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Run 3 upgrade in LHCb
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GPUs in Run 3
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Running e�ciently on GPUs

Previous attempts in LHCb were done using a service to o�oad part of the work to GPUs. Single
events were submitted to an service, which accumulated and o�oaded several of them. However,
the LHCb event size is too small (60-100 kB), not enough to occupy e�ciently the GPU.

The number of events is a key factor in LHCb workload:
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LHCb GPU core infrastructure



The Allen framework

The Allen framework is a compact, scalable and modular framework, built for run-
ning the LHCb HLT1 on GPUs.

Requirements

• A C++17 compliant compiler, boost, zeromq
• CUDA v10.0 (currently C++14 is supported)

Features

• Multithreaded, multistream framework.
• Con�gurable static sequences.
• Pipelined stream sequence.
• Custom memory manager, no dynamic allocations, SOA datatypes.
• Built-in validation with Monte Carlo.
• Optional compilation with ROOT for generation of graphs.
• Integration with Gaudi build system.
• Cross-architecture compatibility. 5



Current Allen HLT1 sequence
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Framework modularity

search by triplet three hit tracks adder

set arguments size memory (de)allocation operator()

Algorithm sequence
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An algorithm de�nition (1)
1 g l o b a l void v e l o t h r e e h i t t r a c k s a d d e r (
2 u i n t 3 2 t * dev ve lo c luster conta iner ,
3 u int * dev module cluster start ,
4 Velo : : TrackHits * dev tracks ,
5 Velo : : T r a c k l e t H i t s * dev three h i t t racks ,
6 bool * dev hit used ,
7 u int * dev atomics velo ) ;
8
9 s t r u c t v e l o t h r e e h i t t r a c k s a d d e r t : publ ic GpuAlgorithm {

10 constexpr s t a t i c auto name {” v e l o t h r e e h i t t r a c k s a d d e r t ”} ;
11 decltype ( gpu function ( v e l o t h r e e h i t t r a c k s a d d e r ) ) funct ion {v e l o t h r e e h i t t r a c k s a d d e r } ;
12 using Arguments = std : : tuple<
13 dev ve lo c luster conta iner ,
14 dev est imated input s ize ,
15 dev tracks ,
16 dev three h i t t racks ,
17 dev hit used ,
18 dev atomics velo>;
19
20 void set arguments size (
21 ArgumentRefManager<Arguments> arguments ,
22 const RuntimeOptions& runtime options ,
23 const Constants& constants ,
24 const HostBuffers& host buf fers ) const ;
25
26 void operator ( ) (
27 const ArgumentRefManager<Arguments>& arguments ,
28 const RuntimeOptions& runtime options ,
29 const Constants& constants ,
30 HostBuffers& host buffers ,
31 cudaStream t& cuda stream ,
32 cudaEvent t& cuda generic event ) const ;
33 } ;

8



An algorithm de�nition (2)
1 void v e l o t h r e e h i t t r a c k s a d d e r t : : operator ( ) (
2 const ArgumentRefManager<Arguments>& arguments ,
3 const RuntimeOptions& runtime options ,
4 const Constants& constants ,
5 HostBuffers& host buffers ,
6 cudaStream t& cuda stream ,
7 cudaEvent t& cuda generic event ) const
8 {
9 funct ion . invoke ( dim3 ( host buf fers . host number of selected events [ 0 ] ) , block dimension ( ) , cuda stream ) (

10 arguments . o f fset<dev ve lo c luster conta iner >() ,
11 arguments . o f fset<dev est imated input s ize >() ,
12 arguments . o f fset<dev tracks >() ,
13 arguments . o f fset<dev three h i t t racks >() ,
14 arguments . o f fset<dev hit used >() ,
15 arguments . o f fset<dev atomics velo >() ) ;
16 }
17
18 g l o b a l void v e l o t h r e e h i t t r a c k s a d d e r (
19 u i n t 3 2 t * dev ve lo c luster conta iner ,
20 uint * dev module cluster start ,
21 Velo : : TrackHits * dev tracks ,
22 Velo : : T r a c k l e t H i t s * dev three h i t t racks ,
23 bool * dev hit used ,
24 uint * dev atomics velo )
25 {
26 . . .
27 }
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Algorithm design

