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Outline

• Overview of upgrades of LHC and the experiments:

• What are the upcoming challenges for ALICE and LHCb?

• What do the online processing approaches from ALICE and LHCb have in common?

• Short introduction to GPUs:

• Why should we use GPUs and what can we gain?

• The experience of ALICE

• The experience of LHCb

• Conclusion
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LHC Upgrade Schedule

• LS2 LHC upgrade: heavy ion rate: >50 kHz in Run 3 (>10 kHz now), boost pp collision rate by small factor.

• LS3 LHC upgrade: HL-LHC era, boost pp collision rate by factor 5 – 7 in Run 4.

• Highest pp luminosity only for ATLAS and CMS – their detectors are upgraded for Run 4 accordingly.

• ALICE and LHCb perform a major upgrade for Run 3  now.

• Run 3 is adiabatic increase for ATLAS / CMS, with no increase for ALICE.
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Online / Offline Computing in ALICE / LHCb in Run 3

Run 2

• LHCb

• First phase of trigger (HLT1) during 

data taking.

• Second phase of trigger (HLT2) 

when there is no beam.

Common strategy:

- 2 phase processing with disk buffer

- Full processing in software

mailto:drohr@cern.ch


11.12.2019 David Rohr, drohr@cern.ch 5
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Online / Offline Computing in ALICE / LHCb in Run 3

• ALICE

• Synchronous (online) processing for data 

compression and calibration.

• When not taking data → Asynchronous

(offline) processing with final reconstruction.

Data links from detectors

Disk buffer
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Synchronous processing

- Local processing

- Event / timeframe building

- Calibration / compression

Asynchronous processing

- Reprocessing with full 

calibration

- Full reconstruction

Permanent storage
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> 3.5 TB/s

< 100 GB/s

Readout nodes

> 600 GB/s

Run 2 Run 3

• LHCb

• First phase of trigger (HLT1) during 

data taking.

• Second phase of trigger (HLT2) 

when there is no beam.

Common strategy:

- 2 phase processing with disk buffer

- Full processing in software
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Comparison of processing, data rates and sizes

• ALICE will take 100x more events, but only minimum bias, all other experiments collect 10x more statistics.

• ALICE investigates the option to run in a software triggered mode at higher rate during some time of a year.

• ALICE and LHCb process all data in software, use large disk buffers to hold large amount of (compressed raw data) for processing in the online 

farm when there is no beam.

• ATLAS and CMS have much higher luminosity, full readout of front-end at bunch-crossing rate and processing in software not feasible and not 

cost effective.

• ALICE features high data rate during Pb-Pb (due to TPC), collects large amount of data in only few weeks.

ALICE (Pb-Pb) LHCb ATLAS CMS

Run 2 Run 3 Run 2 Run 3 Run 2 / 3 Run 4 Run 2 / 3 Run 4 (PU 140/200)

Luminosity ~10 kHz 50 kHz 4*1032 2*1033 2.14*1034 5–7.5 *1034 2.14*1034 5–7.5 *1034

Hardware 

trigger

500 Hz – 2 

kHz

50 kHz continuous 1 MHz - / Full 30 MHz bunch 

crossing rate

95 kHz 1 MHz (can 

evolve to 4)

100 kHz 500 / 750 kHz

HLT Accept No rejection No HLT 12.5 kHz >100 kHz 1 kHz (< 2) 10 kHz 1 kHz 5 / 7.5 kHz

Raw Data Rate 

into HLT

45 GB/s

(w. ZS)

3 TB/s (w.o. ZS) 55 GB/s 4 TB/s (w. ZS) 29 GB/s (260 

GB/s L1)

2.6 TB/s (5.2 

TB/s L1)

1.6 TB/s (event 

network)

23 / 44 TB/s (event 

network)

Data stored ~10 GB/s Up to 100 GB/s 0.6 GB/s 2-10 GB/s 2.4 GB/s 50 GB/s 5 GB/s 32 / 61 GB/s

Data Buffer ~1 PB DAQ 

buffer to 

Tier0

~60 PB (one year of 

compressed data), up 

to 100 GB/s

~12 PT ~100 PB (two weeks of HLT1 

accepted raw data, 150 + 150 

GB/s read/write.

