.8), the products of four T’s reduce to
(Tc1Tc1Tc2Tcz)c s + (TC2TCQT61T61)C s = (T2)c s = 203501 30 (7.19)

where C3 = CF if particle 3 is a quark or C3 = Cjy if it is a gluon. Using then eq. (6.10)
and the explicit value of eq. (6.7) for i = k = 3 and j = ¢ = 3, we can write

. 16232
Cros B | Mgy g, = (12922 —2— C3 My, 1, (7.20)
2122513523
For the non-abelian part, we obtain
b) b
s S Myrgasssal? = — (12922 CaUREY C5 My, 52 (7.21)
where
1-—
[799(nab) _ ¢ 813823 I <172 _2599(])171)2) (7.22)
L 3(12) (21 +22)% ) siy

with 8§ (p1, p2) given by eq. (7.12) with i = 3. Equation (7.20) and (7.21) agree with the
corresponding overlap of the double soft gluon with the triple collinear limit of ref. [33].
Equivalently, egs. (7.20) and (7.21) can be cast in the form of a double soft limit of a triple
collinear splitting amplitude,

2'LL2692 m—1 .,
99
yl? [( . ;fg2f3

S1..m

. 1622 nab) | css’
<M2 93) Cs [MC3_CAU§§(12 ) 6% . (723)

7.4 Double soft gluon limit of a quadruple collinear limit

In the case of the double soft gluon emission out of a quadruple collinear limit, the non-
abelian part follows, similar to section 6.1, the guidelines of single soft gluon emission of
a triple collinear limit, as well as of soft ¢¢ pair emission of a quadruple collinear limit
of section 7.2. We denote the two soft gluons as partons 1 and 2 within the collinear
limit of the process f — ¢g1g2f3fs. The functional form of eq. (6.13) is characteristic of
soft emissions which give rise to two-parton colour correlations within a collinear structure
made of two hard partons. Thus, it applies to the non-abelian part of the double soft

- 32 —



gluon emission within a quadruple collinear amplitude, and we can recycle eq. (7.7), up to
replacing the factors U/ k12 1D €q. (7.4) with Ujglf;(lgab) in eq. (7.11),

2¢ 2\ 3
gg(nab) | (211795 \ " pss’
jﬁ [( $1234 > Pgsfg2f3f4

. b b b 2pu~g
= g O [T + U - 13 -+ o] (200

(7.24)

where T2 = Cp denotes the colour coefficient of the parent P of the collinear set.
For the abelian part, we spell out the quadruple sum in eq. (7.16) with 3 <, j,k, ¢ < 4,
and after using colour conservation, we obtain

2,2\ 3
gg(ab) 2/‘ g Nss’
y [( S) Pgslsngsf4

51234

(MZGQ‘?) [U33;1T§ + U34;1(T%D - Tg — TZ) + U44.1T?1] (725)

2
VT8 + a0 — T - 1) + U] (P2

with the coefficients Uj, defined in eq. (6.7).
The double soft gluon emission within a quadruple collinear amplitude is given by the
sum of eqgs. (7.24) and (7.25),

AN (ab) (mav) | (26762 )" pes
99 _ gg(a gg(nal
,712 [( 812345 P£181892f3f4 - (5/12 +‘5ﬂ ) 312348 P;1592f3f4 : (7‘26)

As in section 7.2, through eq. (7.26) we may describe three processes, whose colour

algebra is the same as in eq. (7.9),

q— g19293q1, T35=0Cy, T? = T% = Cp,
9= 9192q36s, T3=T3=Crp, T% = Ca, (7.27)
9= 91929394, T3=T;=TH=Cy.

We have checked that, using the color factors in the first line of eq. (7.27), then our results

for the splitting amplitude P;;gq are consistent with the soft factorisation in eq. (7.26).

8 Conclusions

In this paper, we have computed the quadruple-collinear splitting amplitudes for a quark
parent in CDR. These can be found in computer-readable form in the ancillary files [76].
Further, we have considered the iterated limit when m’ massless partons become collinear
to each other within a bigger set of m collinear partons, specifying it to the cases when
two or three partons become collinear to each other within a set of four collinear partons.
Likewise, we have analysed the iterated limits when one gluon or a ¢g pair or two gluons
become soft within a set of m collinear partons, specifying then the cases when m < 4.
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Our results provide another important building block to understand the universal
infrared structure of QCD amplitudes at N3LO, which is a cornerstone to construct a sub-
straction method at this order. However, more developments are needed before the com-
plete structure of infrared divergences at N3LO is known. Currently we know the structure
of infrared singularities of massless amplitudes with up to three loops [54, 55, 84-87]. Soft
singularities are known for the emission of up to three particles at tree-level [57, 75, 82, 83]
and for the emission of a single soft gluon at one and two loops [61, 63, 64, 68, 69].% Collinear
splitting amplitudes are known at tree-level and one-loop for the emission of up to three
particles [56-63, 70, 71]° and at two-loops for two collinear partons [65-67]. In this paper
we have added to this list the tree-level quadruple-collinear splitting amplitudes for a quark
parent in CDR, which so far had only been known in four dimensions for fixed external helic-
ities [58, 73, 74]. What still needs to be examined in order to fully understand the universal
infrared structure of massless QCD amplitudes at N3LO are therefore the one-loop soft cur-
rent for the emission of a pair of soft partons as well as the tree-level quadruple-collinear
splitting amplitudes for a gluon parent. The latter will be provided in a forthcoming paper.
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A Kinematics of the collinear limit
We use a generic light-cone decomposition of m massless momenta,
pf::ci]g“—i—kii—kam“, i=1,...,m, (A.1)

