
Experience in LHCb

Run 3 upgrade in LHCb

1

Run 3 DAQ baseline

Baseline DAQ

pp collisions

O(1000) x86 servers

HLT1

HLT2

storage

event buildingO(250)
x86 servers

buf er on disk
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

2

GPUs in Run 3

Baseline DAQ

pp collisions

O(1000) x86 servers

HLT1

HLT2

storage

event buildingO(250)
x86 servers

buf er on disk
calibration and alignment

40 Tbit/s

40 Tbit/s

80 Gbit/s

pp collisions

O(1000) x86 servers

HLT2

storage

HLT1

event buildingO(250)
x86 servers

buf er on disk
calibration and alignment

O(500)
GPUs

40 Tbit/s

1-2 Tbit/s

80 Gbit/s

3

Running e�ciently on GPUs

Previous attempts in LHCb were done using a service to o�oad part of the work to GPUs. Single
events were submitted to an service, which accumulated and o�oaded several of them. However,
the LHCb event size is too small (60-100 kB), not enough to occupy e�ciently the GPU.

The number of events is a key factor in LHCb workload:

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

60
00

Number of events

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Sp
ee

du
p

(ti
m

es
)

4

LHCb GPU core infrastructure

The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

• A C++17 compliant compiler, boost, zeromq
• CUDA v10.0 (currently C++14 is supported)

Features

• Multithreaded, multistream framework.
• Con�gurable static sequences.
• Pipelined stream sequence.
• Custom memory manager, no dynamic allocations, SOA datatypes.
• Built-in validation with Monte Carlo.
• Optional compilation with ROOT for generation of graphs.
• Integration with Gaudi build system.
• Cross-architecture compatibility. 5

Current Allen HLT1 sequence

Raw data

Global Event Cut

Velo decoding
and clustering

Velo tracking

Simple Kalman �lter

Find pri-
mary vertices

UT decoding

UT tracking

SciFi decoding

SciFi tracking

Parameterized
Kalman �lter

Muon decoding

Muon ID

Find sec-
ondary vertices

Select events

Selected events

6

Framework modularity

search by triplet three hit tracks adder

set arguments size memory (de)allocation operator()

Algorithm sequence

7

An algorithm de�nition (1)
1 g l o b a l void v e l o t h r e e h i t t r a c k s a d d e r (
2 u i n t 3 2 t * dev ve lo c luster conta iner ,
3 u int * dev module cluster start ,
4 Velo : : TrackHits * dev tracks ,
5 Velo : : T r a c k l e t H i t s * dev three h i t t racks ,
6 bool * dev hit used ,
7 u int * dev atomics velo) ;
8
9 s t r u c t v e l o t h r e e h i t t r a c k s a d d e r t : publ ic GpuAlgorithm {

10 constexpr s t a t i c auto name {” v e l o t h r e e h i t t r a c k s a d d e r t ”} ;
11 decltype (gpu function (v e l o t h r e e h i t t r a c k s a d d e r)) funct ion {v e l o t h r e e h i t t r a c k s a d d e r } ;
12 using Arguments = std : : tuple<
13 dev ve lo c luster conta iner ,
14 dev est imated input s ize ,
15 dev tracks ,
16 dev three h i t t racks ,
17 dev hit used ,
18 dev atomics velo>;
19
20 void set arguments size (
21 ArgumentRefManager<Arguments> arguments ,
22 const RuntimeOptions& runtime options ,
23 const Constants& constants ,
24 const HostBuffers& host buf fers) const ;
25
26 void operator () (
27 const ArgumentRefManager<Arguments>& arguments ,
28 const RuntimeOptions& runtime options ,
29 const Constants& constants ,
30 HostBuffers& host buffers ,
31 cudaStream t& cuda stream ,
32 cudaEvent t& cuda generic event) const ;
33 } ;

