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Abstract

We present analytic results valid for arbitrary Higgs mass of the heavy top mass ex-
pansion at two-loop order as needed for precise predictions of electroweak observables. In
particular we present a set of recurrence relations for diagrams with three masses at zero
momentum, which allow to reduce the calculation to a few master integrals. Simple analytic
expressions are obtained for the p—parameter and for the Z bb-vertex. Results are presented
for the on-shell and the M5 definition of the top quark mass.
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1. Introduction

Continuous progress in the accuracy of experiments at the ete™ colliders LEP at CERN [1]
and SLC at SLAC [2] and the fact that no signs for deviations from the Standard Model (SM)
have been seen so far are a strong motivation to lower further the theoretical uncertainties of
SM predictions by performing higher order calculations. As experiments at the Z peak will go
on for some time we can still hope that small deviations from the electroweak SM will show up.

The detailed investigation of efe~ — ff around the Z resonance led to a very precise mea-
surement of the Z-mass, which together with the fine structure constant o and the p-decay
constant G, provides a set of very accurate input parameters in terms of which precise predic-
tions of the SM become possible. This allows us to confront accurate predictions with accurate
measurements of the partial and total cross-sections oy = o(ete”™ — f f) and 040t = 2 ;05 and
the partial and total widths Ty = I(Z — ff) and Tz = 4Ty , for example. At lowest order
the predictions for these quantities read

peak _ 127 Tely

oheek = 2RI =M(v§
MZ T2 127

Ty + ai‘;)ch

where vy = Tsy—2Q; sin’ Ow and ay = Tsy are, respectively, the vector and axial-vector neutral
current (NC) couplings for fermions with flavor f. N,y is the color factor, which is 1 for leptons

and 3 for quarks. We define sin? ©w = 1 — M% /M2 in terms of the intermediate vector boson
masses.

Higher order corrections of the Z f f vertex

(—i)(V2G,) P Mzy*(vs — as7s)

can be cast into an overall renormalization by p}/ ? and a renormalization by &y of sin? Ow in

the NC vector-couplings

Gy = psGu
sin Ow — nfsin2®w5sin2®fﬁ(Mz).

Here sin? @ff #(Mz) is the weak mixing parameter effective at the Z resonance. Information
on this parameter is obtained also from the on-resonance asymmetries, the forward-backward
asymmetries Aﬁg, the 7 polarization-asymmetry A7,;. With longitudinally polarized beams,
presently available at SLC only, the measurement of the left-right asymmetry Arr and the
polarized forward-backward asymmetries A{:’};mol in principle allow for particularly clean tests
of the SM. At tree level the on-resonance asymmetries are given by
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of the NC couplings, and thus provide accurate determinations of sin? E)ff #(Mz) . At present,
the values determined by LEP [1] 0.2321+0.0004 and SLC [2] 0.229440.0010 (from ALR) deviate
by about 2.5 standard deviations.

In the coming years we expect that the experimental uncertainty 6 sin? ©.5s(Mz) can be reduced
from 0.0006 at present to about 0.0004. Similarly, for the interesting channel Z — bb, the
uncertainty 6T's5/Thad is expected to improve from 1.2% at present to about 0.5%. In addition,
the CDF and DO experiments at the Fermilab proton collider Tevatron will improve on the
accuracy of the value for My /Mz [3], which provides another important test of the SM.

For the physical interpretation of precision tests an important step forward is the direct pro-
duction of the top quark and the determination of the top quark mass. CDF recently found
evidence for top quark production and determined the value 174 & 10113 GeV for the top quark
mass [4]. This is a surprisingly large value which is in accord, however, with the indirect bounds

which were obtained by LEP previously.

Many predictions of electroweak observables depend substantially on the top mass. They are
affected by corrections which are proportional to G ,m?, at the one-loop level, as a consequence
of the large top-bottom quark mass splitting. Since these corrections grow rapidly with m;
electroweak precision measurements allow to put stringent upper bounds on the top mass. The
present constraint on the top mass from LEP m, = 173+12+18 GeV, which assumes the Higgs

mass in the range my = 3001730 GeV [1], is close to the CDF value mentioned above.

For four fermion processes the SM predicts two different sources of leading heavy top corrections;
first the Z and W self-energies [5], second the Zbb vertex [6]. The former in particular modify
the p-parameter defined by the neutral to charged current coupling ratio at low momentum
transfer. The leading correction to p is contained in the contribution of the transversal parts
of the gauge boson self-energies which enters all four fermion processes in a universal manner.
This is different for the Zbb vertex, where the virtual top effect is tagged by the external b state.
Top effects in p, and hence the top mass bounds, may be masked by all kind of contributions
from non-standard physics. As already mentioned, the situation will change dramatically if the
discovery of the top in Ref. [4] will be confirmed and m. will be known more reliably. Hunting
for small effects originating from the Higgs, from the gauge boson self-interaction or possible
small contributions from new physics will then become much more transparent.

In any case a precise knowledge of heavy particle effects is important. Activitiesin this direction
are of course not new. The high accuracy of LEP data has motivated increasing interest in this
subject recently [7, 8, 9, 10].

We have performed an independent calculation of the leading two-loop heavy top mass effects
for arbitrary Higgs mass which was presented previously in Ref. [8]. We were able to obtain
simple analytic results and found numerical agreement with [8]. We directly calculated the
physical W and Z amplitudes and explicitly checked the validity of the Ward-Takahashi iden-
tities on which the calculation of Ref. [8] was based. In this way we also could check directly
that the use of an anticommuting s preserves the Ward identities.

Our main results were published in a letter [10], recently. Here we describe the calculation
in some details, because we think that many technical aspects of our calculation might be
interesting for other two-loop calculations. Also, for the purpose of direct comparisons, a more
detailed presentation of our results should be useful for other authors.
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In Section 2 we present our main results. An outline of the calculation is given in Section 3.
Ward-Takahashi identities and renormalization are considered in Section 4 and detailed results
follow in Section 5.

2. Results

1. Universal corrections from gauge boson self-energies to Ap

The p-parameter is defined by the neutral to charged current coupling ratio at low momentum
transfer
_ Gne(0) _ 1 (1)
Gce (0) 1-Ap

where Goc(0) = G, is the Fermi constant determined by the p-decay rate. The leading
correction to p stems from the transversal parts of the gauge boson self-energies

_ 11z(0) _ Ow(0)
M Mg

Ap (2)

which enters all four fermion processes in a universal manner.

