Experience in LHCb

Run 3 upgrade in LHCb

y
Sm
SciFi
Tracker C2
Vertex
Locator/
ol

—5m

I I T R S Y |
15m 20m

Run 3 DAQ baseline

Baseline DAQ

pp collisions

40 Thit/s ¢

5 sor
] event building

40 Thit/s

0O(1000) x86 servers
HLT1)

=

]

buf er on disk]

calibration and alignment

L]
(HLT2)

80 Gbit/s ¢

(storage]

)

GPUs in Run 3

Baseline DAQ
1lisi
(pp collisions) (pp collisions J
40 Thit/s ¢ 40 Thit/s ¢
6 serv
{ OC) event building) x86 servers event bullding
x86 servers

0(500)
wmus | (& |

0(1000) x86 servers -
(HLT1) 1-2 Tbit/s $
~
V 0(1000) x86 servers
Duflenionidisiy buf er on disk
Ca RO onment calibration and alignment
(HLT2) P

80 Gbit/s L 80 Gbit/s ¢

(storage) (storage J

Running efficiently on GPUs

Previous attempts in LHCb were done using a service to offload part of the work to GPUs. Single
events were submitted to an service, which accumulated and offloaded several of them. However,
the LHCb event size is too small (60-100 kB), not enough to occupy efficiently the GPU.

The number of events is a key factor in LHCb workload:

1.4
1.2
1.0

Speedup (times)
)
©

L R T B A X - B T R N
WA S PR PP

Number of events

LHCb GPU core infrastructure

The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

+ A C++17 compliant compiler, boost, zeromq
+ CUDA v10.0 (currently C++14 is supported)

Features

Multithreaded, multistream framework.

Configurable static sequences.

Pipelined stream sequence.

+ Custom memory manager, no dynamic allocations, SOA datatypes.

Built-in validation with Monte Carlo.

« Optional compilation with ROOT for generation of graphs.

Integration with Gaudi build system.

Cross-architecture compatibility. 5

.

)

Current Allen HLT1 sequence

Global Event Cut

UT decoding ‘ ‘ Muon decoding

e UT tracking
and clustering

Select events

‘ Parameterized ‘

Kalman filter { Selected events

Framework modularity

Algorithm sequence

——> search by triplet —— three hit tracks adder ———>

An algorithm definition (1)

1 .-global.. void velo-three_hit-tracks.adder(
2 uint32_t* dev.velo._cluster_container,

3 uint* dev_module_cluster_start,

4 Velo::TrackHits* dev_tracks,

5 Velo::TrackletHits* dev_three_hit_tracks,
6 bool* dev_hit_used,

7 uint* dev.atomics.velo);

8

9

struct velo-three_hit_tracks.adder_t : public GpuAlgorithm {
10 constexpr static auto name {"velo_-three_hit_tracks.adder.t”};
11 decltype(gpu-function(velo_three_hit_tracks.adder)) function {velo_three_hit_tracks_adder};
12 using Arguments = std::tuple<

13 dev_velo.cluster_container,

14 dev_estimated_input_size,

15 dev_tracks,

16 dev_three_hit_tracks,

17 dev_hit_used,

18 dev_atomics.-velo >;

19

20 void set.arguments_size(

21 ArgumentRefManager<Arguments> arguments,

22 const RuntimeOptions& runtime_options,

23 const Constants& constants,

24 const HostBuffers& host_buffers) const;

25

26 void operator()(

27 const ArgumentRefManager<Arguments>& arguments,
28 const RuntimeOptions& runtime_options,

29 const Constants& constants,

30 HostBuffers& host_buffers,

31 cudaStream_t& cuda._stream,

32 cudaEvent-t& cuda-generic.event) const; 8

3}

An algorithm definition (2)

1 void velo-three_hit_tracks.adder_t::operator()(

2 const ArgumentRefManager<Arguments>& arguments,
3 const RuntimeOptions& runtime_options,

4 const Constants& constants,

5 HostBuffers& host_buffers,

6 cudaStream.t& cuda.stream,

7 cudaEvent_t& cuda_generic.event) const

8
9

{
function.invoke(dim3(host_buffers.host.number_of_selected_events[o]), block-dimension(), cuda_stream)(