All algorithms in Allen are by design SIMD. Conventional GPU algorithms require parallelism at two
levels:

• Grid dimension - Independent groups of work
• Block dimension - Threads sharing a common cache; they can be synchronized

Every event in LHCb is an independent physics event. Within each event, some algorithms exhibit
higher parallelizability than others. Most times, algorithms bene�t from the following convention:

• Grid dimension - Events under execution
• Block dimension - Intra-event parallelism
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Cross-architecture compatible

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ( )
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for ( unsigned i n t i = 0 ; i < num blocks . x ; ++ i ) {
18 for ( unsigned i n t j = 0 ; j < num blocks . y ; ++ j ) {
19 for ( unsigned i n t k = 0 ; k < num blocks . z ; ++k ) {
20 blockIdx = {i , j , k} ;
21 funct ion ( std : : get<I>(invoke arguments ) . . . ) ;
22 }
23 }
24 }
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Memory management

We allocate memory at the startup of the application. A custom memory manager assigns memory
segments on demand. This is essentially the same ALICE is doing. Good practices:

• No dynamic memory allocations (within operator()).
• Consolidate memory into compact (AO)SOAs.
• Prefer coalesced accesses where possible.
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Algorithms



Example on spatial and temporal locality, data access patterns (VELO tracking)

• SIMD architectures bene�t from coalesced and contiguous data
access patterns

• Cache memory is limited in size
• Locality: Access patterns should restrict to a portion of memory

Search by triplet employs an SOA data structure for the VELO recon-
struction, so that every access to memory has an increased proba-
bility of returning several required data in a cache line.

Additionally, modules in the VELO subdetector are visited only once,
interleaving seeding and forwarding for all building tracks, maximiz-
ing spatial and temporal locality.
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Example on spatial reductions (UT tracking)

• Track reconstruction typically presents a high multiplicity of hit
candidates

• Spatial reductions like KD-tree structures or search windows
help reduce the dimensionality of hits under consideration

The UT subdetector is partially decoded into sector groups, aka
groups of sectors sharing the same starting x coordinate. Within each
sector group, hits are ordered by their y coordinate.

CompassUT determines search windows for each incoming Velo
track. A con�gurable number of windows is determined, and binary
searches are performed over x and y.
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window +1

VELO track Activated
strip (hit)

track extrapolation
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Each algorithm with its own grid and block size (Forward tracking)

Search ini-
tial windows

Triplet seeding

Triplet keep best

Calculate
parameterization

Extend tracks x

Extend tracks u/v

Quality �lter length

Quality �lter

Generates a window (max. 32 hits) according to track information.
Block dimension: {256}.

Collects triplets from layers {0, 4, 8} or {3, 7, 11}. Block dimension:
{32, 2}.

Keeps best 12 triplets according to their χ2. Block dimension: {128}.

Calculates cubic track model. Block dimension: {128}.

Extends tracks to other three X layers. Block dimension: {128}.

Extends tracks to stereo layers. Block dimension: {256}.

Cuts tracks with less than 9 hits. Block dimension: {256}.

Keeps best tracks according to χ2 in X and Y. Block dimension:
{128}.
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Calculate size, pre�x sum (CPU), allocate

The sizes of all bu�ers are de/allocated with a custom memory manager. Pre�x sums (accumulated
sums) are used to determine o�set / size of data bu�ers per event. We o�oad them to CPU.
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input size

Pre�x sum
VELO clusters

VELO mask
clustering

VELO decoding
and clustering

UT calculate
number of hits

Pre�x sum
UT hits

UT pre decode
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SciFi pre decode v4

SciFi raw bank
decoder v4

SciFi direct
decoder v4

SciFi decoding

Muon pre decoding

Pre�x sum muon
pre decoding

Muon sort station
region quarter

Muon add coords
crossing maps

Pre�x sum muon
station ocurrence

Muon sort
by station

Muon decodingMuon decoding
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Physics performance

Due to the increase in arithmetic capacity from GPUs, it is possible to tune for better physics while
ful�lling the HLT1 throughput requirement of LHCb (more in a moment).
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Integration



Baseline scenario without GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

100 Gb/s

Event builder PCs

CPU+RAM 2

RU

H
LT

net

E
B

net

R
eadout

CPU+RAM 1

R
eadout

E
B

net

H
LT

net

RU BUBU

Figure 1: Event builder PC.
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Event builders with GPUs

~250

Event builder network

...