1.5 TB events 

+ 48 hours to 

Tier 0

36 PB, 48 

hours + L1 to 

HLT

12 TB (RAM disk, 

events before HLT, 

60s)

171 / 333 TB (events 

before HLT, 60s)
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Comparison of ALICE and LHCb data processing in Run 3

• Both experiments do full two-stage online processing at bunch crossing rate, with disk buffer and offline quality output.

• Input data rates: >3TB/s for both – zero-suppressed for LHCb (factor 4) – raw for ALICE with zero-suppression in FPGA down to ~1TB/s.

• Calibration: Full calibration available for Asynchronous stage / HLT2.

‒ Online calibration with feedback loop tested in the ALICE HLT in Run 2, under study for Run 3, Velo alignment calibration in LHCb HLT1.

• Event building: A set of input nodes (FLP / DAQ) receives the detector links via PCIe40 FPGA card.

‒ ALICE sends time frames (TF) of 23ms from the FLP to Event Processing Nodes, where events are merged, build, and reconstructed.

‒ LHCb first builds the events internally inside the DAQ via a fast network, then ships them to the Event Filter farm via a broad network.

‒ Network transfers synchronized via software to avoid congestion.

‒ Many events are coalesced (similar to TF).

‒ Could switch to similar event building as ALICE if needed.

• Cluster: Input: ~170 DAQ nodes @ LHCb, ~200 FEP nodes @ ALICE

Processing: ~2000 Event Filter nodes @ LHCb, ~1500 GPUs in EPNs @ ALICE.

• Disk buffer: LHCb buffers up to 3 weeks, exploits turnaround, TS, MD periods, runs MC at YETS. ALICE buffers 1 year, exploits also YETS.

‒ ALICE compresses data in synchronous stage, compressed raw data stored to disk buffer and to tape is identical.

‒ ALICE has highest data taking output rate of up to 100 GB/s, but only during beginning of Pb-Pb fill.

‒ Pb-Pb data parked for processing on disk buffer for 1 year. Compute budget for 2 full reconstructions passes within the year.

‒ pp data taking and asynchronous reconstruction in between / in parallel.

‒ Part of asynchronous reconstruction can run on GRID.

‒ Online farm must be capable to process this data in the synchronous stage.

‒ LHCb stores raw data after HLT1 trigger to disk buffer, second trigger rejection in HLT2.

‒ LHCb has higher data rate from HLT1 to disk buffer, but not for final storage.
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Introduction

• Moore‘s Law:

• Manufacturing

• size, frequency, 

• and performance 

• grow exponentially.

• Frequency began

• to stagnate  2003.
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Introduction

• Moore‘s Law:

• Manufacturing

• size, frequency, 

• and performance 

• grow exponentially.

• Frequency began

• to stagnate  2003.

• GPUs are faster

• than CPUs.

mailto:drohr@cern.ch


11.12.2019 David Rohr, drohr@cern.ch 12

Why GPUs

• GPUs use their silicon for ALUs

• CPUs use their silicon mainly for caches, branch prediction, etc.

Intel Nehalem NVIDIA Kepler
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• CPUs are designed for fast execution of serial programs.

• Clocks have reached a physical limit.

→ Vendors use parallelization to increase performance.

• GPUs are designed for parallel execution in the first place.

• The „only“ limit for GPU performance is heat dissipation.

• GPU clocks are usually lower than they could be.