10 arguments. offset<dev_velo_cluster_container >(),
1 arguments. offset<dev.estimated-input.size >(),
12 arguments. offset<dev_tracks >(),
13 arguments. offset<dev_-three_hit-tracks >(),
1% arguments. offset<dev_hit_used >(),
15 arguments. offset<dev_atomics_velo >());
16 }
17

18 __global._ void velo_three_hit_tracks_adder(
19 uint32-t* dev.velo-cluster_container,

20 uint* dev.module_cluster_start,

21 Velo:: TrackHits* dev_tracks,

22 Velo::TrackletHits* dev.three_hit-tracks,
23 bool* dev_hit_used,

24 uint* dev_atomics_velo)

25 {

26

27 }

Algorithm design

All algorithms in Allen are by design SIMD. Conventional GPU algorithms require parallelism at two
levels:

+ Grid dimension - Independent groups of work

« Block dimension - Threads sharing a common cache; they can be synchronized

10

Algorithm design

All algorithms in Allen are by design SIMD. Conventional GPU algorithms require parallelism at two
levels:

+ Grid dimension - Independent groups of work

« Block dimension - Threads sharing a common cache; they can be synchronized

Every event in LHCb is an independent physics event. Within each event, some algorithms exhibit
higher parallelizability than others. Most times, algorithms benefit from the following convention:

+ Grid dimension - Events under execution

- Block dimension - Intra-event parallelism

10

Cross-architecture compatible

If the code has block-dimension strided for loops, and all it statements for a single thread refer to
threads of index 0, then with some macros and function definitions it is possible to compile the
code for CPUs:

1// Definitions

2 #tdefine __global.-_

3 #define _.syncthreads()

4 struct GridDimensions { uint x, y, z; };

5 struct Blockindices { uint x, y, z; };

6 struct BlockDimensions { uint x=1, y=1, z=1; };
7 struct ThreadlIndices { uint x=0, y=0, z=0; };
8 thread-local GridDimensions gridDim;

9 thread_local Blockindices blockldx;

o0 thread_local BlockDimensions blockDim;

11 thread-local Threadindices threadldx;

15 // Kernel call excerpt
16 gridDim = {num_blocks.x, num_blocks.y, num_blocks.z};

17 for (unsigned int i = 0; i < num.blocks.x; ++i) {

18 for (unsigned int j = 0; j < num_blocks.y; ++j) {
19 for (unsigned int k = 0o; k< num.blocks.z; ++k) {
20 blockldx = {i, j, k};

21 function (std:: get<l >(invoke.arguments) ...) ;

22 }

23}

24 }

Memory management

We allocate memory at the startup of the application. A custom memory manager assigns memory
segments on demand. This is essentially the same ALICE is doing. Good practices:

+ No dynamic memory allocations (within operator()).
+ Consolidate memory into compact (AO)SOAs.
« Prefer coalesced accesses where possible.

kalman_velo_only_t

I| ‘ If_composite_track_seeding_t
‘I I I velo_search_by_triplet_t
100 0

T eV S

i tra.
dev_scifi_hits.

500 400 300 200
Memory segments (MiB)

12

Algorithms

Example on spatial and temporal locality, data access patterns (VELO tracking)

« SIMD architectures benefit from coalesced and contiguous data
access patterns

« Cache memory is limited in size

- Locality: Access patterns should restrict to a portion of memory

Search by triplet employs an SOA data structure for the VELO recon-
struction, so that every access to memory has an increased proba-
bility of returning several required data in a cache line.

Additionally, modules in the VELO subdetector are visited only once,
interleaving seeding and forwarding for all building tracks, maximiz-
ing spatial and temporal locality.