Some observables which are affected by Ap are briefly mentioned here. One is the W-mass as
predicted from «, G, and Mz [11]

M2 4A3 1
M = p—z-z-(1+\J1 M2( AO[+---)) (3)

1/2
where Ag = (ﬁg—;) = 37.2802(3) GeV and Aa ~ 0.06 is the shift of the finestructure

constant  due to photon vacuum polarization effects. The ellipsis stands for the non-leading
remainder terms. This relationship also determines the weak mixing parameter defined by

sin? Oy = 1— % in terms of the physical vector boson masses. The other is the effective weak
mixing parameter relevant for Z-resonance physics given by

M 1 4A2
102 = in2 =1—W __ — ..
sin @eff(MZ) = ksin“Ow =1 pM% 5 (1 J 2(1_ a )) . (4)

The leading contribution to the p-parameter in the large m; limit may be written in the form

- \/§G#m3

1
Ap =1- ; = Nz (p(l) + 7 p(2)) i Tt 1672 (5)

where p(¥) =1 and p® is a function of the ratio of the squares of the Higgs and the top mass
which we denote by




in the following.

Our result may be expressed in terms of the following three functions (see the Appendix):

f(a,1) = {—71175;[Sp(1)+2Sp(§)+%1n2(_€)] c a>4 ©

—o1 Ch(y) ; 42a>0

f(a,0) = Sp(l—a) = Sp(1)-Sp(a)—In(a)ln(l —a) , (7)
and

(8)

(a) = Va—4 In(—¢) for a>4
N = Vi—a(r—¢) for 0<a<4.

Sp (z) = — Jo £In(1 — =t) is the Spence function and Cly(¢) = Im Sp (&) is the Clausen
function. The kinematical variables ¢ and ¢ are defined by

 VT=y-1 _ \/E
£ = =g’ y =4a and =2 a;csxn( 4), 9)

respectively, and take the values

0<¢<1 for a<0
E=¢% 0<p<m for 0<a<4
-1<¢<0 for 4<a

For the dimensionally regularized quantities in d = 4 — 2¢ dimensions we will use the abbrevi-
ation
1 drp? 1

- - In - =
€ v+ m? €

in order to prevent uninteresting combinations of the Euler constant 4, In4~x ... in intermediate
results.

A direct calculation of Eq. (2) in terms of the gauge boson self-energies requires the calculation
of the diagrams depicted in Figs. la and b. Collecting the contributions from the unrenormalized
diagrams we find

@ _ 3.3 . _ 6 —2
P = 6+2 3¢a—3(2+4+a)lna+ 52

71_2

B %(a_ 1)*(a - 2) £(e,0) +3(a’ - 6a +10) f(a,1) . (10)

Since Ap is finite at one loop order in the SM, it turns out that the only renormalization needed
is due to the replacement of the bare top mass by the renormalized one. We use the on-shell
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definition (pole mass) for m; in the following. The contribution from the counterterm that

must be added to pg) is

@ _3, 13 a(a—6) a—
por=_+tg-at—g et

and the sum of the two contributions yields

2 Vagla) (11)

a—2
2a

1
PP = 25—4da+ -;—(a2 —12a—12)lna + w2+ §(a — 4)/a g(a)

B %(a - 1)*(a—2) f(a,0) +3 (a® ~ 62 +10) f(a,1) (12)

as final result. This result confirms the numerical results and the asymptotic expansions given
in Ref. [8]. The result depends substantially on the definition of the top quark mass. If we
adopt the MS definition for the top quark mass and choose as a renormalization scale p = m;
we obtain pg?s by just dropping the e~pole term in the bare result Eq. (10):

@) 37 a—2

_ o a4 2
PMs = 3a—3(2+a)lna+ 5 ¥

- ‘g(a —1)*(a — 2) f(a,0) +3 (¢ — 6a+ 10) f(a,1) . (13)

The asymptotic expansions for large and small values of a, respectively, read:

p? = In’a(3/2—-9a ' —15a"2—48a™*—168a™* - 612a°+---)
Ina (27/2+4a™ —125/4 a=% — 558/5 a~> — 8307/20 a~* — 109321/70 a™* + - -+)
+ #2(1-4a'-5a2-16a3-56a"*~204a"" + ")

+ 49/4+2/3a71+1613/48 a~? + 8757/100 a~> + 341959/1200 a™*

+ 9737663/9800 a5 +--- a— o (14)
pP= — lna(Ba—-1/2a*+--)

-~ 72(2-2a+1/24d%)

— #va(4-3/2a+3/32a>+1/256a%+-+)

+ 19-33/2a+43/12a>+7/120a®+---) a—0 . (15)

The correction p® is negative and thus leads to a screening of the non-decoupling large mass-
splitting effects. The minimum screening of the doublet mass splitting Am? = |m} — m{|

V2G, Am?
Ap=N.z,[1 -2 =19z +---], a1 = 16;;2 t
is obtained for m% <« Am? [5, 7, 11].

The magnitude of the effect first increases with increasing Higgs mass and takes a maximum of
about -11.77 at mgy/m; ~ 5.7 . For asymptotically large mp o ~ 3/21n? a is positive, but for
reasonable values of my it is still negative. For myg/m; = 10 we have -10.74 still substantially
larger than the value -0.74 at my =0 .



The somewhat unexpected shape (infinite derivative at a = 0) shown in Fig. 2a is due to the
top mass renormalization counterterm Eq. (11) which exhibits a term proportional to /a for
small a. The non-monotonic behavior of p(?) is the result of a cancellation between the bare
contribution which shows the expected smooth behavior (with zero derivative at @ = 0) as a
function of a and the top mass counter term which is also monotonic but decreasing. This is
illustrated in Fig. 2b where p(cz% is subtracted at a = 0.

2. Z — bb process specific vertex corrections

For physics at the Z-peak all corrections may be included into effective Zff-couplings like
|Qs| sin? @5 = |Qy| kysin® O = (1 — g/g%) and g} = p; Ts; which are determined by
experiment [1, 2]. Accordingly we write the corrected vertex as [6]

) 1/2 ) 1
(=i) (V2psGy) " Mz 7" (—2Qf'€f sin’ Ow — (1 — ) 5) (16)
where ps = p(14+ Apfuertez) and K5 = £ (1 + Ak yertez). Here p and & incorporate the universal
self-energy corrections, discussed in the previous subsection, and the remaining terms the flavor
dependent vertex corrections.

While for f # b the vertex corrections are small and independent of m; and my at one loop
order, the Zbb-vertex gets a process specific heavy top contribution proportional to 1 — s such
that

p = p(l+m)?
1
= ) 17
For large m: we may write
7= =22, (7 + 2, 7)) (18)

where 7,,(1) = 1, z; was defined in (5) and ‘rb(z) again is a function of a. Besides the asymmetries at
the Z-resonance which are functions of sin? @f 75 the heavy top contributions affect the partial

Z-decay widths

V2G, M3 ,
Tzoff= ——@'gr-—zzvcfpf (1+ (1 - 4|Qs| 5ssin? Ow)?) . (19)

For f # b only the universal corrections p and & enter which lead to a substantial top mass
dependence. For f = b the universal top mass dependence is largely cancelled by the 7
correction.