– This saves power

– Hence more hardware can be powered in parallel

→ Better overall performance

Why GPUs
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Introduction

NVIDIA GTX280 GPU
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GPU Programming example (stupid addition of 2 vectors)

#include <vector>

#define SIZE 1024

int main(int, char**) {

std::vector<float> hostArray1(SIZE), hostArray2(SIZE);

for (int i = 0;i < SIZE;i++) { hostArray1[i] = 2 + 3 * i; hostArray2[i] = 4 + 5 * i; }

for (int i = 0;i < SIZE;i++) { //Computation

hostArray2[i] += hostArray1[i];

}

return 0;

}

On the CPU

compute

Host

allocate

initialize
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cudaMemcpy

compute

GPU Programming example (stupid addition of 2 vectors)

#include <vector>

#define SIZE 1024

__global__ void testKernel(float* vec1, const float* vec2, int size) {

int myId = threadIdx.x + blockIdx.x * blockDim.x;

if (myId >= size) return;

for (int i = myId; i < size; i += blockDim.x * gridDim.x) {

vec1[i] += vec2[i];

}

}

int main(int, char**) {

std::vector<float> hostArray1(SIZE), hostArray2(SIZE);

float *devicePtr1, *devicePtr2;

for (int i = 0;i < SIZE;i++) { hostArray1[i] = 2 + 3 * i; hostArray2[i] = 4 + 5 * i; }

cudaMalloc(&devicePtr1, hostArray1.size() * sizeof(hostArray1[0])); //Allocate memory on the device

cudaMalloc(&devicePtr2, hostArray2.size() * sizeof(hostArray2[0]));

cudaMemcpy(devicePtr1, hostArray1.data(), hostArray1.size() * sizeof(hostArray1[0]), cudaMemcpyHostToDevice); //Copy buffers to the device

cudaMemcpy(devicePtr2, hostArray2.data(), hostArray2.size() * sizeof(hostArray2[0]), cudaMemcpyHostToDevice);

testKernel<<<(SIZE + 127) / 128, 128>>>(devicePtr1, devicePtr2, SIZE); //Launch kernel to add the vectors (add vector 2 onto vector 1)

for (int i = 0;i < SIZE;i++) { //We do the same computation on the host

hostArray2[i] += hostArray1[i];

}

//We copy back the first vector, which contains the result (cudaMemcpy implies synchronization)

cudaMemcpy(hostArray1.data(), devicePtr1, hostArray1.size() * sizeof(hostArray1[0]), cudaMemcpyDeviceToHost);

cudaFree(devicePtr1); //Free CUDA memory

cudaFree(devicePtr2);

bool ok = true; //Compare results

for (int i = 0;i < SIZE;i++) {

if (hostArray1[i] != hostArray2[i]) {

printf("Error at position %d: %f != %f\n", i, hostArray1[i], hostArray2[i]);

ok = false;

}

}

if (ok) printf("Result OK!\n");

return 0;

}

On the GPU

Host GPU

allocate

initialize

compare

compute

call kernel

allocate 

on GPU

cudaMemcpy

Host to GPU

Host to GPU

memcpy finished

memcpy finished
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TPC Tracking performance

- Speed-up normalized to single

CPU core.

• Red curve: algorithm speed-up.

• Other curves: GPU v.s. CPU

speed-up corrected for

CPU resources.

– How many cores does

the GPU replace.

- Significant gain with newer

GPU (blue v.s. green).

- GPU with Run 3 algorithm

replaces > 800 CPU cores

Running Run 2 algorithm.

(blue * red).

(at same efficiency / resolution).

- We see ~30% speedup with new

GPU generation

(RTX 2080 v.s. GTX 1080)

Algorithm speed-up on CPU 

20 - 25x v.s. to Run 2 Offline

Modern GPU replaces

40 CPU cores @ 4.2 GHz

GPU of Run 2 HLT

replaces 17 cores

Min.bias collision Occupancy @ 50kHz

mailto:drohr@cern.ch


11.12.2019 David Rohr, drohr@cern.ch

mailto:drohr@cern.ch


11.12.2019 David Rohr, drohr@cern.ch 19

ALICE in Run 3: 50 kHz Pb-Pb

Record large minimum bias sample.

