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We propose an all-loop expression for scattering amplitudes in planarN ¼ 4 super Yang-Mills theory in
multi-Regge kinematics valid for all multiplicities, all helicity configurations, and arbitrary logarithmic
accuracy. Our expression is arrived at from comparing explicit perturbative results with general expectations
from the integrable structure of a closely related collinear limit. A crucial ingredient of the analysis is an all-
order extension for the central emission vertex that we recently computed at next-to-leading logarithmic
accuracy. As an application, we use our all-order formula to prove that all amplitudes in this theory in multi-
Regge kinematics are single-valued multiple polylogarithms of uniform transcendental weight.
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Recent years have seen tremendous progress in our
understanding of multiloop, multileg scattering amplitudes
in planar N ¼ 4 super Yang-Mills (SYM) theory. Its S
matrix exhibits a hidden dual conformal (DC) symmetry [1],
which closes with the ordinary conformal symmetry into a
Yangian algebra [2].
The DC symmetry is broken by infrared (IR) divergen-

ces. Such divergences are universal and independent of
the hard scattering process and it is possible to construct
DC-invariant functions by considering ratios where all IR
divergences cancel. We denote by RN the IR-finite ratio of
the N-point color-ordered amplitude and the Bern-Dixon-
Smirnov (BDS) ansatz [3], defined (loosely) as the expo-
nential of the one-loop amplitude multiplied by the cusp
anomalous dimension Γcusp [4]. DC invariance dictates
that RN only depends on 3N–15 independent cross ratios.
In particular, RN is trivial for N ≤ 5 [5], and is known
analytically in general kinematics for N ¼ 6 through seven
loops [6–17] and for N ¼ 7 through four loops [18–22], at
the level of the symbol [8].
Explicit data for small N reveal that the perturbative

expansion ofRN can often be expressed in terms of a class
of iterated integrals known as “multiple polylogarithms”

(MPLs) [23]. Moreover, only MPLs of (transcendental)
weight 2L contribute to an L-loop amplitude, where weight
is the number of iterated integrations.
The mathematical beauty and simplicity of the available

perturbative results hint at some deeper structure governing
amplitudes in planar N ¼ 4 SYM theory. This is corrobo-
rated by the fact that infinite-dimensional symmetries, like
the Yangian symmetry of N ¼ 4 SYM, are a hallmark of
integrability. One should then be able to computeRN at any
value of the coupling. A major step in this direction was
taken in [24–28], where it was argued that amplitudes (or
their dual Wilson loops [29–33]) can be computed through
an integrable flux-tube picture. The dream of computing
amplitudes analytically at any value of the coupling
constant g2, or at least at any order in perturbation theory,
has not yet been achieved.
Here we present for the first time a way to compute

scattering amplitudes in planarN ¼ 4 SYM to any order in
the coupling, for any helicity configuration and any number
of external legs, albeit in the simplified kinematic setup of
multi-Regge kinematics (MRK), where the produced par-
ticles are strongly ordered in rapidity and have comparable
transverse momenta. While in Euclidean kinematics the
ratios RN become trivial in the limit [34–39], they develop
a nontrivial kinematic dependencewhen someof the energies
of the produced gluons are analytically continued to negative
values [35,37]. Here we focus on the situation where all the
centrally produced gluons have a negative energy, and we
propose a formula for any amplitude in MRK in this theory.
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The N-particle dispersion integral.—In MRK, a subset
of N − 5 cross ratios, denoted by τi, approach zero.RN can
then be expressed at each order as a polynomial in large
logarithms log τi, multiplied by functions of the 2N − 10
remaining real degrees of freedom. The latter are conven-
iently described by N − 5 complex variables zi (see [40]
and references therein for these standard conventions). We
conjecture that, to all orders, RN can be written as a
Fourier-Mellin (FM) integral with a factorized form, as also
depicted in Fig. 1,