The two-loop contribution 7_6(2) was first calculated in Ref. [8]. The leading term for a = 0 was

confirmed recently in Ref. [9]. We have performed an independent calculation of Tb(z)(a) and
found a surprisingly simple analytic results. The Feynman diagrams which must be considered
when doing a direct calculation of the Zbb-vertex are shown in Figs. 3a and b. As for @, the




result can be written in a similar simple form in terms of the same basic functions. As a result

we find

2
76(2) = g_%a—za ——(19+6a)1na————(7 6a)ln®a — (= +;a 3)%

(& ~2)va gla) +(a ~ 1)*(4a - ;) £(a,0) = (&~ o’ + 182 =7) f(a,1).. (20)

Our result reproduces the numerical results and the asymptotic expansions given in [8]. Again,
the result depends substantially on the definition of the top quark mass. For the M S scheme
at scale 4 = m; we obtain

@ - 5_9, gz ¢ e e (-4 La? - 308
™Ms = 5 7% 2a 4(7+8a)1na 4(7 6a)ln’a (4+2a 3(1)6
LT 33,
+ (a-1) (4a—Z) f(a,0) — (a® e 2418a¢—-1) f(a,1). (21)

For large a the asymptotic expansion reads

1 1 5 35
nY =

47 ) 57 5411

(_ﬂ + 12a + 80a? t 120a3)1na

311 10 = 24209 193157

= 22
124 ~ 0a T 180047 T 72004° @ (22)
and for small @ we obtain
@ _ (4.9 32 1 35
B = (Cttges e - gpe)Ver
1 5 53, Ta ,
t (gt To)r
T, 3 a2 19 461
+ ( ¢ T3¢ )In®a + (—3a 5% ~ To% Jlna
+ g—ga+9552+ﬁa3+--- a—0 . (23)

2 144 75

The function 7, )(a) has a similar behavior as p(*(a). In Fig. 4a we compare the exact result
with the asymptotic expansions. Fig. 4b illustrates the role of the top mass counterterm. The
remarks made earlier about the behavior of p(?)(a) apply for 7, 2’)(a) as well.




3. Outline of the calculation, basic two-loop integrals

We are interested in corrections which grow at least as m? for asymptotically large top mass.
At two-loops the leading term behaves like m{. In a renormalizable theory (in a renormalizable
gauge) if the masses would only enter via mass terms i.e. in propagators, we would have
decoupling. The Feynman integrals would at most grow logarithmically in the mass. The
origin of the above behavior clearly stems from the large Yukawa couplings g; = 5@‘ of the
top quark the vacuum expectation value of the Higgs field v being fixed by the Fermi constant
as —; \/_ G,. Thus the diagrams we have to consider require at least two top Yukawa vertices
tbgo and bte~ which are connected by at least one internal top line. As there are necessarily
charged current transitions involved, the contributions will be purely left-handed. The other
vertices representing large couplings are #t¢ and ttH, and, since the Higgs mass cannot be
neglected, all the Higgs self-coupling vertices Hp%~, Hpp, H*pr o™, p?pt o™ and (pte™)?.
The corresponding two—loop diagrams we have to consider are shown in Figs. 1 and 3. Using
appropriate Ward-Takahashi identities the same results can be obtained form the diagrams
depicted in Figs. 5 and 6, where the external gauge boson legs are replaced by corresponding
Higgs ghost legs.

The calculation was done using dimensional regularization with anticommuting vs. The latter
choice preserves the naive form of the Ward identities as we have checked explicitly. In the
approximation studied we do not encounter any vys—odd traces which usually cause the triangle
anomaly problem. All masses besides m; and mpy are taken to be zero. Consistently with
neglecting the vector boson masses also the momenta are taken to vanish. In this approximation

all diagrams are effectively “vacuum bubble ” diagrams corresponding to integrals of the form
[12]

(mn, mig- m1n1|m21’ m22 'm2n2|m31, mgp-- 'm3n3) =

1
/d"kl/d"kzﬂ(k2+m H (k2+m2])H(k1+k2)2+m31)

=1 =1

UV and IR singularities are dealt with by dimensional regularization [13] and cancel in the
observable quantities. All these integrals can be reduced to one master integral (m, m|m;|m;)
by using partial fraction decomposition, by differentiation and by integration by parts [12, 14].
In particular, by partial fraction decomposition propagators with the same momentum but
different masses trivially reduce to integrals of the form (see Fig. 7)

Velinind ) = / d"kid™k,
BU1,J2,J3, 1, M2, TM3) = (k} + m3)i (k2 + m2)72((ky + k2)? + mj)®

(24)

which in the Appendix are also denoted by (j; mi|j2 m2|jz ms) . Explicitly the reduction to
standard integrals is performed by the following recursion relations obtained by the method of
integration by parts [12, 14}:

1- N -

+ (2(G1—1)+7j3—d)} Vs




Ve = A(m].‘;r_n?l’ms) {2jsmd 2= (27 —17) 8%

+ (2= 1)(m —m} —m) (37~ 1)
+ [202 = 1)m2 + 2ja(m3 — m3) + (j2 — 1 = d)(m} — m3 + m3)| 27} Vi

A(Tnl’ ma, M3

Vi -
B Ja—1

) {271m? 1+ (87 - 27) 8"
+ (s=1)(md—mi+md) (27 -17)

+ [2ls = 1)m? + 251 (mf — m) + (js — 1 — d)(m? + m} — m3)| 37} V5,

(25)
where 1¥Vs(j1,...,m1,...) = Va(j1xl,...,m1,...) etc. and
1
A(mq, ma, = . 26
(m1,m2,ma) om2m2 + 2mimZ + 2mim3 — m} — m$ — m} (26)
The idea of their application is to reduce all integrals to the master integral
VE(lalslaml,m2am3) (27)

and some simple tadpole-integrals, which are obtained when one of the indices is zero. In a
first step the integrals with positive index j; are reduced to the ones with their first index 1
plus tadpoles. For this purpose the first relation is sufficient even if the index j; increases. By
inspection one observes that applying all three recursion relations one after the other, the first
index does not increase and the sum of all indices decreases by at least 2 (by 1 in each of the last
two steps). In this manner j, or j3 must get zero and the procedure can be stopped. Further
details and explicit formulae for the master integral and other related two-loop integrals are
given in the Appendix.