- All collisions stored for main detectors → no trigger.

- Continuous readout → data in drift detectors overlap.

- 100x more events, 100x more data.

- Cannot store all raw data → online compression.

→ Use GPUs to speed up online processing.

- Overlapping events in TPC with realistic bunch structure @ 50 kHz Pb-Pb.

- Timeframe of 2 ms shown (will be 10 – 20 ms in production).

- Tracks of different collisions shown in different colors.
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Step 1 (Seeding)

• Step 1: Combinatorial seeding

• Searches for three clusters composing straight line

• Concatenates straight lines

• Only step with non-linear runtime.

• Strategy: deal with the combinatorics as 

early as possible.

• Seed everywhere, each track has at least 

some seedable part, no need to be 100% 

efficient.
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Step 2 (Track Following)

• Step 2 (Simplified Kalman Fit):

• Track parameters are

fit to the seed.

• Trajectory is extrapola-

ted to adjacent TPC row.

• Cluster closest to

extrapolated position

is found.

• Fit is improved with

new cluster.

mailto:drohr@cern.ch


11.12.2019 David Rohr, drohr@cern.ch 22

TPC Data Compression

• TPC Data compression involves 3 steps:

1. Entropy reduction (Track model, variable precision, etc.)

2. Entropy encoding (Huffman, Arithmetic, ANS)

3. Removal of tracks not used for physics.

• Steps 1 + 2 implemented for Run 2.

• Current compression factor 8.3x.

• Prototype for Run 3 achieves factor 9.1x (TDR assumed 10x).

• Step 3 must close the gap to the required compression in Run 3.

• Remove clusters from background / looping tracks.

– Adjacent to low-pT track < 50 MeV.

– Adjacent to secondary leg of low-pT track < 200 MeV.

– Adjacent to any track with j > 70° in the fit.

• Protect clusters of physics tracks.

– Not Adjacent to any physics-track (except j > 70°).

• In addition:

• Use reconstructed track quantities to reduce entropy.

Unassigned clusters

Reconstructed Tracks

Removed Clusters

Fit failed

Noisy TPC pads
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Online / Offline Computing in ALICE in Run 3

• ALICE computing strategy for Run 3

• On-site server farm for synchronous (online) processing.

• When not taking data → used for asynchronous (offline).

Data links from detectors

Disk buffer
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< 100 GB/s

Readout nodes

> 600 GB/s

• Partial ITS + TPC + TRD tracking for TPC calibration

- reduced statistics sufficient

(TPC calibration based on matching of TPC / ITS / TRD tracks)

• Other detectors without significant CPU load

• Full TPC tracking for TPC compression

- cluster to track residuals → better entropy coding

- removal of tracks not used for physics

• Entropy coding for other detectors

Final reconstruction pass with final calibration
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Tracking in ALICE in Run 3

• Bulk of computing workload:

7 layers ITS

(inner tracking system)

152 pad rows TPC

(time projection chamber)

6 layers TRD

(transition radiation detector)

1 layer TOF

(time of flight detector)

Synchronous

• >90% TPC tracking / compression

• Low load for other detectors

Asynchronous

• TPC among largest contributors

• Other detectors also significant
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Baseline solution

(almost available today):

TPC + part of ITS tracking on GPU

Tracking in ALICE in Run 3

• Bulk of computing workload:

7 layers ITS

(inner tracking system)

152 pad rows TPC

(time projection chamber)

6 layers TRD

(transition radiation detector)

1 layer TOF

(time of flight detector)

Synchronous

• >90% TPC tracking / compression

• Low load for other detectors

Asynchronous

• TPC among largest contributors

• Other detectors also significant

• ALICE GPU processing strategy

‒ Mandatory solution to keep up with the data rate online.

‒ Defines number of servers / GPUs.

‒ Extension of baseline solution to make best use of GPUs.

‒ Ideally, full barrel tracking without ever leaving the GPU.