where the light-like momentum,

P=(/(p1+...+Pm)2P1+...+DPm), (A2)

specifies a light-cone direction, Pk 1; = 0, n* is an auxiliary light-like vector, which
specifies how that light-cone direction is approached, n-k; = 0, and «; are the longitudinal
momentum fractions with respect to the total momentum P* = """ p!'. Note that

. P
xl:]?‘,f n al:pi y ’[::].,...,m, (A3)

P.n’ P-n

8The two-loop soft-current of refs. [68, 69] is only valid for amplitudes with two hard partons.
9But for the one-loop collinear splitting amplitude ¢ — ggq, which at present is unknown.
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and the on-shellness condition, pg = 0, allows us to fix

ar
a; = ——=+—, (A.4)
so we arrive at the usual expression in eq. (2.1) for the light-cone decomposition.
Note that eq. (A.3) implies that
m
P-
=1 P-n
and _
m m
P-n~ P-P
M e Pl o 0

which shows that in general ;" k//. # 0. Only in the strict collinear limit f — fi... fm,
for which P* — P#, are the constraints ) ;- x; = 1 and > 7" k/, = 0 fulfilled.
However, the longitudinal-boost invariant variables,

m
I, Di-n =~
- — [ k. A7
K Yoz Pen’ L L zlz Liv (A7)

j=1
satisfy the constraints, > ", z; = 1 and )", l%il = 0 also away from the strict collinear
limit.

B Kinematics of the strongly-ordered collinear limit

The light-cone decomposition in eq. (2.1) may be performed with respect to a direction

specified by a light-like momentum based on any m/-parton subset of the m collinear

paurtons,10

2 H
Ki;, n

L plu B
b; =y P +K/J_Z' 2 ﬁ’-n’

(B.1)

where y; are the longitudinal momentum fractions with respect to P'* = Z:il pl', and

P =@+ +Pm)5P1+ - +DPmw), m <m. (B.2)

Similarly, one may choose the longitudinal-boost invariant quantities

m/

__ Y% _pin Sh_ B 7

Gi = T P Rp =K =G E :’ﬂj’ (B.3)
> i1 Y Prn j=1

which satisfy the constraints ZZl ¢ =1 and ZZZI /%’L = 0 away from the strict collinear
limit P + ppry1 + ... + pm — P*. By decomposing the momenta p; with respect to

OWithout loss of generality, we assume the subset to be made of the first m’ partons with momenta
{p17 o 7p'm’}-
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the light-cone directions Pr and ]5’“, it is possible to connect longitudinal-boost invariant

quantities in those directions,
i i-n/P-n 2
:;;’,. - D / — =1, (B.4)
n Zj:lpj n/P-n Zj:l Zj

For instance, the triple collinear limit involves a (1 — 2) subcurrent and one may define

Gi

longitudinal-boost invariant quantities of the (12) direction,

P' = (/(p1 +P2)%p1 +P2), (B.5)

‘i pzn otz T Gk +k), i=1,2. (B.6)

by

Next, we consider the case where the light-like vector P’ describes the light-cone direc-
tion of an m/-parton collinear subset. We may perform a generic Sudakov decomposition
of P’ with respect to the light-like direction P as follows:

~ ~ K2 po
Pr=aPt+ KH— (B.7)

where K = Z;’il k1. The coefficient « is fixed by the transversality condition K -n = 0,

Bon o
a== "= vi<i<m. (B.8)
P-n Yi
We note that a priori both K and a depend on variables that do not satisfy the constraints,
Soiixi# L3 gy #land Y 0 ki # 0. However, following the discussion in section 2,

we can define longitudinal-boost invariant quantities by (cf. egs. (2.2) and (4.4)),

2

07:?, V1<i<m/, (B.9)
(2
_ m’ ~ m’ m
K= "0 =D (R =2 KL (B.10)
I=1 I=1 j=1
such that K* = — S 11 k‘j_l and a = szle z;. In particular, the longitudinal-boost

invariant momentum fractions (; and z; satisfy eq. (B.4) also in the strongly-ordered limit.
To avoid cluttering notation, we implicitly assume longitudinal-boost invariant quantities
and drop the tilde.