4. 'Ward-Takahashi identities, Renormalization

1. Ward-Takahashi identities

We have calculated directly the Z and W self—energies and the Z bb-vertex in the limit My, Mz <
m; and my arbitrary which is of interest here. Another more elegant approach was used in
Ref. [8]. In the limit under consideration S-matrix elements are dominated by the longitudinal
vector boson degrees of freedom and according to the equivalence theorem [15], with m; as a
high energy scale, one is allowed to replace (up to a phase and up to O(M/m;) corrections)
a longitudinally polarized vector boson by its corresponding unphysical scalar. An equiva-
lent relationship is obtained in the limit of vanishing gauge couplings, g’, ¢ — 0, from the
Ward-Takahashi identity which derives from the remaining global symmetry [8].
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By virtue of these Ward-Takahashi identities for the p—parameter we may replace Eq. (2) by
Ap ~ 1T+ (0) — II,(0) (28)

where we have decomposed the Higgs ghost self energies as IL,(¢%) = II,(0) + ¢°IT,(¢?) . This
latter expression is simpler to calculate because the scalar vertices are simpler and the number
of diagrams to be considered is reduced by roughly a factor of two. The diagrams are depicted
in Fig. 5.

The relevant Ward-Takahashi identities derive from the standard model Slavnov-Taylor identi-
ties as follows: We use the notation of Ref. [16]. In the ’t Hooft gauge we denote by ¢ the gauge
parameter, ¢ and n¥ are the neutral and charged Faddeev—Popov ghost fields, respectively. The
Z boson propagator satisfies

<T0,2%(z)Z,(y) > +EMz < To(z)Z,(y) >
= —¢ <T((z)8,((y) > +ig cosOw & < T{(z)Wrnt — Win~)(y) >

<T30,Z*(2)0,Z%(y) > + EMz < T3, Z*(z)p(y) >
+ {Mz < To(2)0,2%(y) > + £ M5 < Tp(z)p(y) >= —i(z — y)

for the longitudinal parts of the gauge field propagators. Using the usual tensor decomposition
for the self-energy functions (inverse propagators) in Fourier space

<TZMz)Z"(y) > — iME (¢"Ai+¢*¢"Ar) = —i(¢*Tz(¢) + ¢*¢*Tlz(¢?))
<TZ¥=z)e(y) > — Mz p*B,
<Tep(z)p(y)> — t Oy = 1 I,(¢?)
<T{(z)(y)>+--- = —iM% D

the above identities read:

¢ (Ai+ A2+ B)+ D=0
¢? (A1+¢*A2+2B)+C, =0

By D; we have denoted the full Faddeev—Popov ghost contribution which includes both terms
of the r.h.s of the first of the above Slavnov-Taylor identities .

In the limit g — 0 the Faddeev-Popov ghosts do not contribute and therefore D; =~ 0 such that
A; + ¢*A; + By ~ 0. Since the self-energy amplitude A; does not exhibit a pole at ¢ = 0 we
have g?A; — 0. Thus we obtain the relevant Ward-Takahashi identity A; =~ % which we may
write in the form

L R A 0o (29)
and which expresses the physical transversal part of the Z self-energy in terms of the self-

energy of neutral scalar Higgs ghost. A corresponding relation holds for the W-propagator and
this establishes Eq. (28).
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For the Zbb vertex we have the Slavnov-Taylor identity

< T8,Z*(z)p(y1)¥(y2) > +EMz < To(z)y(y1)¥(y2) >
= —£ < T(z)Dyana(¥1)¥(y2) > —€ < T{(2)¥(y1)Dgns(y2) >

where the terms on the right hand side have a fermi field replaced by a composite operator,
which are the Becchi-Rouet-Stora (BRS)-variations of the fermi fields ¢ and ¥. In any case
these terms do not contribute for on—mass—shell fermions since they do not exhibit the two one
particle poles present for the other contributions. Using the following tensor decomposition for
the vertex functions (external b-lines amputated and on-shell) in momentum space

< TZ¥z)b(y1)b(ys) > = —i 52 (P20 + Fv) +7%ys(1 + Fa) +--)

Z (30)
< To(z)b(y)b(yz) > — = (Gs+vw(1+Gp)+--1) ,
and taking the on—shell matrix element with respect to the external fermions, the above iden-

tities read:

6
Fi—Gp— 22+ 20z — (Ar+ ¢*As + By) =0
b

where the last term in parenthesis is the Z boson propagator contribution which vanishes
in the limit ¢ — 0 of interest here. We have denoted by F; and G; the nontrivial parts
of the amplitudes. They are normalized relative to the axial and pseudoscalar Born terms,
respectively. vy = -g-sin2 Ow — 1 is the Born level vector coupling. Furthermore we denoted by
2, the axial part of the b wave-function renormalization §Zy = Zy— 1 = z5 + V52

Thus we have
dmy

Fy=Gp+——2u2z . (31)
myp
Instead of discussing the limit m; — 0 of this identity we may consider directly the case my = 0.
For m; = 0 we actually cannot consider the on-shell matrix element of the ST-identity, because,
as @(p') (¢, 47s) u(p) = (0,2mp) for ¢ = p’ — p, we do not get a nontrivial relation between the
amplitudes. We thus directly compare the off-shell amplitudes proportional to ¢4 and obtain, in
agreement with Ref. [8],

2
FA=G’P—Q(vb+ab)zb=G’P+2(1—§sinz®w)zb . (32)

The amplitudes G} are defined now by

g

20

< Tp(2)b(y1)b(ya) > 5 (Gs +71:Gp +--7) - (33)

Note that the bb-vertex has a vanishing Born term in this limit and hence the b wave function
renormalization associated with this vertex does not contribute. This causes the change of the
coefficient of 2, in Eq. (32).

The amplitudes Fy and G are fixed by the fact that the heavy top effects require a charged
current transition and hence must be proportional to 1 —+s. Again we see that the calculation
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can be simplified considerably because we only need to calculate the simpler diagrams shown
in Fig. 6.

However, since we are using computer algebra [17] to evaluate the diagrams it is not too much
additional work to calculate directly the amplitudes for the physical fields. The check of the
Ward-Takahashi identities provides a welcome test of our calculation. In particular one has a
direct check that using an anticommuting ~s preserves the Ward-Takahashi identities . More
complete calculations which take into account vector boson mass effects (finite g, ¢’) in any
case would require to calculate directly the physical amplitudes.

2. Renormalization

Next we must take into account the appropriate counterterms. Since tadpole terms drop out
from renormalized quantities in any case we will not include them in any of the bare quantities
given in this paper!. We first consider the p—parameter. Since Ap is finite at one-loop, as
a result of the custodial symmetry of the minimal SM which implies p = 1 at the tree level,
renormalization is simple at the two-loop level. In the approximation we are considering the
only renormalization is due to the replacement of the bare top mass by the renormalized one
mep =me (1 + §_m_£
my
By m: we denote the on-shell mass of the top. Because m? for the first time shows up as a
correction at one-loop order we need the top mass counter term to one-loop order only.