‒ In the end, we will probably be somewhere in between.

Optimistic solution

(what could we do in the ideal case):

Run most of tracking + X on GPU.

Asynchronous phase should make use of 

the available GPUs.

• Available in the O² farm anyway.

• Future HPC / grid sites may have GPUs.
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• Status of reconstruction steps on GPU:

• All TPC steps during synchronous reconstruction are required on the GPU.

• Synchronous ITS tracking and TPC dE/dx in good shape, thus considered baseline on the GPU.

• Remaining steps in tracking chain part of optimistic scenario, being ported step by step to GPU.

– Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps – current blocker is TPC ITS matching.

Reconstruction steps on GPU (Barrel Tracking)

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit

TPC ITS 

Matching

TPC 

dE/dx
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Global 

Fit

V0 
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TPC Track Model 

Compression
TPC Entropy 
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Being studied
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TPC Cluster 

removalTPC <10MeV/c
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• Status of reconstruction steps on GPU:

• Baseline scenario: all steps almost ready

Reconstruction steps on GPU (Barrel Tracking)

TPC Track 
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TPC Track 
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ITS Track 
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Track Fit
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Development not started

TPC Cluster 

removalTPC <10MeV/c
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Sorting Material Lookup Memory ReuseGPU API Framework
Common GPU 

Components:

TPC Cluster 

Finder

GPU barrel tracking chain

part of baseline

scenario

part of optimistic

scenario

Not clear if necessary on GPU,

depends on rejection strategy

(see later)

New requirement 

arose few months ago, 

since clusterizer does 

not fit in FPGA.
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• Status of reconstruction steps on GPU:

• Different reconstruction steps enabled in synchronous and asynchronous reconstruction.

Reconstruction steps on GPU (Barrel Tracking)
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• Status of reconstruction steps on GPU:

• Different reconstruction steps enabled in synchronous and asynchronous reconstruction.

Reconstruction steps on GPU (Barrel Tracking)

TPC Track 
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Reconstruction steps on GPU (Barrel Tracking)

TPC Track 

Finding

TPC Track 

Merging

ITS Track 

Finding

ITS 

Track Fit
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• Status of reconstruction steps on GPU:

• All TPC steps during synchronous reconstruction are required on the GPU.

• Synchronous ITS tracking and TPC dE/dx in good shape, thus considered baseline on the GPU.

• Remaining steps in tracking chain part of optimistic scenario, being ported step by step to GPU.

– Porting order follows topology of chain, to avoid unnecessary data transfer for ported steps – current blocker is TPC ITS matching.

TPC Cluster 

Finder

GPU barrel tracking chain
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scenario
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Strategy:
• Start with standalone TPC and ITS tracking.

‒ Standalone ITS tracking needed since TPC tracks lack absolute time.

‒ ITS tracking uses vertexer as first step.

‒ TPC tracking has no vertex constraint, starts with segment tracking in individual TPC sectors, than merges the 

segments and refits.

• ITS and TPC tracks are matched, fixing the time for the TPC.

• The afterburner propagates unmatched TPC tracks into the ITS and tries to find matching hits of short tracks not found in 

ITS standalone tracking.

• Tracks are extrapolated outwards into the TRD, once the time is fixed.

‒ TRD standalone tracking and matching (like for ITS) is less efficient due to many fake TRD tracklets.

• Optionally, after TRD tracks can be extrapolated to TOF.

• Global refit uses the information from all detectors.

• V0 finding

• In the synchronous phase, the TPC compression chain starts after the TPC standalone tracking in parallel:

• Clusters not used in physics are removed, depending on the strategy (see later) this might require extra steps for 

identification and rejection of very low pT clusters below 10 MeV/c.

• Track model (and other steps) reduce the entropy for the final entropy encoding.

• Final entropy encoding using ANS. Not clear yet whether this will run on GPU efficiently. Alternatively, transport 

entropy-reduced clusters to host and run entropy encoder there.
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• With more tasks to the GPU,

→ Avoid GPU/Host copies.