8

An algorithm de�nition (2)
1 void v e l o t h r e e h i t t r a c k s a d d e r t : : operator () (
2 const ArgumentRefManager<Arguments>& arguments ,
3 const RuntimeOptions& runtime options ,
4 const Constants& constants ,
5 HostBuffers& host buffers ,
6 cudaStream t& cuda stream ,
7 cudaEvent t& cuda generic event) const
8 {
9 funct ion . invoke (dim3 (host buf fers . host number of selected events [0]) , block dimension () , cuda stream) (

10 arguments . o f fset<dev ve lo c luster conta iner >() ,
11 arguments . o f fset<dev est imated input s ize >() ,
12 arguments . o f fset<dev tracks >() ,
13 arguments . o f fset<dev three h i t t racks >() ,
14 arguments . o f fset<dev hit used >() ,
15 arguments . o f fset<dev atomics velo >()) ;
16 }
17
18 g l o b a l void v e l o t h r e e h i t t r a c k s a d d e r (
19 u i n t 3 2 t * dev ve lo c luster conta iner ,
20 uint * dev module cluster start ,
21 Velo : : TrackHits * dev tracks ,
22 Velo : : T r a c k l e t H i t s * dev three h i t t racks ,
23 bool * dev hit used ,
24 uint * dev atomics velo)
25 {
26 . . .
27 }

9

Algorithm design

All algorithms in Allen are by design SIMD. Conventional GPU algorithms require parallelism at two
levels:

• Grid dimension - Independent groups of work
• Block dimension - Threads sharing a common cache; they can be synchronized

Every event in LHCb is an independent physics event. Within each event, some algorithms exhibit
higher parallelizability than others. Most times, algorithms bene�t from the following convention:

• Grid dimension - Events under execution
• Block dimension - Intra-event parallelism

10

Algorithm design

All algorithms in Allen are by design SIMD. Conventional GPU algorithms require parallelism at two
levels:

• Grid dimension - Independent groups of work
• Block dimension - Threads sharing a common cache; they can be synchronized

Every event in LHCb is an independent physics event. Within each event, some algorithms exhibit
higher parallelizability than others. Most times, algorithms bene�t from the following convention:

• Grid dimension - Events under execution
• Block dimension - Intra-event parallelism

10

Cross-architecture compatible

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ()
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for (unsigned i n t i = 0 ; i < num blocks . x ; ++ i) {
18 for (unsigned i n t j = 0 ; j < num blocks . y ; ++ j) {
19 for (unsigned i n t k = 0 ; k < num blocks . z ; ++k) {
20 blockIdx = {i , j , k} ;
21 funct ion (std : : get<I>(invoke arguments) . . .) ;
22 }
23 }
24 }

11

Memory management

We allocate memory at the startup of the application. A custom memory manager assigns memory
segments on demand. This is essentially the same ALICE is doing. Good practices:

• No dynamic memory allocations (within operator()).
• Consolidate memory into compact (AO)SOAs.
• Prefer coalesced accesses where possible.

0100200300400500
Memory segments (MiB)

velo_search_by_triplet_t

lf_composite_track_seeding_t

kalman_velo_only_t

de
v_

sc
ifi

_r
aw

_i
n.

..

de
v_

ve
lo

_c
lu

st
er

...

de
v_

tr
ac

kl
et

s

de
v_

tr
ac

ks

de
v_

sc
ifi

_l
f_

ca
n.

..

de
v_

ut
_t

ra
ck

_h
it

...

de
v_

sc
ifi

_l
f_

tr
i..

.

de
v_

ve
lo

_t
ra

ck
_h

...

de
v_

ut
_t

ra
ck

_h
it

...

de
v_

sc
ifi

_l
f_

tr
i..

.

de
v_

ve
lo

_t
ra

ck
_h

...

de
v_

sc
ifi

_h
it

s

de
v_

sc
ifi

_l
f_

tr
a.

..