Because the one-loop mass counterterm has a 1/¢ singularity for € — 0 we have to know the
one-loop result which multiplies %’"‘l to order O(e). It was denoted by p® in Eq. (5) and is

given by p) =1 —¢/2 . In this way we obtain p(c?%- as a contribution from the counterterms

e\ ém
2 (1—5)#=$tpg1)" , (34)
where z; was defined in Eq. (5) and ém; is
émiV 3 a 1 1 )
= 2 t4-24+-a(a- “(a—14
s T (25 té-5+ 1° (a—6)lna+ 4(a )Vag(a) (35)

calculated from the diagrams of Fig. 8. The result was given in Eq. (11) before.

For the Zff-vertex the required counterterms are obtained by replacing bare by renormal-
ized parameters and by the multiplicative field renormalizations (factor 4/Z; for each external
amputated field). Thus taking into account the radiative corrections amounts to the simple
substitution

Mzk (T34(1 = 75) ~ 2Q5s%,)
v (36)
Mz yn (T3.f(1 —5)(1 + Fa) = 2Qsshy (1 + igf)) VT 2y 1+ 51+

1Note that we would have to include tadpole terms if we would insists to work with gauge-invariant coun-
terterms for masses and couplings (see e.g. [18]).
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with s¥ = sin? Ow and we have used & = v/2G,, . Here, F4 and the counterterms are still
functions of the bare parameters Wthh must be replaced by the renormalized one’s plus the
corresponding counterterms.

Now, for the light fermion vertices Zff f # b, there are no top contributions besides the
universal one’s entering via the gauge boson self-energies. The corresponding contributions
which are incorporated in p and « are finite and gauge invariant by themselves and we need
care here only of the additional flavor specific contributions, the vertex and fermion wave-
function renormalization corrections. Both corrections are proportional to 1 — 7s. Besides Fiy
which we directly obtain from the diagrams of Figs. 3a and b we have to calculate Z; to two-loop
order. The irreducible two-loop diagrams which must be calculated are shown in Fig. 9.

The b wave-function renormalization factor is determined as usual by the residuum of the pole
of the fermion propagator

gp(p) = }S—mbl—}'j(p) - Zb;s——lmb for ;5—)mb

in the limit my — 0 we have £(p) = pZ'(p?) and hence

1 1 1
ey T s of pP =0

Thus )
Zy = =300 (37)
and since the leading m; — oo terms are left-handed we have
2(0) = ~(1— 1) 2 (38)
in the notation introduced in the previous subsection. If we expand to second order we have
Zy~1—(1—ns) [z,f” + 252) —9 (zgl))z] 4. (39)

which multiplies the bare vertex from the right. Expanding up to two-loop we obtain (see
Egs. (16,36))

2 1- 2 2
Zsly - —53@ (1 +FY - 201 - s5¥) M+ FO o1 - Zs) (=D -2 (%) - 2V F + )
and hence
- 2:1:?7'6(2) = F}{") 2(1 - —s W) (2(2) -2 (zél))z) — 2z,(,1)F,(‘1) . (40)
In the following we denote individual contnbutlons by
-22:372)6 = F(z)
2
-2airf) = —(1-3sh) 2
and (2) (2) 2
2
z T 275 - (41)
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We finally have to add the contribution from all the remaining counterterms. Besides the
remaining b wave function renormalization terms of Eq. (40) we have to include the two-loop
effects obtained by replacing to one-loop order the bare parameters m;g and G,p in z; by the
renormalized ones in the one-loop result. The bare regularized one-loop result is given by

. §G
— 22,5 = =2z, (1 + ) (mep/me)* ™2 (1 + 5 - (42)
I

Because the one-loop counterterms have a 1/¢ singularity we have to know the one-loop result
which multiplies them to order O(¢) for € = 0 . In this approximation ") defined in Eq. (18)
is given by Tb(l) =1+ ¢ . In the approximation we consider the one-loop result depends on the
mass Mg+ of the charged ghost fleld p* (see Fig. 3a). The mass counterterm of this field is
proportional to

2 2
dmos < myz,
and we thus have to take into account a term

0 2
5 (F(l) 2(1-—53%,)251)>

3mwi

5mi(§) ,

2
m* =0
ot

which does not vanish in the limit mfoi — 0. Note that this prescription precisely generates
the o self-energy conterterms needed to renormalize the ¢* self-energy insertions appearing
in the two-loop diagrams of Fig. 3.

(1)
Expanding Eq. (36) and using the fact that Z3 M_1+ ﬂ%]— + A 5?:1

imation we consider, we obtain Tc(,} as a contribution

is vanishing in the approx-

5G(1) (1)
—22278 = —2z,(1 +¢) ( e +2(1 — e) — 22V
W
m2g:>
—2z; ( +2+4+2+ —sC(?)) £ (43)
t
with
§G,W (a 1 1
= —+4+2N. (- + =
G, ot 2+N(s+2))
1 3
£ = w5 t3) (#)
and %"“ given by Eq. (35). For the renormalization of the mass of the ¢ field we find
Sm2)
Tt 4N, ( +l4et 54(2)) z
my
2 (1 1 €, o
+a <-€—+1+e—lna+§€C(2)—51na+§ln a):nt . (45)
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Inserting all contributions into Eq. (43) we find

& = —Nc(4 +19+17+4c( )) +g—:—+(3a2+2)1 +%—% + 54 + a%¢(2)
taatlnte— (2434 2a)alna+ (%~ 2)v/ag(a). (46)
The final result Eq. (20) is then given by
=P +G . (47)

5. Individual contributions

In this section we present in detail the results for the different amplitudes. Results for individual
diagrams are all of a similar form, namely linear combinations of the same basic functions. As
the number of diagrams is quite large, especially when working directly with the physical fields,
we refrain from giving results for all the individual diagrams. However, results are given for
various groups of diagrams.

1. Two-loop heavy top corrections to the p parameter:

We first present the bare two-loop corrections for the Z and W propagators The contribution
of Iy (0)/MZ to p@, defined in Eq. (5), is denoted by pv) such that p( ) = p(2) (2). We
obtain the simple results:

PP = —2‘16:3 - = <3a+ 522 +4(2—a)lna) —2(a—2)In*a+2(3a+2)lna
e a— sy + 22T g (48)
o = -5 3_1 - (3a+ T ~e)lna) ~2(a—2)la’a+ (9a +10) na
—2—21 -~ %a _plef=a=3) _: =3 (9
—-(I;(a — 4)(3a% — 10a + 4)f(a, 1) + %(a —1)%(a - 2)£(a,0) . (49)

The functions f(a,b) are defined in Egs. (6) and (7) and ¢(2) = 162—.