→ Intermediate steps must run on GPU.

(Running only the track

fit produces infeasible overhead.

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

GPU

Tracker

Buffer

Fit

Buffer

Shared 

Buffer

TPC/ITS Tracker Component

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Input

Output

For Run 3, we want to merge

transformation and Tracking.

Approach if Run 2 HLT TPC / ITS Tracking Components
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• All intermediate shared buffers

on GPU.

• Keep the component structure

• Create a super-component that runs

everything at once on GPU.

TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

GPU

Shared 

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Input

Output

Shared 

Buffer

Shared 

Buffer

GPU Tracking Super-Component (Super-Device)

TPC/ITS Tracker Component
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Approach for Run 3
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TPC Cluster 

Transformation

TPC Global 

Merger

In-Sector 

Merging

Between-Sector 

Merging

Final TPC

Track Fit

TPC Prolon-

gation to ITS

TPC Track 

Finder

CA Track 

Seeding

Kalman Track 

Following

GPU Buffer Management

Shared 

Buffer

TPC Transformation Component TPC CA Tracker Component TPC CA Global Merger Component

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

Shared 

Buffer

GPU Tracking Super-Component (Super-Device)

TPC/ITS Tracker Component

TPC / TRD 

Matching

TPC/TRD Tracker Component

Shared 

Buffer

Shared 

Buffer
Final TPC / TRD / ITS Track Fit & dE/dx

Shared 

Buffer

Output
Shared 

Buffer

Input

Approach for Run 3
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 1

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder
TPC raw data can be 

removed after 

clusterization, memory 

will re reused.

TPC hits must persist, 

needed for final refit.
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 3

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder
Memory is reused, 

multiple inputs are 

queued.

TPC 

Raw 2

TPC 

Hits 2
Scratch

Memory is reused, 

multiple inputs are 

queued.

Non-persistent scratch data for algorithms
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Raw 3

TPC 

Hits 1

Non-persisting input dataPersistent data

TPC cluster 

finder

Can run multiple 

instances, in parallel…

TPC 

Raw 4

TPC 

Hits 2
Scratch

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

TPC cluster 

finder
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC tracking

… or run multiple 

algorithms in parallel

TPC 

Hits 2
Scratch

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS tracking

ITS 

Hits

Input data may also be 

persistent, ITS hits are 

reused in the final fit.

TPC 

Tracks

ITS 

Tracks
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC 

Compression
Available memory for 

scratch buffers decreases, 

but most memory is needed 

at the beginning for TPC 

clustering and tracking.

TPC 

Hits 2

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS 

Hits
TPC 

Tracks

ITS 

Tracks

Compressed 

TPC Hits

- Gaps can appear when size is 

not known exactly in advance.

- Minor problem with time frames

since most fluctuations average 

out.

- Could compact the memory but 

Probably not needed.

Some output can 

be moved to the 

host immediately, 

and the memory 

reused.

Non-persistent    output
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC ITS 

Matching
Preload TPC raw 

data of next TF 

before current TF is 

finished.

TPC 

Hits 2

Non-persistent scratch data for algorithms

Scratch
TPC 

Hits 3

TPC 

Hits 4

ITS 

Hits
TPC 

Tracks

ITS 

Tracks
Matches

TPC 

Raw 1
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Memory requirements

• ALICE reconstructs timeframes (TF) independently (~10 – ~20 ms; 128 – 256 orbits; ~500 – ~1000 collisions).

• One TPC drift time of data not reconstructible at TF border (~ 90 us) → < 1 % of statistics lost (< 0.5 % for 20 ms).

• Timeframe should fit in GPU memory. If not, could use kind of ring buffer, or reduce TF length to 128 orbits.

• Trying to avoid the ring buffer approach, could be added later if needed.

• Custom allocator: grabs all GPU memory, gives out chunks manually, memory will be reused when possible.