RNeiΓδ

2πi
¼

YN−5

r¼1

�X
nr

�
zr
z̄r

�
nr=2

Z
C

dνr
2π

jzrj2iνrΦ̃r

ð−τr þ i0Þωr

�

× Ih11 C̃h2
12…C̃hN−5

N−6;N−5Ī
hN−4
N−5 : ð1Þ

Equation (1) extends similar formulas in the literature for
restricted subsets of amplitudes at leading logarithmic
accuracy (LLA) and beyond [37,40–46] (see also [47]
for an application). The ratio RN depends on the helicities
hr of all centrally produced particles. The building
blocks of the integrand ωr, Φ̃r, Ir, and C̃hrþ1

r;rþ1 are known
as the Balitsky-Fadin-Kuraev-Lipatov (BFKL) eigenvalue,
impact factor product, helicity flip kernel, and (rescaled)
central emission block (see aforementioned references and
references therein). They are functions of the FM variables
ðνr; nrÞ, whose precise form will be presented below,
and we use a shorthand notation ωr ¼ ωðνr; nrÞ and
C̃hrþ1

r;rþ1 ¼ C̃hrþ1ðνr; nr; νrþ1; nrþ1Þ, etc. The phase eiΓδ,
where Γ≡ Γcusp=4, captures terms in the BDS ansatz that
do not vanish after analytic continuation in MRK [48].
In the limit where one of the centrally produced gluons

becomes soft,RN should reduce toRN−1. Provided that the
building blocks have at most simple poles on the integra-
tion axis, this then dictates that the contour C must take the
form shown in Fig. 2 and implies the following exact
bootstrap conditions [46,50]:

ωð�πΓ; 0Þ ¼ 0; Resν¼�πΓ½Φ̃ðν; 0Þ� ¼ � 1

2π
; ð2Þ

C̃hðπΓ; 0; ν2; n2Þ ¼ 2πiIhðν2; n2Þ; ð3Þ

C̃hðν1; n1;−πΓ; 0Þ ¼ −2πiĪhðν1; n1Þ; ð4Þ

Res
ν1¼ν2

C̃hðν1; n2; ν2; n2Þ ¼
−ið−1Þn2eiπωðν2;n2Þ

Φ̃ðν2; n2Þ
; ð5Þ

C̃hð−πΓ; 0; ν2; n2Þ ¼ C̃hðν1; n1; πΓ; 0Þ ¼ 0: ð6Þ

Let us now proceed to fully specify the integral (1), by
providing explicit expressions for its building blocks.
The BFKL eigenvalue ωr, impact factor product Φ̃r, and
helicity flip kernel Ir have already been determined to all
loops [28], by means of an analytic continuation from the
collinear limit. The latter limit is also described by a
dispersion integral very similar to (1), whose building
blocks are governed by an integrable flux tube and may
thus be computed at finite coupling within the pentagon
operator product expansion (OPE) [24–27] approach.
Then, the authors of [28] were able to connect the
multi-Regge and collinear integrands by analytically con-
tinuing in the integration variable and, in particular, obtain
ωr, Φ̃r, and Ir from their OPE counterparts, the gluonic
excitation energy, measure, and next-to maximally helicity
violating (NMHV) impact factor respectively. A feature of
this analysis is that at finite coupling it is more natural to
use rapidities ur rather than νr as integration variables,
giving rise to the following implicit all-loop dispersion
relation:

νr ¼ ur − 2gðQ ·M · κ̃Þ1; ωr ¼ −4gðQ ·M · κÞ1: ð7Þ

The sources κ and κ̃ are infinite-dimensional vectors and
are described explicitly in the Supplemental Material
[51] along with the matrices Q and M, which essentially
encode the Beisert-Eden-Staudacher kernel [4,52]. The
subscript 1 in (7) means the first component of the
vector.
Central emission vertex.—The only quantity in (1) only

known at leading order (LO) [43] and next-to-LO [46] is
the central emission vertex C�

r;rþ1. A main result of this

FIG. 1. Fourier-Mellin factorization of 2 → N − 2 gluon am-
plitude in multi-Regge kinematics.