Substituting eq. (B.7) into eq. (4.2) with n’ = n, we cast the light-cone parametrisation
of the m/-parton subset into an auspicious form,

Qﬁ n”~ K3, n‘: )
20n.P 26 n-P
Contracting both sides of eqs. (2.1) and (B.11) with k,;, one obtains a relation between

Pl = GaP* + (GK* + K1) — < i=1,...,m. (B.11)

the transverse components, modulo gauge terms P and n that are perpendicular to k| ;,

K= GK - kyi+ Lk (B.12)
= k. = GE" + K+ aPP 4 bnt (B.13)
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The longitudinal components are negligible in the strict collinear limit ﬁ’Hﬁ, since the
transverse momenta trivially line up. Therefore, eq. (B.13) is a statement about how the
transverse components of each collinear set approach the strongly-ordered limit relative to
each other. The coefficients a and b are fixed by on-shellness, P2 =0 and n? = 0, and the
transversality conditions, k;;-n=k1;,-n =K -n=0and K - P = 0,

a=0, b=-——=_ (B.14)

We can eliminate ;- P by contracting eq. (B.7) with k,; and using P'-k,; =0. Then

we obtain .
HJ_I"P:—*K-KJJ;#O, (B15)
I}
and the relation between the transverse momenta reads
K-k ; nt
W= GEM -l + — Zn-ﬁ' (B.16)

Therefore, the transverse momenta belonging to the m/-parton collinear subset are not
orthogonal to the m-parton collinear direction, except in the strict collinear limit. Equa-
tion (B.15) is required when computing collinear limits of the splitting amplitudes them-
selves. This procedure is outlined in appendix C.

C The iterated collinear limit

From eq. (4.11) we construct a quantity called the strongly-ordered amplitude,

pHs.0. 588" Phh 2rhh!;ss’
Pfl"'fm =P 1St Hf(lu.m’)fm/+l"'fm ’ (Cl)

which depends on the quantum numbers and light-cone kinematics of both the m-parton
collinear set and it’s m/-parton subset. It is obtained by summing over the helicities (h, h')
of the parent parton of the collinear subset. In case the parent with helicities (s, s) is a
quark, the strongly-ordered amplitude reduces to

PR =3P, (C.2)

due to egs. (4.14) and (4.15). The strongly-ordered splitting amplitude can be obtained by
performing the m’-parton iterated limit on the m-parton splitting amplitude,

m'—1
PS.0. ; ! S1..m/ N
Prog = (5] i ©3)

S[1..m']..m

As a first step, performing the limit on the right-hand side requires the change of variables,

=G 1- > z|, 1<i<m, (C.4)
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which separates the kinematics of the lower-order m/-parton splitting process from that
of the remaining (m — m') partons with momenta {p,,/11,...,pm}. Next, we perform a
light-cone decomposition of the sub-energies,

Sij — )\/2Sij, 1<4,5 < m/, (05)

2

~ K4 .

sir—>2p,q-<Q-P’—|—)\’/iu—/\'22éZ n§/>’ 1<i<m, m' +1<r<m, (C.6)
in-

applying a uniform rescaling x,; — Nky;. To complete the Sudakov expansion of (C.6),
we use eq. (B.15) to obtain the non-trivial relation,

Z
prokli=kiy kii— —K- k1, 1<i<m/, m'+1<r<m, (C.7)
8]

where K = Z;’:l k1;. Therefore, the full substitution reads

2z z
Sir = (s ...m’r+>‘/ <2k‘J_r-I€J_i—TK-I<JJ_Z'> —)\,2 r /QQi,
[L..m'] a ad; L (C.8)

1<i<m/, m+1<r<m,

where s[1._ ) = 2py - P, Finally, the strongly-ordered splitting amplitude is obtained by
series expanding in A" and keeping the leading divergent terms only. This way, we were able
to verify all the strongly-ordered limits of the quadruple-collinear splitting amplitudes, by
exploiting the equivalence in eq. (4.1).

D The three-parton splitting tensor Hy,, g4q.