12

Algorithms

Example on spatial and temporal locality, data access patterns (VELO tracking)

• SIMD architectures bene�t from coalesced and contiguous data
access patterns

• Cache memory is limited in size
• Locality: Access patterns should restrict to a portion of memory

Search by triplet employs an SOA data structure for the VELO recon-
struction, so that every access to memory has an increased proba-
bility of returning several required data in a cache line.

Additionally, modules in the VELO subdetector are visited only once,
interleaving seeding and forwarding for all building tracks, maximiz-
ing spatial and temporal locality.

φ0

φ1

φ2

φ3

t0

t1

t2

t3

φ0

φ1 c1

c0

t0

t1

t2

t3

t4

t5

φ0

φ1

φ2

φ3

φ4

φ5

13

Example on spatial reductions (UT tracking)

• Track reconstruction typically presents a high multiplicity of hit
candidates

• Spatial reductions like KD-tree structures or search windows
help reduce the dimensionality of hits under consideration

The UT subdetector is partially decoded into sector groups, aka
groups of sectors sharing the same starting x coordinate. Within each
sector group, hits are ordered by their y coordinate.

CompassUT determines search windows for each incoming Velo
track. A con�gurable number of windows is determined, and binary
searches are performed over x and y.

window -1
window +1

VELO track Activated
strip (hit)

track extrapolation

UT plane section

main window

next window

previous window

main sector range

next sector range

previous sector range

y

x

z

14

Each algorithm with its own grid and block size (Forward tracking)

Search ini-
tial windows

Triplet seeding

Triplet keep best

Calculate
parameterization

Extend tracks x

Extend tracks u/v

Quality �lter length

Quality �lter

Generates a window (max. 32 hits) according to track information.
Block dimension: {256}.

Collects triplets from layers {0, 4, 8} or {3, 7, 11}. Block dimension:
{32, 2}.

Keeps best 12 triplets according to their χ2. Block dimension: {128}.

Calculates cubic track model. Block dimension: {128}.

Extends tracks to other three X layers. Block dimension: {128}.

Extends tracks to stereo layers. Block dimension: {256}.

Cuts tracks with less than 9 hits. Block dimension: {256}.

Keeps best tracks according to χ2 in X and Y. Block dimension:
{128}.

15

Calculate size, pre�x sum (CPU), allocate

The sizes of all bu�ers are de/allocated with a custom memory manager. Pre�x sums (accumulated
sums) are used to determine o�set / size of data bu�ers per event. We o�oad them to CPU.

VELO estimate
input size

Pre�x sum
VELO clusters

VELO mask
clustering

VELO decoding
and clustering

UT calculate
number of hits

Pre�x sum
UT hits

UT pre decode

UT �nd permutation

UT decode raw
banks in order

UT decoding

SciFi calculate
cluster count v4

Pre�x sum SciFi hits

SciFi pre decode v4

SciFi raw bank
decoder v4

SciFi direct
decoder v4

SciFi decoding

Muon pre decoding

Pre�x sum muon
pre decoding

Muon sort station
region quarter

Muon add coords
crossing maps

Pre�x sum muon
station ocurrence

Muon sort
by station

Muon decodingMuon decoding

16

Physics performance

Due to the increase in arithmetic capacity from GPUs, it is possible to tune for better physics while
ful�lling the HLT1 throughput requirement of LHCb (more in a moment).

17

Integration

Baseline scenario without GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

100 Gb/s

Event builder PCs

CPU+RAM 2

RU

H
LT

net

E
B

net

R
eadout

CPU+RAM 1

R
eadout

E
B

net

H
LT

net

RU BUBU

Figure 1: Event builder PC.

18

Event builders with GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

10 Gb/s

Event builder PCs Extra GPUs

CPU+RAM 2CPU+RAM 1

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

Figure 2: GPU-equipped event builder PC.

19

Target processing rate

In order to be able to perform the HLT1 �lter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.