For the p-parameter the results for the different groups of diagrams of Figs. la and b are given
by

p2® = —C(1+40) [ia + Ea +22a + 8a((2) — ({:Ea +16 + 24a) Ina
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1
+8alna + —c—? (2 +2a — a2) f(a,l)}

6 4
—02(9 +240) +C<€—2—§€9—79+12<( ))
1 3 19 4+ 2a
+§_25_Z—C(2)_21na+ f(a71)’
(2,b) 12 16
pg = C(1+4+40C) [—a+ —a+ 22a + 8a((2) — (—6—a+ 16 +24a> Ina

+8aln’a + —1&9(2 + 2a — a?) f(a, 1)]

+0? (—6§ + 420) +C ( + g +1124 24((2))

2 7 19
+g§—2—€-—z—a+74(2)+(2——a)lna

—(1 —a)%*f(a,0) — %(4 —4a + 4a® - d®) f(a,1),

2
P29 = 0(7 +180)+C’< +3o) 235 T+ =20 9) _2Ina

1201 - 0f(a,0) + (8- 20)f(a,1)

144
p5Y = —C? (— + 360) C (12 + 2 + 63 +36¢(2 )>
3 7 119 4+ Ta
—'8—2 26 —4——2 - C(Q)—(4+2a)lna
2
+E(2—a)(l—a)zf(a,O)+2(a—2)(a—4)f(a,1) . (50)
The sum of these contributions yields Eq. (10). The constant C, which drops out from the sum of
the above contributions, is the vector coupling coefficient of the Ztf vertex, C = —2/3 sin® Ow +
1/4 .

If we make use of the Ward-Takahashi identity we have to calculate the neutral and charged
Higgs ghost field propagators as has been done in Ref. [8]. The two-loop contributions increasing
proportional to m? and m} are due to the diagrams depicted in Fig. 5 where we have grouped
the diagrams as in Ref. [8] to allow for a direct comparison.

In terms of the functions Eqgs. (6) and (7) the unrenormalized contributions from different
groups of diagrams read

(2e) _ _2+2(6—a)1 a_4(a2—6a+6)

PB a—4 n a(a_4) f(a’l),
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3 . 29 4 5

pg’b) = ——+—2——3 a+(4-—- 3a+—) lna——gw2
2 2 6 2
- (8a®*=12a +17) f(a,0) + (3a — 18a + 26 — P a_—_4) f(a,1),
20 _ 2a—-3 , 4(6-a) 6 — 4a ( )
pg = 6+ 52 " + Ina + - f(a,0) + ——— f(a,1),
(24 _ _ 4a In ?__i_ (0_6)

A comparison of the results Eq. (50) with (51) shows that the use of the Ward-Takahashi
identity leads to noticeable simplification of the expressions. The sums of the contributions
agree as they should. '

2. Two-loop heavy top corrections to the 7 parameter:

The two-loop corrections to the Zbb vertex may be expressed in terms of the 7 parameter which
was defined in Eq. (18). We distinguish two groups of unrenormalized diagrams:

a) Contribution from diagrams without Higgs and neutral Goldstone particles shown in
Fig. 3a. The result is

a 7 31 111 9 49 161
80 = oo (LD B rac) + i Ty 10

2 4 8
3 7 1 13 25 3
c( totg U@+ e Rt @ (52)

b) Contribution from diagrams with Higgs and neutral Goldstone particles shown in Fig. 3b.
Here the result reads

Loy _ 3 7 ) 4a2——1_(_11 T2 )l

Toek 4Ca+C( + 52 +4+3((2) " S +50"—a Ina -
99 17 33 5 (1 ra_ 4 3vr(0y (1 P YRNE T
+5 - 79" 1¢ (2+5a 4a%)((2) (4 a)alna (2 2a)a*ln‘a
~3e~ 17 - 20)f(a, 0)+(8—§21a+é£ gcﬁ) fa,1) . (53)

The contribution to the 7 parameter from the unrenormalized Z bb vertex is given by the sum
of these two terms:

@) e )+3 9 49 16 ]
Tap = 2Nc[0<6 +2 + " +9¢(2)) + +85+ T + (()

242 -1 5 7, 1 37 17 33 ,
5 —( + =-a —alna)—-+————a——a
2e €

—4Co — =
d 477
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1
+(Z — 5a® +4a®)¢(2) - (% —a)alna — (g — 2a)a’In?a

~7(e = 1(7 ~ 220)f(a,0) + (s~ %a + 44—7& - ga3) flal) . (54)

For the renormalization of the Zbb vertex we need the b wave-function renormalization factor.
To this end we have to calculate the two-loop corrections to the b-propagator. The diagrams
are given in Fig. 9.
The unrenormalized expression for the b propagator is

@ _ _(2 _l[N(_7_ si oul 9 >_]

Tob (2C 2) *\2¢2 +45+ 8 +2C(2) ? (55)

with the shorthand |

2e¢2+1 10a>+1 19 5 23 , .3 2 3

7= 2¢? + 4e —§+Za+1a +(Z+4a —20°)(2)
3
+(—§ + Y a)alna+ (2 —a)a® In*a

7 —10a 2a* —1la+6

Ha— 1) ——f(a,0) + —

(a—4) fa,1) . (56)

The contribution from the bare two-loop diagrams to the 7 parameter thus is

2 _ @ (2)

TB = Tz T 2Ty
2 5 17 a? 3a?+2 7 11
o o (S ) T e
62+6+ 5 +2¢(2) = . 5~ T¢ Ta
1 2 1248 -
_1+18a d C(2)—-9 6aa21n2a+(la2—za+a2) Ina
4 € 4
7T—16
~(a- 1 “f(a,0)+(7—1sa+3z‘°ia2—a3) f(a,1). (57)

If we make use of the Ward-Takahashi identity, we just have to calculate the (bb vertex, where
¢ is the neutral Higgs ghost field. Such a calculation has been done in Ref. [8]. The two-loop
contributions increasing proportional to m? and m} are due to the diagrams depicted in Fig. 6.
Again, we have grouped the diagrams as in Ref. [8] to allow for a direct comparison.