Sub-farm switch Sub-farm switch

Event filter farm
~2000 dual-socket nodes

100 Gb/s

10 Gb/s

Event builder PCs Extra GPUs

CPU+RAM 2CPU+RAM 1

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

R
eadout

100G
E

B
net

A
ccelerator

RU BU

10G
H

LT
net

Figure 2: GPU-equipped event builder PC.
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Target processing rate

In order to be able to perform the HLT1 �lter inside the event builder with GPUs, the full throughput
of collisions must be processed in near-time.
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Opportunistic GPU usage: When there is no data-taking, GPUs could be use for something else.
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Scaling

Trigger rate versus peak TFLOPS, cost and power envelope across graphics cards:
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1Optimization of high-throughput real-time processes in physics reconstruction, PhD thesis, Daniel Hugo Cámpora Pérez.
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Integration

The most attractive realization of a GPU HLT1 in LHCb would be in the Event Builders.

Many aspects need to be demonstrated, such as CPU consumption, memory consumption and
throughput, air�ow, thermal stability, GPU performance stability, network throughput...

CPU #0 CPU #1

TELL40 data generation #0

Network MEP data transmission #0 Network ... #1

Data transposition #0 Data transposition #1

Send to GPU #0 Send to GPU #1

MEP prefetch #0 MEP prefetch #1

TELL40 data generation #1
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Selected integration test results
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Conclusions



Run 3

• ALICE and LHCb will have full so�ware data processing in Run 3.
• Both experiments have developed GPU-based systems that are ready for Run 3.

• ALICE expects 100× more data, and do an online compression of events.
• Most of the code exist for GPUs (baseline), and there is room for more.
• Data management incurs overhead, more consecutive components on the GPU would remove

this overhead.

• LHCb expects about 40× more data, and does a two-stage trigger.
• The entire sequence of the �rst stage HLT1 has been developed for GPUs.
• The GPU HLT1 is being studied as an alternative solution to the baseline (CPUs).
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Components

• Both ALICE and LHCb use custom memory managers for the GPU to avoid the cost of
allocating / deallocating.

• Both have cross-architecture compatibility by a switch at compile time.

In terms of integration,

• ALICE has more experience with a DAQ system with GPUs.
• Next steps are to have a better GPU usage in synchronous / asynchronous stages.

• LHCb needs proof that we are not breaking the experiment.
• Integration and burnout tests are ongoing.
• In terms of hardware, the system would occupy space in the Event Builders.
• In terms of so�ware, HLT1 is its own application, and needs to be able to speak to certain

parts of Gaudi and produce output understandable by HLT2 application.
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Algorithms

Both have shown e�cient implementations of GPU tracking algorithms and others:

• In ALICE, a global method is used to �nd track seeds, which maps naturally to parallel
architectures.

• In LHCb, a local method exploits parallelism in modules (VELO), and track seeds are worked
on in the following algorithms (PV, UT, Forward tracking, Kalman).

• LHCb requires processing many events in parallel to saturate the GPU, due to the tiny event
size compared to ALICE (100 kB versus 50 MB).

• ALICE processes several time frames in parallel to saturate modern GPUs.
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Good practices for GPU

In general, good practices of SIMD are useful in GPUs, and GPUs have some additional ones:

• Division of work into parallelizable independent tasks; blocks of threads can communicate
(ie. wider vector widths).

• Data structures AOS vs SOA vs AOSOA, temporal and spatial locality.
• Dynamic memory allocation is costly, and more so on GPUs.

• GPUs are good for arithmetic workload with few branches.
• On the other hand, they are not just salvation: too high multiplicities will still run slow, and

have to be worked out.
• If possible, it is better to run contiguous reconstruction steps on the GPU.
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GPUs in HEP

It has been amply shown that GPUs are e�cient architectures for HEP workloads.

• They require hard work, and they provide potential better physics and throughput.
• Heterogeneous computing is becoming more of a reality.