[N —
2

Example on spatial reductions (UT tracking)

« Track reconstruction typically presents a high multiplicity of hit T plane ector
candidates

- Spatial reductions like KD-tree structures or search windows
help reduce the dimensionality of hits under consideration

The UT subdetector is partially decoded into sector groups, aka
groups of sectors sharing the same starting x coordinate. Within each
sector group, hits are ordered by their y coordinate. | 0950

CompassUT determines search windows for each incoming Velo
track. A configurable number of windows is determined, and binary
searches are performed over x and y.

u

Each algorithm with its own grid and block size (Forward tracking)

Search ini-
tial windows

Triplet seeding

Triplet keep best

Calculate
parameterization

Extend tracks x

Extend tracks u/v

Quality filter length

Quality filter

Generates a window (max. 32 hits) according to track information.
Block dimension: {256}.

Collects triplets from layers {o, 4, 8} or {3, 7, 11}. Block dimension:

{32,2}.

Keeps best 12 triplets according to their y*. Block dimension: {128}.

Calculates cubic track model. Block dimension: {128}.

Extends tracks to other three X layers. Block dimension: {128}.

Extends tracks to stereo layers. Block dimension: {256}.

Cuts tracks with less than 9 hits. Block dimension: {256}.

Keeps best tracks according to y in X and Y. Block dimension:
{128}.

15

Calculate size, prefix sum (CPU), allocate

The sizes of all buffers are de/allocated with a custom memory manager. Prefix sums (accumulated
sums) are used to determine offset / size of data buffers per event. We offload them to CPU.

[VEloestimate |1 [UTcalelate |1 I Scifi calculate
! input size i __number of hits] 1| cluster count v

[]

| Prefix sum Lo Prefix sum Vo
| VELO clusters || |

UT find permutation

Physics performance

Due to the increase in arithmetic capacity from GPUs, it is possible to tune for better physics while
fulfilling the HLT1 throughput requirement of LHCb (more in a moment).

Congcatulations,
it only took you
65299 seconds

W by couk

Integration

Baseline scenario without GPUs

Event builder network

100 Gb/s e
CPU+RAM 1 CPU+RAM 2

~250 Event builder PCs

7

Sub- farm switch Sub- farm switch

] !

Event filter farm
~2000 dual-socket nodes

BU LTH
Inopesy
U g3
BU ITH

Inopesy

Figure 1: Event builder PC.

Event builders with GPUs

Event builder network

100 Gb/s

(e}
]
c
]
>
=
=
(e}
]
c
]
>
=
N

=)
-4 C
@
2 C

~250 - iEveat bﬂildﬁrPGs A= E\>ﬁr;ﬁxlgai

7

Sub-farm switch Sub-farm switch

> >

| I]

Event filter farm
~2000 dual-socket nodes

,:‘/,

3
[P0V |€—

Inopeay
X
38U g3 900T =
[38u 17H o0t 1«
Jnopeay
e
38U 83 500T <

(38U 17H 90T

Figure 2: GPU-equipped event builder PC.

Target processing rate

In order to be able to perform the HLT1 filter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.

Speedup of Allen sequence (times)
3 6 9

Tesla V100 32GB

Quadro RTX 6000

GeForce RTX 2080 Ti

Tesla T4

2x Power9 22-core

2x ARM64 Cavium ThunderX2

2x Intel Xeon E5-2630 v4

o 10 20 30 40 50 60 70 80
Throughput of Allen sequence (kHz)

Opportunistic GPU usage: When there is no data-taking, GPUs could be use for something else.

20

Trigger rate versus peak TFLOPS, cost and power envelope across graphics cards:

@ GeForce GTX 670
GeForce GTX 680
GeForce GTX 780 Ti
GeForce GTX 1060 6GB
GeForce GTX 980
GeForce GTX TITAN X

*

GeForce GTX 1080 Ti
Tesla T4

GeForce RTX 2080 Ti
Tesla V100 32GB
Quadro RTX 6000

60 o)
5 50
z
2 40
2
€30
& a
& 20
[- -
10 -
. >
5 10 15 2012 2014 2016 2018
Peak 32-bit TFLOPS Release date
50 0.4
g H
R Zos
% ¥ *
3% 202
i 20 g
g Loa
H] -
10 , *
0.0
2012 2014 2016 2018 2012 2014 2016 2018

Release date

"Optimization of high-throughput real-time processes in physics reconstruction, PhD thesis, Daniel Hugo Campora Pérez.

Release date

1

21

Integration

The most attractive realization of a GPU HLT1 in LHCb would be in the Event Builders.