FIG. 2. Contour of integration C for the integral (1), with
νN−4 ¼ −πΓ, ν0 ¼ πΓ corresponding to the boundary cases.
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Letter is a conjecture for C�
r;rþ1 to all orders in the coupling,

as we now move on to describe. We focus on the vertex for
the emission of a positive helicity gluon. The case of
negative helicity is then recovered from the helicity flip
kernel [53],

C̃−
r;rþ1 ¼ C̃þ

r;rþ1Ī
−
r I−rþ1: ð8Þ

Our analysis parallels that of [28] for N ¼ 6. We assume
that also for N ¼ 7, the dispersion integral (1) can be
obtained by analytically continuing the contribution of
gluon excitations to the pentagon OPE through the branch
cut at ur ¼ −inr=2� 2g in the rapidity plane. It follows
that the central emission vertex is the analytic continuation
of the new OPE building block appearing at this multi-
plicity, known as the “gluon pentagon transition” [27].
Performing the analytic continuation in full generality is
quite complicated, but we are able to present a conjectural
all-orders form for the central emission vertex by contin-
uing certain factors of the pentagon transition and fixing the
remaining proportionality coefficient by consistency with
known perturbative data in MRK. More precisely, our
conjecture reads

C̃þ
12 ¼

C̃ð0Þ
12

g2
k12Z12 expðf12 − f1̃ 2̃ − if1̃2 þ if12̃ − AÞ: ð9Þ

Here C̃ð0Þ
12 denotes the LO central emission vertex of

Ref. [43], with the νr replaced with the rapidities ur,

C̃ð0Þ
12 ¼ Γð1 − iu1 −

n1
2
ÞΓð1þ iu2 þ n2

2
ÞΓðiu1 − iu2 −

n1−n2
2

Þ
Γðiu1 − n1

2
ÞΓð−iu2 þ n2

2
ÞΓð1 − iu1 þ iu2 −

n1−n2
2

Þ :

ð10Þ

The exponential factor and Z12 in (9) are obtained by
analytically continuing the corresponding functions appear-
ing in the pentagon transition [54]. The functions frs are
given by

frs ¼ 4κður; nrÞ ·Q ·M · κðus; nsÞ; ð11Þ

similarly, fr̃s (fr̃ s̃) for κr → κ̃r (and κs → κ̃s), in terms of
the same sources κ; κ̃ appearing in [51]. The constant A is
given by

A ¼ 2

Z
∞

0

dt
t
1 − J0ð2gtÞ2

et − 1
− π2Γ: ð12Þ

For Z12 we have

Z12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx−1 x−2 − g2Þðxþ1 xþ2 − g2Þ
ðxþ1 x−2 − g2Þðx−1 xþ2 − g2Þ

s
; ð13Þ

where we introduce the Zhukowski variables

x�r ¼ x

�
ur� i

nr
2

�
; xðurÞ ¼

1

2

�
urþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2r −4g2

q �
: ð14Þ

The quantity k12 in (9) collects all the factors we have not
addressed so far, and is a priori unknown. Nevertheless, it
is constrained by the exact bootstrap condition (5) to be free
of poles at ur ¼ us, and this condition also fixes the value
of k12 at ðu2; n2Þ ¼ ðu1; n1Þ to be

k12jðu2;n2Þ¼ðu1;n1Þ ¼
xþx−

u21 þ n2
1

4

eiπω1

¼ e2
R

∞
0
ðdt=tÞ½1−J0ð2gtÞ� cosðu1tÞe−ðn1=2Þtþiπω1 :

ð15Þ
There could be many functions k12 that satisfy (15), but

there is a particularly simple solution where k12 takes a
factorized form,

k12 ¼ k1ǩ2; ǩðu; nÞ ¼ kð−u;−nÞ: ð16Þ
This form is motivated by the fact that it reproduces the
perturbative expansion of the same quantity to three loops,
extracted from the corresponding seven-particle maximally
helicity violating (MHV) amplitude [20] with the method
described in [46]. We conjecture that this minimal form
persists to all orders in perturbation theory. Inserting the
factorized form into (15), we find

k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþx−

u21 þ n2
1

4

s
eði=2Þπω1ko1; ǩo1 ¼ k−1o1 : ð17Þ

The remaining freedom ko1 can be determined by solving
the exact bootstrap condition (4) order by order in pertur-
bation theory. We observe empirically that the perturbative
expansion of ko1 is consistent with an exponential form for
ko1 very reminiscent of (15),