Again, we use the notation (see Eq. (32))

- 2:1:?7&1)—, =q¥ (58)
and write \
T<;(>b% = —2521 (59)
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in terms of Z; in order to conform with the notation of [8]. The contributions from different
groups of diagrams shown in Fig. 6 are:

62

620 =

§2{9 =

629 =

628 =

§29 =

§2 =

- %(2 +a)(2) - —(2 +a)ln’a

(1—a-a?)f(a,0)+ g(a2 — 2 — 4)§(a,1),

RO~ 8 ool8
=

2

oo |

+ gc (2) = glna
%(az —8a+5)f(a,0) + %(az — 10a + 20) (s, 1),

2
§a + §<12(4 —a)((2) + 3116(4 —a)ln’a

373
27~ 150 + 36%)(a,0) + (Ga—3a+ %as) f(a,1),

2
a4+ (%+ 1)N. 4+ a*lna + az(l —2a)In%a

?(1 —2a)((2) + —2—(1 — 2a)f(a,0)

-i——{-+a+(a—%)lna—%((2)
G - Lot af(@,0)+ (o~ 5 + Fa— (a1,
dma- 2@ 4 2e-9f(@0) + (-5 +3 -7 @D. (60

Here for the diagrams of group (e), the counterterms corresponding to the mass of the ¢ field

are taken into account.

For all other diagrams we give the unrenormalized expressions. For the

sum of the above diagrams we then have

5Z1 -

1 7 11 7 1 3

-6———4-+—8_ a+a +( +Za——a3)C(2)+(E+'2‘)Nc

a a? 2

§(7 +8a)lna+ —8—(7 —6a)In®a (61)
3

(a =120 - (0,0 + (5 - 2o + 90 - D)fa,1) -
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The counterterms for the (bb vertex (see Eq. (33)) follow from
(1=7%)Gp 1+ (1 =1)m)" =(1~7)Gp(1—22+"") (62)

and the replacement of bare by renormalized parameters in the one-loop result. Note that the
Born term is absent for m; = 0. This naive renormalization prescription, as it should, yields
the renormalized physical Zbb amplitude F}** which is given by

Ten 2 2
Fim = ((1 = 3sw) + Fa)/(1 + 22) = (1 = 3si) = Gp/(1 + 22) (63)
where the last equality follows from the WT-identity Eq. (32). Using the bare regularized
one-loop result Eq. (42) the analog of Eq. (43) reads

63] (1)
- 2023 = ~2z, (1 +¢) (‘SG“ +2(1- e)fsm— - 2z§1)> (64)

1
Gp, mye

where the relevant quantities have been given in Egs. (35,44). Note that the contribution from
the ¢* mass counterterm has been subtracted already in Eq. (61). The remaining counterterm
contribution is then given by

~(2) _ l|§)+g+_11_2 a(a - 6) (ﬁ_ >
Adding these contributions \ \
~(2
) = Tib% X (66)

we recover our result Eq. (20).
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Appendix: Useful Integrals

In this Appendix we discuss properties of the master integrals. The relationships found here
were crucial in obtaining simple compact formulae. Using recurrence relations obtained by the
integration-by-parts technique {12, 14] all integrals were reduced, with the help of FORM [17],
to two integrals, which are special cases of

! 2 b(1—
oty = [[ e (500t + Fgmpt) ¢ o= O

given in Ref. [12]. We consider a slightly generalized situation where we have three different
masses m, my and m’ in the problem. We denote the mass ratios by

m?2 m'?

a = -—% 5 b = —2' .
m m

We first define the symmetric auxiliary function

z z
ha8) = ~Sp(1~ 1)~ Sp(1= 1) +5p(1 ~ )+ Sp(1 — 1)
+8p (=37 ~Sp (=00 =Sp (=71 +8p (=3
z fed
-t freese))
5 (W) - () 1) - (D)
with
x1=%(1—a+b+\/x), z3=11-a+b-VX)
y1=%(1+a—b+\/X), y2=31+a-b—VvX)
and

A=1-2(a+b)+(a—1b)?
The roots satisfy the simple relationships

n = l—z , y = 1—m

1T = b, wny =  a

For b = 1 we denote z;|p=; by ¢ and have z, = 1/¢, y; =1 —1/{ and y, = 1 — £ where

é_\/l—y—l )
T VI—y+1°

=4q7?
takes the values
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0<¢<1 for a<0
E=¢% 0<p<7m for 42a>0
-1<¢<0 for 4<a.

The function h(a,1) now has the simple form

(e, 1) =2 [p(1) +2 Sp(€) + 5 10%(~¢)]
The function A(a,1) is real for @ > 4 and purely imaginary
h(a,1) =1 4 Cl2(p)
when 4 > a > 0, with ¢ = 2arcsin /1/y and Cly(¢) = Im Sp(e*®?) is the Clausen function.

Forb=awehavey; = 2, , ¥ = 22 = 1 — z; and —z2/y; = —y2/z1 = { is given by the
formula above but with the replacement a — a~!. Thus

h(a,a) = h(a71,1) .
The master integrals may be expressed in terms of the function

s = -5 (m@mE)+ 2= )

and derivatives of it. For special values of the arguments we obtain:
h(a,1)
f(aa 1) = _2m
|~ [sp(1) +28p(8) + Lln*(-¢)] 5 a4
_fyz—l Cf2(¢) H 4 _>_ a 2 0

f(a,0) = Sp(1—a) = Sp(1) - Sp(a) - In(a)In(1 — a)

f@0) = —f(a,0) ~ 510%(a)

flata™) = ~2hn(a) +C-vie .
For the derivatives we have
-a%f(a,b) = ?/Tbln(b)—“—if’f-lln(a)+———b (“/\'sff D) h(a,b)
= a'_14 [1n(e) + % f(a,)]
-g—bf(a,b) - %‘iln(a)—f#ln(b)—“_(ﬂ%f—l—) h(a, )

2 2 lne) - G- )f(e,)
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For b = 0 we find

Special values:

f(4,1)

8(4,1)

f(1,0)

8(1,0)

2ab a+b-1 2ab
~ In(ab) — —-T—-(a In{a) + b1n(d)) + 32 h(a,b)
2 [e-a)h@ - ()]
) _ In(a)
El.f(a’b) bo - l1—a
—41n(2) £(1/4,1/4) = 2I(2) (1 -1n(2))
~§ -5l s4D) = 3-ik@)
0 f0,0) = %
~1 8(0,1) = -1

The asymptotic expansion of f(a,1) reads:

f(a, 1) = -
+
+
f(a,1) =
Denoting

we obtain the following list of integrals which have been used in our calculation:

n=4-2 and v+In7 +lnm?

24

1
log(a)2 (5 +a'4+3a24+10a3+35a74+--")

log(a) (271 +7a™2+174/3a 2 +533/6a%+--)
¢2)(1+2a 1 4+6a24+20a3+70a*+---)
2071 +11/2072 +155/9 a™® +4163/72a7* + - --
log(a) (1/2 a+1/12a® +1/60 6> + 1/280 a* +1/1260 a® + - --)
(a+5/36 a® + 47/1800 o® + 319/58800 a* + 1879/1587600 a® +

a— o0

= ln M?