0 10 20 30 40 50 60 70 80
Throughput of Allen sequence (kHz)

2x Intel Xeon E5-2630 v4

2x ARM64 Cavium ThunderX2

2x Power9 22-core

Tesla T4

GeForce RTX 2080 Ti

Quadro RTX 6000

Tesla V100 32GB

0 3 6 9 12
Speedup of Allen sequence (times)

LHCb Simulation
GPU R&D

Opportunistic GPU usage: When there is no data-taking, GPUs could be use for something else.

20

Scaling

Trigger rate versus peak TFLOPS, cost and power envelope across graphics cards:

5 10 15
Peak 32-bit TFLOPs

10

20

30

40

50

60

Tr
ig

ge
r r

at
e

(k
Hz

)
2012 2014 2016 2018

Release date

2012 2014 2016 2018
Release date

10

20

30

40

50

Ba
ng

 p
er

 b
uc

k
(H

z/
$)

2012 2014 2016 2018
Release date

0.0

0.1

0.2

0.3

0.4

Ra
te

 p
er

 w
at

t (
kH

z/
w)

GeForce GTX 670
GeForce GTX 680
GeForce GTX 780 Ti
GeForce GTX 1060 6GB
GeForce GTX 980
GeForce GTX TITAN X

GeForce GTX 1080 Ti
Tesla T4
GeForce RTX 2080 Ti
Tesla V100 32GB
Quadro RTX 6000

1

1Optimization of high-throughput real-time processes in physics reconstruction, PhD thesis, Daniel Hugo Cámpora Pérez.

21

Integration

The most attractive realization of a GPU HLT1 in LHCb would be in the Event Builders.

Many aspects need to be demonstrated, such as CPU consumption, memory consumption and
throughput, air�ow, thermal stability, GPU performance stability, network throughput...

CPU #0 CPU #1

TELL40 data generation #0

Network MEP data transmission #0 Network ... #1

Data transposition #0 Data transposition #1

Send to GPU #0 Send to GPU #1

MEP prefetch #0 MEP prefetch #1

TELL40 data generation #1

22

Selected integration test results

23

Conclusions

Run 3

• ALICE and LHCb will have full so�ware data processing in Run 3.
• Both experiments have developed GPU-based systems that are ready for Run 3.

• ALICE expects 100× more data, and do an online compression of events.
• Most of the code exist for GPUs (baseline), and there is room for more.
• Data management incurs overhead, more consecutive components on the GPU would remove

this overhead.

• LHCb expects about 40× more data, and does a two-stage trigger.
• The entire sequence of the �rst stage HLT1 has been developed for GPUs.
• The GPU HLT1 is being studied as an alternative solution to the baseline (CPUs).

24

Components

• Both ALICE and LHCb use custom memory managers for the GPU to avoid the cost of
allocating / deallocating.

• Both have cross-architecture compatibility by a switch at compile time.

In terms of integration,

• ALICE has more experience with a DAQ system with GPUs.
• Next steps are to have a better GPU usage in synchronous / asynchronous stages.

• LHCb needs proof that we are not breaking the experiment.
• Integration and burnout tests are ongoing.
• In terms of hardware, the system would occupy space in the Event Builders.
• In terms of so�ware, HLT1 is its own application, and needs to be able to speak to certain

parts of Gaudi and produce output understandable by HLT2 application.

25

Algorithms

Both have shown e�cient implementations of GPU tracking algorithms and others:

• In ALICE, a global method is used to �nd track seeds, which maps naturally to parallel
architectures.

• In LHCb, a local method exploits parallelism in modules (VELO), and track seeds are worked
on in the following algorithms (PV, UT, Forward tracking, Kalman).

• LHCb requires processing many events in parallel to saturate the GPU, due to the tiny event
size compared to ALICE (100 kB versus 50 MB).

• ALICE processes several time frames in parallel to saturate modern GPUs.