ko1 ¼ ei
R

∞
0
ðdt=tÞðJ0ð2gtÞ−1Þðetþ1Þ

ðet−1Þ sinðu1tÞe−ðn1=2Þtþπðu1−ν1Þ: ð18Þ
This concludes our conjecture for the all-order structure

of RN in MRK. In fact, the dispersion integral (1) is valid
also at finite coupling, and so is the central emission block
(9), for all integer angular momenta nr different from zero.
As noted in [28], a subtlety that appears when nr ¼ 0 is that
one needs two sheets in the rapidity ur in order to cover the
entire real νr line, with the expressions (10)–(18) only
covering the interval jνrj ≥ ν̃r ¼ νður ¼ 2gÞ (this is not an
issue at weak coupling, where we can express all building
blocks as functions of νr directly). Covering also the
jνrj < ν̃r interval would additionally serve as a starting
point for analyzing the strong-coupling limit and making
contact with the string-theoretic description of the same
regime [55].
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The perturbative expansion of all quantities entering (1)
is simple to obtain [25,27,56], since at fixed order only a
finite number of components of the vectors κ; κ̃ contribute.
The coefficients of the perturbative expansion take a very
special form; the ratio to their leading-order contribution is
always a polynomial in the following “FM building
blocks,” first introduced in [46,57],

Vi ¼
iνi

ν2i þ n2i
4

; Ni ¼
ni

ν2i þ n2i
4

; Di ¼ −i
∂
∂νi ;

Ei ¼ ψ

�
1þ iνi þ

jnij
2

�
þψ

�
1− iνi þ

jnij
2

�

− 2ψð1Þ− 1

2

jnij
ν2i þ n2i

4

;

Mij ¼ ψ

�
iνij −

nij
2

�
þ ψ

�
1− iνij −

nij
2

�
− 2ψð1Þ; ð19Þ

where νij ¼ νi − νj, nij ¼ ni − nj, and ψðzÞ ¼ ∂z lnΓðzÞ is
the digamma function.
We implement the general expansion of C̃þ

12 and
provide explicit results through five loops, as ancilliary
files in the arXiv preprint version of this Letter. As
independent checks, we have verified that by inserting it
into the dispersion integral (1) and evaluating, we find
perfect agreement for the imaginary part of the four-loop
seven-particle MHV symbol [21], as well as for the two-
loop MHV amplitude at any multiplicity [46,58]. More
details on the integral evaluation step are provided in the
next section.
Analytic loop amplitudes in MRK.—In this section we

provide the last ingredient needed to compute amplitudes
from the dispersive representation in Eq. (1), and we discuss
how the integrals can be efficiently performed in terms of the
relevant class of functions in the limit, known as “single-
valuedMPLs” (SVMPLs) [40,59,60]. As an application, we
will give for the first time a proof of the principle of uniform
and maximal transcendentality in MRK: An L-loop gluon
amplitude in MRK in planar N ¼ 4 SYM is a linear
combination of products of log τi, SVMPLs, zeta values,
and powers of 2πi of uniform weight 2L, for any helicity
configuration and any number of legs.
The proof is constructive, thereby providing an impor-

tant algorithm to compute any scattering amplitude in MRK
order by order in the coupling, as we now sketch. For
N ¼ 6 gluons, similar proofs for the relevant classes of
functions in the collinear and LLA multi-Regge limit have
appeared in [57,61,62] and [63,64], respectively (see also
[40] for an extension of the latter to any N).
We start by noting that at order Oðg2Þ, the MHV

amplitude will be the (N − 5)-fold FM transform of the
“vacuum ladder,”