In particular, the experience in ALICE and LHCb show that this e�ort scales to newer architectures.

• All the lessons learned in modern CPUs (SIMD) transfer to GPUs.
• Learning curve is not steep, many tools to get started.

Looking forward to seeing HEP GPU applications grow in the next few years.
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CPU support: CUDA code

Consider the following CUDA code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus ( f l o a t * x , f l o a t * y , const f l o a t a ) {
3 y [ threadIdx . x ] = x [ threadIdx . x ] * a + y [ threadIdx . x ] ;
4 syncthreads ( ) ;
5 i f ( threadIdx . x < 10) {
6 y [ i ] += 1 ;
7 }
8 i f ( threadIdx . x == 1 1 ) {
9 y [ threadIdx . x ] += 20;

10 }
11 }
12 . . .
13 saxpy plus<<</* blocks */ M, /* threads */ N>>>(x , y , a ) ;

• The number of threads is set statically to N=32.
• The statement in line 3 makes assumptions of the number of threads.
• The two if statements also make assumptions of the number of threads (they require at least

11 threads).
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CPU support: Flexible code

In contrast, consider this code:
1 constexpr i n t N = 3 2 ;
2 g l o b a l void saxpy plus ( f l o a t * x , f l o a t * y , const f l o a t a ) {
3 for ( i n t i = threadIdx . x ; i<N ; i +=blockDim . x ) {
4 y [ i ] = x [ i ] * a + y [ i ] ;
5 }
6 syncthreads ( ) ;
7 for ( i n t i = threadIdx . x ; i <10; i +=blockDim . x ) {
8 y [ i ] += 1 ;
9 }

10 i f ( threadIdx . x == 0) {
11 y [ 1 1 ] += 20;
12 }
13 }
14 . . .
15 saxpy plus<<</* blocks */ M, /* threads */ 1>>>(x , y , a ) ;

• A call to saxpy plus with any number of threads will produce the same result.
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CPU support: A CPU version

If the code has block-dimension strided for loops, and all if statements for a single thread refer to
threads of index 0, then with some macros and function de�nitions it is possible to compile the
code for CPUs:

1 // D e f i n i t i o n s
2 # define g l o b a l
3 # define syncthreads ( )
4 s t r u c t GridDimensions { uint x , y , z ; } ;
5 s t r u c t BlockIndices { uint x , y , z ; } ;
6 s t r u c t BlockDimensions { uint x =1 , y =1 , z = 1 ; } ;
7 s t r u c t ThreadIndices { uint x =0 , y =0 , z =0; } ;
8 thread loca l GridDimensions gridDim ;
9 thread loca l BlockIndices blockIdx ;

10 thread loca l BlockDimensions blockDim ;
11 thread loca l ThreadIndices threadIdx ;
12
13 . . .
14
15 // Kernel c a l l excerpt
16 gridDim = {num blocks . x , num blocks . y , num blocks . z} ;
17 for ( unsigned i n t i = 0 ; i < num blocks . x ; ++ i ) {
18 for ( unsigned i n t j = 0 ; j < num blocks . y ; ++ j ) {
19 for ( unsigned i n t k = 0 ; k < num blocks . z ; ++k ) {
20 blockIdx = {i , j , k} ;
21 funct ion ( std : : get<I>(invoke arguments ) . . . ) ;
22 }
23 }
24 }
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Integration test setup (1)

For our �rst test, we setup a single server with:

• Supermicro server
• 2 × Intel Xeon Silver 4114
• 376 GB of memory
• Di�erences wrt. candidate server: Cascade Lake (better PCIe performance), di�erent chassis

(better thermals)

It has three PCIe Gen3 16x slots per socket. Two of those are double width. Con�guration on each
socket:

• In�niband EDR card (100 Gbps)
• TELL40
• Gigabyte GeForce RTX 2080 Ti
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Integration test setup (2)

Notes:

• The TELL40 can generate data into the server memory on each socket.
• Both network cards are connected back to back. A �ow can then be simulated as if coming

from the event building application.
• Each GPU can process data independently from each other. Two GPU applications are run,

each one attached to a di�erent GPU.

33



More integration test results (1)
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More integration test results (2)
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