• Classically: reuse memory between events, collisions are not that large.

• ALICE reuses memory between different algorithms in a TF, possibly also between independent collisions.

• Some memory must persist during timeframe processing.

• Estimated maximum memory needed during important for 10 ms TF (*2 for 20 ms):

• TPC Cluster finder: ~      3 GB ( + input / scratch data, which is pipelined)

• TPC Transformation: 12.1 GB

• TPC Sector tracker: ~ 14.6 GB

• TPC Merger / track fit: 14.1 GB

• TPC Compression: 12.9 GB

– Later steps do not scale their scratch memory with TPC input → less memory intensive.

→ 16 GB GPU will suffice for 10 ms TF (unclear for 12 GB after optimizations).

• 8 GB insufficient for 10 ms TF, 20 ms TF needs 32 GB, alternatively ring buffer.

Memory
TPC 

Hits 1

Non-persisting input dataPersistent data

TPC 

Hits 2

Non-persistent scratch data for algorithms

TPC 

Hits 3

TPC 

Hits 4

ITS 

Hits
TPC 

Tracks

ITS 

Tracks
Matches

TPC 

Raw 1
TPC 

Raw 2

Work in Progress

(including persistent memory 

from previous steps)
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• GPUs of different vendor’s / generation’s might favor different tuning.

• Many algorithms have tunable parameters (for processing speed).

• We implemented most features such, that they can be switched off.

– Worst case, at compile time via preprocessor definition.

• One example: Distribution of tracks among GPU threads during track following:

• Illustration of active GPU threads over time (time on y-axis).

– Number of average idle threads reduced by factor ~3, but large overhead for rescheduling.

– Yields ~50% speedup on some GPUs, but becomes even slower on others.

• For new GPUs:

• Run a benchmark with a parameter range scan to find best settings.

• After 3 iterations (GPU generations), we got good results out of the box.

Performance Tuning

• Black   : Idle

• Blue    : Track Fit

• Green : Track Extrapolation

No dynymic rescheduling With dynamic rescheduling

thread

ti
m

e
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• Handling of asynchronous computation / data transfers

• 1st iteration (Run 1 HLT): Split event in chunks, to pipeline CPU processing, GPU processing, and PCIe transfer.

• 2nd iteration (Run 2 HLT): Processing of two events in parallel on the GPU concurrently.

– ~20% faster than first version – GPUs have become wider and this exploits the parallelism better.

– Not possible during Run 1 due to GPU limitations at that time.

– We still kept the pipeline-scheme within each event, to maximize performance.

• 3rd iteration (Run 3): Go back to the old scheme from Run 1 – with time frames instead of events.

– Time frames are large → avoid keeping multiple in memory.

– Enough parallelism inside one time frame.

Performance Tuning

Time
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

Compatibility with several GPU frameworks
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• Generic common C++ Code compatible to CUDA, OpenCL, HIP, and CPU (with pure C++, OpenMP, or OpenCL).

• OpenCL needs clang compiler (ARM or AMD ROCm) or AMD extensions (TPC track finding only on Run 2 GPUs and CPU for testing).

• Certain worthwhile algorithms have a vectorized code branch for CPU using the Vc library.

• All GPU code swapped out in dedicated libraries, same software binaries run on GPU-enabled and CPU servers.

• Screening different platforms for best price / performance.
(including some non-competitive platforms for cross-checks and validation.)

• CPUs (AMD Zen, Intel Skylake)

C++ backend with OpenMP, AMD OCL

• AMD GPUs

(S9000 with OpenCL 1.2, MI50 /

Radeon 7 / Navi with HIP / OCL 2.x)

• NVIDIA GPUs

(RTX 2080 / RTX 2080 Ti / Tesla T4

with CUDA)

• ARM Mali GPU with OCL 2.x

(Tested on dev-board with Mali G52)

• Optimize TCO (faster GPUs → less latency → smaller buffers).

Compatibility with several GPU frameworks
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