%

=) a—0




Ji = (Bmmglm) = -i3%
= 2 (&~ 1 +1(M?) — §(aZ +55mr)
(-2 -3+l -3 [2-a)na~4f(s1)])

(2m|mH]m')|

la* SNIa

|
W)

m

5, = (@mlmglem) = —3Zz@mimglm)| _ =
4

= %(ﬁ[lna— ——-l)f(a )])

_1_6]' ﬂ,b l
b=1

Jo = (2mlmglm) = 7*(-g—% (1-2la(M?)
—1 = §0(2) +1n(M?) ~ 1 (M?) - f(a,1))

Ji = (m|mglm) = —2m2J; — myJo+
74 (2 +3) (2m? + my) — 2 (2m? In(M?) + m In(ME)))

J = (20malm) = = (&+% (1-2k(ME)
+i- ‘214(2) — In(M%) +1n*(MF)
_lnie) (1 41— 21n(ME) + Lln(a) ) — 12f(a7,0))

Jo = (2m|mgl|0) = 7r4( 57 — 3c (1 —21n(M?))

~} = J0(@) + In(M?) — 1a*(M?) - £(a,0)
Jr = (m|mH|O) = —mZJe—'m%{JIO'*'

w (2 +3) (m? + m¥) — 2 (m? In(M?) + m} In(M%)))
JS = (2ml2myim) = —'3_,%?};(2m|mHlm’) — = ::ﬂfa%‘,—blb=l

= %(a__-'li [1na+%f(a,1)])

Jo = (mP2mglm) = =*(—3k—% (1-2In(M}))

C12 3@ + (M) — ()  flat, )
Jo = (m2mgl0) = 7¢(—z - % (1-2ln(M})

—1-1¢(2) + In(M3) — (M) — f(a™,0))
Jn = (@m2mgl)) = -zZr(emimgl0)= SEA = Ipe
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Figure captions

Fig. 1la:

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.

Fig.

1b:

2a:

2b:

3a:

3b:

4a:

4b:

Leading 2-loop electroweak diagrams contributing to the Z self-energy. Heavy full
lines represent the top, light full lines the bottom quarks; dashed lines stand for
the charged "would-be Goldstone bosons” ¢*, dotted lines for the neutral Higgs
ghost ¢ and the physical Higgs H.

Leading 2-loop electroweak diagrams contributing to the W self-energy. Internal
lines have the same meaning as in Fig. 1la.

p? as a function of a compared with the asymptotic expansions for small and large
a.

p®) as a function of a. The bare contribution pg) and the top mass counterterm
p(cz}, which here is subtracted at a = 0, are shown separately. pf,ff)s shows the result

obtained when the MS definition is adopted for the top quark mass.

Leading electroweak loop diagrams without Higgs and neutral Higgs ghosts con-
tributing to the Zbb vertex. Internal lines have the same meaning as in Fig. 1.

Leading 2-loop electroweak diagrams involving Higgs and neutral Higgs ghosts
contributing to the Zbb vertex. Notice that ¢ does not couple to ¢*. Internal lines
have the same meaning as in Fig. 1.

7(?) as a function of a compared with the asymptotic expansions for small and large
a.

7®) as a function of a. The bare contribution 71(32) and the top mass counterterm
Tg"%, which here is subtracted at a = 0, are shown separately. TA(;‘)S' shows the result

for the M S definition of the top quark mass.

Leading 2-loop electroweak diagrams contributing to the ¢ and ¢* self-energy,
labeled as in Ref. [8]. Internal lines have the same meaning as in Fig. 1.

Leading 2-loop electroweak diagrams contributing to the ¢bb vertex, labeled as in
Ref. [8]. Internal lines have the same meaning as in Fig. 1.

General type of “bubble” diagram obtained in a heavy mass expansions at the
two-loop level. In this Figure each line stands for a chain of propagators of equal
mass.

Leading 1-loop corrections to the top propagator. The different lines have the same
meaning as in Fig. 1.

Leading loop corrections to the bottom quark propagator. The different lines have
the same meaning as in Fig. 1.
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Fig. 1a: Leading 2-loop electroweak diagrams contributing to the
Z self-energy. Heavy full lines represent the top, light
full lines the bottom quarks; dashed lines stand for the
charged "would-be Goldstone bosons” ¢*, dotted lines
for the neutral Higgs ghost ¢ and the physical Higgs H.
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Fig. 1b: Leading 2-loop electroweak diagrams contributing to the
W self-energy. Internal lines have the same meaning as
in Fig. la.
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Fig. 2a: p® as a function of a compared with the asymptotic
expansions for small and large a.

-10.0

-15.0

Fig. 2b:  p(® as a function of a. The bare contribution pg) and

the top mass counterterm p(g%, which here is subtracted

at a = 0, are shown separately. pﬁ)s shows the result

obtained when the MS definition is adopted for the top
quark mass.
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Fig. 3a:  Leading electroweak loop diagrams without Higgs and
neutral Higgs ghosts contributing to the Zbb vertex. In-
ternal lines have the same meaning as in Fig. 1.
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Fig. 3b:

Leading 2-loop electroweak diagrams involving Higgs
and neutral Higgs ghosts contributing to the Z bb ver-
tex. Notice that ¢ does not couple to ¢*. Internal lines
have the same meaning as in Fig. 1.
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Fig. 4a:

7 as a function of a compared with the asymptotic
expansions for small and large a.
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Fig. 4b: 7(¥ as a function of a. The bare contribution 7'1(32) and

the top mass counterterm Tg}, which here is subtracted

at a = 0, are shown separately. Tﬁ?g shows the result for
the MS definition of the top quark mass.
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(a)

Fig. 5: Leading 2-loop electroweak diagrams contributing to the
¢ and ¢* self-energy, labeled as in Ref. [8]. Internal lines
have the same meaning as in Fig. 1.
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Fig. 6: Leading 2-loop electroweak diagrams contributing to the
bb vertex, labeled as in Ref. [8]. Internal lines have the
same meaning as in Fig. 1.
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Fig. T:

ms3

General type of “bubble” diagram obtained in a heavy
mass expansions at the two-loop level. In this figure each
line stands for a chain of propagators of equal mass.

(o) (&) ()

Fig. 8:

Leading 1-loop corrections to the top propagator. The
different lines have the same meaning as in Fig. 1.

Fig. 9:

Leading loop corrections to the bottom quark propaga-

tor. The different lines have the same meaning as in
Fig. 1.
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