Many aspects need to be demonstrated, such as CPU consumption, memory consumption and
throughput, airflow, thermal stability, GPU performance stability, network throughput...

CPU %0 CPU #1
TELL40 data generation 0 TELL40 data generation =1
MEP prefetch =0 MEP prefetch 1
Network MEP data transmission =@ Network w1

Send to GPU %@

\

Send to GPU w1

22

Selected integration test results

Allenthroughput System memory bandwidt Memory bandwidth per socket
ene 1250 68 600085
651K 1000 68 500685
I 00K 75.0 685
2 649k
5 500 68s
8 sask
= 25.0 GBs.
67k
omes 100685
546K o a0 . . w o 50 0 o 0
o oo e 1000 163 700 730 1800 1830 1900 630 w0 730 o0 130 1900
Memory = Read = Wiite SKTO = SKT1
CPU usage Memory 1B memory bandwidth out
125% 50068 100 Gps
100% w0es
75 30068
s0% 20068
2% 10068
o8 0 wops
700 730 100 1830 19:00 16:30 17.00 730 1800 1830 19:00 1630 1700 1730 w00 830 1900
System = tdle Used — Available M0 — mixs.1

23

Conclusions

ALICE and LHCb will have full software data processing in Run 3.

Both experiments have developed GPU-based systems that are ready for Run 3.

ALICE expects 100x more data, and do an online compression of events.

Most of the code exist for GPUs (baseline), and there is room for more.

Data management incurs overhead, more consecutive components on the GPU would remove
this overhead.

LHCb expects about 40x more data, and does a two-stage trigger.

The entire sequence of the first stage HLT1 has been developed for GPUs.

The GPU HLT1 is being studied as an alternative solution to the baseline (CPUs).

24

« Both ALICE and LHCb use custom memory managers for the GPU to avoid the cost of
allocating / deallocating.

« Both have cross-architecture compatibility by a switch at compile time.
In terms of integration,

« ALICE has more experience with a DAQ system with GPUs.
+ Next steps are to have a better GPU usage in synchronous / asynchronous stages.

+ LHCb needs proof that we are not breaking the experiment.
« Integration and burnout tests are ongoing.
« In terms of hardware, the system would occupy space in the Event Builders.

« In terms of software, HLT1 is its own application, and needs to be able to speak to certain
parts of Gaudi and produce output understandable by HLT2 application.

25

Both have shown efficient implementations of GPU tracking algorithms and others:

« In ALICE, a global method is used to find track seeds, which maps naturally to parallel
architectures.

+ In LHCb, a local method exploits parallelism in modules (VELO), and track seeds are worked
on in the following algorithms (PV, UT, Forward tracking, Kalman).

« LHCb requires processing many events in parallel to saturate the GPU, due to the tiny event
size compared to ALICE (100 kB versus 50 MB).

ALICE processes several time frames in parallel to saturate modern GPUs.

26

Good practices for GPU

In general, good practices of SIMD are useful in GPUs, and GPUs have some additional ones:

- Division of work into parallelizable independent tasks; blocks of threads can communicate
(ie. wider vector widths).

- Data structures AOS vs SOA vs AOSOA, temporal and spatial locality.
+ Dynamic memory allocation is costly, and more so on GPUs.

« GPUs are good for arithmetic workload with few branches.

« On the other hand, they are not just salvation: too high multiplicities will still run slow, and
have to be worked out.

If possible, it is better to run contiguous reconstruction steps on the GPU.

27

It has been amply shown that GPUs are efficient architectures for HEP workloads.

- They require hard work, and they provide potential better physics and throughput.
* Heterogeneous computing is becoming more of a reality.

In particular, the experience in ALICE and LHCb show that this effort scales to newer architectures.

« All the lessons learned in modern CPUs (SIMD) transfer to GPUs.
« Learning curve is not steep, many tools to get started.

Looking forward to seeing HEP GPU applications grow in the next few years.