In this section we provide the results for the three-parton splitting tensor H, 9(12)9344 defined
in eq. (4.19), in terms of the tensor structure of eq. (4.16). We added a subscript (12)
to denote the on-shell momentum of the gluon sub-parent. Furthermore, we define the
shorthand

2n.j=21"+...+2%5, zi=1—2z, kll...j:]ﬂ_1+...+klj. (Dl)

In what follows, we have eliminated z12 and k12 using the constraints. The sub-energies
s(ij)k are defined in eq. (4.9). The coefficients in eq. (4.16) belonging to the ‘abelian’ pieces

of Hg 5 g3q. are given by
(ab) . L 8[212}3<2(54+Z3) —(D—2)23)24 8[12]4(23(1+234)—22424)
9012)9304 ~ 95 25345[12)4 S34

=2 .2 - =2
S34(25—2 3z4Z4— (14+23)2z3  zZ5+(1423—224)24
(25—21) 5[12]3< ( ) 3+ )

S[12]4 534 S[12]4
9 . _ _ 1/ 1 1
+(2—23)24 =325+ 23+ sp12132324(D—2) 5 | —+ , (D.2)
2\ s34 Sp2u
2 _ _
(ab) _ ST19]34%4 (D—2)(2324+723)23+424 N 24534(425+ (D —2)23) (D.3)
33,9(12)9394 834z3(1 _ 2’34)2 S[12)4 8[212]4 ’
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(ab) B 3[212]3423 { 834(423+(D—2)2§)23 B Z%(D—Q)(Z34—2)—4Z4) } (D 4)

44, - 2
9(12)9394 534Z3(1—234)2 3[12}4 8[12]4
2 _ _
éib) = gb) _ 5[12}34 28342324 (423 + (D — 2)232’)
»9(12)9394 »9(12) 9394 283423(1_234)2 8[212]4

. (D—2) (2] —2324(223+224—5) —23) 23 +424 (Z3+ 24) }’ (D.5)

S[12)4

while the ‘non-abelian’ coefficients read

2
(nab)  _ [12}4 < 23 | 23%4 — 273 — Z32,> ~ 83,45012)4 223 (1 — 234)
24

9(12)9394 243[12]3 48374 8[212]3 52
n 8374 (1 — 234)2 ((Zg + 24) " 1 ) 834 (1 — 2534) (2’3 (2’4 + 7)
Z45[12]3 42381214  Z4S[12]3 451193
_ 3& _ 4> . 83,4 (1 — Z34) <(D N 2) + 2(23 + 24)(231"' 3z4 — 2)>
85[12)4 23724

245123

o2 _
123 2z4(23 + Z4)> S[12]3 < _
+ —— | z4(D —2) — — D —2)(z3 — 2z

85345[12]4 < al ) z3 85(12]4 ( ) (7 2

2z3(1 —2 4—32z4)—1 S
l - ) 42 ( ) ) S <(D —2) (23 — 24)
Z4 23 8534

223(1 — 2 27,(324 — s 052 | 2

_ 2zl - ) + 232 23)) 4 2 (2 — 22y —2) AT T2
#4 z3 8534 2324
S[12]4 <z3(423 + (23 — 24)(24 + 3)) N 222>

45193 Ei z3

+ 224 +

— (D - 2)z3) +

_ 324) _ (4 20) (1= 23) (D.6)

1 1
—(D—-2)(1 — (224 —1) (1
+ =( ) ( +z4)+4( 24 )( o 222

8
2 _ _ _
(nab) __ Snosa 274(424 + (D — 2)73)  4ea(zs — 224)
33,9(12)9344 2(1 _ Z34)2 5[212]3 8348[12]324
24(473 + Z{(D — 2) (24 + 23) + 4(1 = 2z4)2a)  42f
S5[12]35[12)4 %4 5345[12]4%3

+< R >(D—2)(Z4(234—2)+1)}’ (D.7)

Sn213 Sn2j4 534

2 _ _
(nab) _ 3[12]34 2,2%(424 + (D — 2) i) _ 23(424 + (D — 2)(2 — 234)232))
44,9(12)9344 2(1 _ Z34)2 8[212]354 5345(12]473

23 (4 (2’3 (223 — 3) + 54)

—(D—-2)(zs+ 23)Zs>

S[12]35[12]4 z3
1 23 2
+ 444z3 | ——2 | + (D — 2)(2 — 234)Z3 s (D8)
8345(12]3 Z4
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13.9012)9300 " 4(1 — 234)2

2 _
(nab) _ pglnab) o Shgpa | 423(25(D — 2) + 4z)
34,9(12)93q4 —

Sﬁm3
Az4(z4 + 2Z3) + 23(D — 2)(24(223 — 1)(2 — 234) + Z3)
- Z35345[12]4
N 47224 — Z423(4 + (D — 2)2% + 2024) + 222(24(6 — 824 — (D — 2)72) + 4)
23%245[12]35[12]4
23(8 + 23(D — 2)(224 — 3) — 424) — 424(1 + 224)
B 245345[12)3
B 23 (s34 — spoa)(Za(D — 2) (224 — 1) + 4) } (D.9)
245345[12)35[12]4
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