26

Good practices for GPU

In general, good practices of SIMD are useful in GPUs, and GPUs have some additional ones:

• Division of work into parallelizable independent tasks; blocks of threads can communicate
(ie. wider vector widths).

• Data structures AOS vs SOA vs AOSOA, temporal and spatial locality.
• Dynamic memory allocation is costly, and more so on GPUs.

• GPUs are good for arithmetic workload with few branches.
• On the other hand, they are not just salvation: too high multiplicities will still run slow, and

have to be worked out.
• If possible, it is better to run contiguous reconstruction steps on the GPU.

27

GPUs in HEP

It has been amply shown that GPUs are e�cient architectures for HEP workloads.

• They require hard work, and they provide potential better physics and throughput.
• Heterogeneous computing is becoming more of a reality.

In particular, the experience in ALICE and LHCb show that this e�ort scales to newer architectures.

• All the lessons learned in modern CPUs (SIMD) transfer to GPUs.
• Learning curve is not steep, many tools to get started.

Looking forward to seeing HEP GPU applications grow in the next few years.

28

Backup

CPU support: CUDA code

Consider the following CUDA code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus (f l o a t * x , f l o a t * y , const f l o a t a) {
3 y [threadIdx . x] = x [threadIdx . x] * a + y [threadIdx . x] ;
4 syncthreads () ;
5 i f (threadIdx . x < 10) {
6 y [i] += 1 ;
7 }
8 i f (threadIdx . x == 1 1) {
9 y [threadIdx . x] += 20;

10 }
11 }
12 . . .
13 saxpy plus<<</* blocks */ M, /* threads */ N>>>(x , y , a) ;

• The number of threads is set statically to N=32.
• The statement in line 3 makes assumptions of the number of threads.
• The two if statements also make assumptions of the number of threads (they require at least

11 threads).

29

CPU support: Flexible code

In contrast, consider this code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus (f l o a t * x , f l o a t * y , const f l o a t a) {
3 for (i n t i = threadIdx . x ; i<N ; i +=blockDim . x) {
4 y [i] = x [i] * a + y [i] ;
5 }
6 syncthreads () ;
7 for (i n t i = threadIdx . x ; i <10; i +=blockDim . x) {
8 y [i] += 1 ;
9 }

10 i f (threadIdx . x == 0) {
11 y [1 1] += 20;
12 }
13 }
14 . . .
15 saxpy plus<<</* blocks */ M, /* threads */ 1>>>(x , y , a) ;

• A call to saxpy plus with any number of threads will produce the same result.

30

CPU support: A CPU version

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ()
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for (unsigned i n t i = 0 ; i < num blocks . x ; ++ i) {
18 for (unsigned i n t j = 0 ; j < num blocks . y ; ++ j) {
19 for (unsigned i n t k = 0 ; k < num blocks . z ; ++k) {
20 blockIdx = {i , j , k} ;
21 funct ion (std : : get<I>(invoke arguments) . . .) ;
22 }
23 }
24 }

31

Integration test setup (1)

For our �rst test, we setup a single server with:

• Supermicro server
• 2 × Intel Xeon Silver 4114
• 376 GB of memory
• Di�erences wrt. candidate server: Cascade Lake (better PCIe performance), di�erent chassis

(better thermals)

It has three PCIe Gen3 16x slots per socket. Two of those are double width. Con�guration on each
socket:

• In�niband EDR card (100 Gbps)
• TELL40
• Gigabyte GeForce RTX 2080 Ti

32

Integration test setup (2)

Notes:

• The TELL40 can generate data into the server memory on each socket.
• Both network cards are connected back to back. A �ow can then be simulated as if coming

from the event building application.
• Each GPU can process data independently from each other. Two GPU applications are run,

each one attached to a di�erent GPU.

33

More integration test results (1)

34

More integration test results (2)

35

	Experience in LHCb
	LHCb GPU core infrastructure
	Algorithms
	Integration
	Conclusions
	Backup