28

Backup

CPU support: CUDA code

Consider the following CUDA code:

1 constexpr int N = 32;
2 _.global.. void saxpy-plus(float* x, float* y, const float a) {
3 ylthreadldx.x] = x[threadldx.x] * a + y[threadldx.x];

4 -.syncthreads();

5 if (threadldx.x < 10) {
6 ylil += 15

7

8 if (threadldx.x == 11) {
9 y[threadldx.x] += 20;
0}

"}

12 ...
13 saxpy-plus<<</*blocks*/ M, [*threads*/ N>>>k, y, a);

» The number of threads is set statically to N=32.
 The statement in line 3 makes assumptions of the number of threads.

+ The two if statements also make assumptions of the number of threads (they require at least
11 threads).

29

CPU support: Flexible code

In contrast, consider this code:

1 constexpr int N = 32;

2 _.global.. void saxpy-plus(float* x, float* y, const float a) {
3 for (int i=threadldx.x; i<N; i+=blockDim.x) {

4 ylil = x[i] *a + yl[il;

5 1

6 _.syncthreads();

7 for (int i=threadldx.x; i<10; i+=blockDim.x) {

8

ylil += 1;
9
10 if (threadldx.x == o) {
1 y[11] += 20;
2}
13}
U

15 saxpy-plus<<</*blocks*/ M, [*threads*/ >>>x, y, a);

+ A call to saxpy_p1us With any number of threads will produce the same result.

30

CPU support: A CPU version

If the code has block-dimension strided for loops, and all it statements for a single thread refer to
threads of index 0, then with some macros and function definitions it is possible to compile the
code for CPUs:

1// Definitions

2 #tdefine __global.-_

3 #define _.syncthreads()

4 struct GridDimensions { uint x, y, z; };

5 struct Blockindices { uint x, y, z; };

6 struct BlockDimensions { uint x=1, y=1, z=1; };
7 struct ThreadlIndices { uint x=0, y=0, z=0; };
8 thread-local GridDimensions gridDim;

9 thread_local Blockindices blockldx;

o0 thread_local BlockDimensions blockDim;

11 thread-local Threadindices threadldx;

15 // Kernel call excerpt
16 gridDim = {num_blocks.x, num_blocks.y, num_blocks.z};

17 for (unsigned int i = 0; i < num.blocks.x; ++i) {

18 for (unsigned int j = 0; j < num_blocks.y; ++j) {
19 for (unsigned int k = 0o; k< num.blocks.z; ++k) {
20 blockldx = {i, j, k};

21 function (std:: get<l >(invoke.arguments) ...) ;

22 }

23}

24 }

31

Integration test setup (1)

For our first test, we setup a single server with:

* Supermicro server
* 2 x Intel Xeon Silver 4114
+ 376 GB of memory

- Differences wrt. candidate server: Cascade Lake (better PCle performance), different chassis
(better thermals)

It has three PCle Gen3 16x slots per socket. Two of those are double width. Configuration on each
socket:

« Infiniband EDR card (100 Gbps)
* TELL4O
* Gigabyte GeForce RTX 2080 Ti

32

Integration test setup (2)

Notes:

- The TELL4O can generate data into the server memory on each socket.

+ Both network cards are connected back to back. A flow can then be simulated as if coming
from the event building application.

+ Each GPU can process data independently from each other. Two GPU applications are run,
each one attached to a different GPU.

33

More integration test results (1)

GPU Temperatures ‘SM Clock Frequency GPU Power Cansumption

GPUFan Speed GPU Memory Utiization GPULtlization

34

More integration test results (2)

18 memory bandwidth in 18 packet throughput out 1B packet throughput in
100 Gbps 3.0 Mpps 3.0 Mpps
25Mpps 2.5 Mpps
75 Gbps
- 20Mpps 2.0 Mpps
< s00tps 2 15Mops 2 15Mps
E 2 10mpps 2 10Mpps
25 Gbps
500 kpps 5000 kpps
0 Mbps Opps 0pps
16:30 700 1730 1800 18:30 19:00 6:30 1700 17:30 100 1830 19:00 1630 1700 1730 1800 1830 1900
mixs_0 mixs_0 1 MhE.0 = mh_1

35

	Experience in LHCb
	LHCb GPU core infrastructure
	Algorithms
	Integration
	Conclusions
	Backup