ϖ ¼
YN−5

r¼1

1

ν2r þ n2r
4

YN−6

r¼1

C̃ð0Þ
r;rþ1: ð20Þ

Letting F ½Xr� denote the FM transform of Xr, we have, in
particular, that F ½ϖ� ¼ δ=ð4πÞ, with δ as in (1) being of
uniform weight 1.
At higher loops, the integrand will be a product of (20)

with sums of polynomials of the FM building blocks (19). If
we assign weight 1 to them, and given that the polynomial
coefficients are Q-linear combinations of Riemann zeta
values ζn ¼ ζðnÞ, whose weight is n, then we observe that
these polynomials have uniform transcendental weight. In
other words, we see that the all-order formulas obtained
from integrability imply the principle of uniform and
maximal transcendentality in FM space.
To go to momentum space, we then make use of the FM

transform’s property to map products to convolutions,

F ½fg� ¼ F ½f� � F ½g�; ð21Þ
where

ðF �GÞðzÞ ¼
Z

d2w
jwj2 FðwÞG

�
z
w

�
: ð22Þ

Every higher-loop amplitude in MRK can thus be built
iteratively by convolving thevacuum ladder (20)with a finite
number of FM building blocks (19). While the evaluation of
the convolution integral seems a daunting task, it was shown
in [65] (see also [40]) that, in the case where the integrand
only involves rational functions and SVMPLs, the integral
can easily be evaluated in terms of residues.
The proof now proceeds by induction: Assumewe have a

pure linear combination of SVMPLs of uniform weight. We
will show that convolution with any FM building block
raises the weight by one and preserves purity. This justifies
our assignment of weight 1 to the building blocks and
implies that all MHV amplitudes in MRK satisfy the
principle of uniform and maximal transcendentality.
More concretely, assume that fðzÞ is a pure linear

combination of SVMPLs of uniform weight n and let

KðzÞ ¼ jzj2
X
i;j

aij
ðz − αiÞðz̄ − βjÞ

; ð23Þ

with aij, αi, βj ∈ Q. One can show using Stokes’s theorem
[65] that ðf �KÞðzÞ is again pure and has uniform weight
nþ 1. The FM transform of the building blocks Er, Nr, Vr
match the form in (23) [40,46,47]

F ½Er� ¼ −
zr þ z̄r

2j1 − zrj2
; ð24Þ

F ½Vr� ¼
2 − zr − z̄r
2j1 − zrj2

; ð25Þ

F ½Nr� ¼
zr − z̄r
j1 − zrj2

: ð26Þ
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Hence, they raise the weight of the function they are
convolved with by one. We may similarly show that the
same holds true for the derivative Dr, by using integration
by parts to let it act on the factor jzrj2νr in the definition of
the FM transform,

F ½DrXr� ¼ − log jzrj2F ½Xr�: ð27Þ

Finally, let us note that the FM building block Mrs obeys

Mrs ¼ Dr logðC̃ð0Þ
rs Þ þ Er þ Vr ð28Þ

¼ −Ds logðC̃ð0Þ
rs Þ þ Es − Vs: ð29Þ

This allows us to shift occurrences of Mrs in its FM
transform with the vacuum ladder to either end,

F ½ϖMrrþ1� ¼ F ½ϖMr−1r� þ F ½Drϖ�; ð30Þ

F ½ϖM12� ¼ F ½ϖE1� − F ½ϖV1� þ F ½D1ϖ�; ð31Þ

and in this manner replace it by a combination of E, V, D.
Hence,Mrs raises the weight of the integral by one as well.
Finally, our proof may be immediately extended to non-
MHV amplitudes as well. The latter can be obtained by
convoluting MHV amplitudes with the helicity flip kernel
I−, and the only difference is that at LO the latter does not
raise the weight and it does not preserve the purity of the
function [40]. We therefore conclude that non-MHV
amplitudes have the same weight as their MHV counter-
parts, but are no longer pure functions.
Conclusions.—We have presented a dispersion integral

for all gluon amplitudes of arbitrary multiplicity and
helicity configurations in MRK. By combining our results
with [40], we obtain an efficient algorithm to evaluate any
scattering amplitude in MRK, for any number of loops or
legs, and for arbitrary helicity configurations.
We believe that our results, while complete for the sector

of planar N ¼ 4 super Yang-Mills theory that we have
studied, should serve as the basis for many future gener-
alizations in various directions. First, it should be straight-
forward to include the fermions and scalars into our
expression or to consider more general Mandelstam regions
[49,58,66,67]. We believe that a similar structure will
survive for general gauge theories, at least in the planar
limit, though the details will differ because, in general, dual
conformal symmetry is broken. It would be very interesting
to understand how the form of the amplitude generalizes
beyond the planar limit.
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